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A QUEUEING MODEL
FOR A NON-HOMOGENEOUS POLLING SYSTEM
SUBJECT TO BREAKDOWNS

B. Almasi (Debrecen, Hungary)

To the memory of Béla Kovdcs

Abstract. This paper deals with a non-homogeneous finite-source
queuing model to describe the performance of a multi-terminal system
subject to random breakdowns under Polling service discipline. The model
studied here is a closed queueing network which has three service stations, a
CPU (single server), terminals (infinite server), a repairman (single server)
and finite number of customers (jobs) that have distinct service rates at
the service stations. The service stations are not independent, as the
repairman repairs the failed terminals and CPU. It can be viewed as
a continuation of papers [1,2], which discussed a FIFO (First-In, First-
Out) and a PPS serviced queuing model subject to random breakdowns.
All random variables are assumed to be independent and exponentially
distributed. The system’s behaviour can be described by a Markov chain,
but the number of states is very large. The purpose of this paper is to give
a recursive computational approach to solve the steady-state equations and
to illustrate the problem in question using some numerical results.
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1. The model
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Figure 1.

This paper deals with a terminal system consisting of n terminals con-
nected with a Central Processor Unit (CPU) and a repairman to repair the
breakdowns of the CPU and terminals. The model is a closed queueing network
model with three service stations and finite number n+1 of jobs (Figure 1). The
service stations are not independent, as the repairman’s queue consists of the
failed CPU and terminals. The first service station is the processor, consisting
of only one server, where jobs from the terminals may suffer from queueing
delay. The required running times of job 7 are exponentially distributed random
variables with means 1/u; (i = 1,...,n). The processor serves the jobs one by
one according to the job id numbers. There is no delay time when skipping
from one job id to the next one (id 1 follows id n in the order). The serviced
jobs are transferred to the second service station, which is a collection of n
terminals (servers). At the terminals there is no queueing delay for the jobs
(as the number of terminals is equal to the number of jobs). The service times
of job 7 at the terminal ¢ (i.e. the thinking times of the user at terminal ) are
assumed to be exponentially distributed with means 1/);.

Let us suppose that the CPU is subject to random breakdowns stopping
the whole system, and giving a special customer to the third service station
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(repairman). The failure-free operation times of the CPU are exponentially
distributed random variables with mean 1/a. The restoration times of the
CPU are exponentially distributed with mean 1/8.

The busy terminals are also subjects to random breakdowns not affecting
the system’s operation, but stopping the work at the terminal and transferring
the customer to the repairman’s que. The failure-free operation times of busy
terminals are supposed to be exponentially distributed random variables with
mean 1/7v; for terminal i. The repair times of terminal ¢ are exponentially
distributed random variables with mean 1/7;. The breakdowns are serviced by
a single repairman according to FIFO discipline among terminals and providing
preemptive priority to the failure of CPU. We assume that each terminal sleeps
while its job 1s serviced by the CPU, that is the terminal is inactive while
waiting at the CPU, and it cannot break down. All random variables involved
here are assumed to be independent of each other.

On the one hand this paper is a generalization of the non-homogeneous
model discussed in [9] (which allowed only CPU failures), on the other hand it
further generalizes the homogeneous model treated in [10] (which allowed both
terminal and CPU failures). This paper is the continuation of [1,2] where the
FIFO and PPS disciplines were discussed (instead of Polling) and we build a
new non-homogeneous model and solve the steady-state equations recursively
by using a similar computational approach as in [1]. In equilibrium the main
performance of the system, such as the mean number of jobs residing at the
CPU, the mean number of functional terminals, the expected response time of
jobs and utilizations are obtained. Finally it is investigated - by using some
numerical results - how breakdowns affect the performance characteristics.

2. The mathematical model and a computational approach

Let us introduce the following random variables:

X(t) = 1, if the CPU is failed at time ¢,
() = 0, otherwise.

Y (t) = the failed terminals’ indices at time ¢ in order of their failure, or 0
if there is no failed terminal,

Z(t) = the indices of jobs staying at the CPU at time ¢ the first job id is

serviced, the others are in increasing order, starting from the first one, (id 1
follows id n in the order), or Z(t) = 0 if there is no job at the CPU.
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It is easy to see that the process
M(t) = (X(2),Y (1), 2(1)),

is a multi-dimensional Markov chain with 3 vector-components and with state
space

S=( (g%, % J1,--Jds)y, ¢=0,1;, k=0,...,n; s=0,...,n—k),

where
(?1,...,%k) is a permutation of k objects from the numbers 1,...,n or 0,
if k=0,
(j1,.--,Js) 1s a cyclic permutation of the s element subsets from the
remaining n — k numbers or 0, if s=0.
The event (q;11,...,%;J1,.--,Js) denotes that the operating system is in
state X (t) = g, there are k failed terminals with indices 4y, . . ., ik, and there are

s jobs with indices jq,...,j, at the CPU (i, # 51, r=1,...,k; [=1,...,s).
The reader can easily verify that the number of states is

dim(S) = 2;02—:0 '(s m—yTE

Let us denote the steady-state distribution of (M (t),t >-0) by
p(q;il)"')ik;jl)"'yjs) :tl—l-orgop(X(t) zq:Y(t) = l],,lk,Z(t) :jly"-yja))

which exists and is unique (see [5]) because of all the rates are assumed to be
positive.

For brevity let us introduce the following notation:
R(iy, ...yt 01, -, Js) =
{r,js<r<yji and r#idy,... i} if j, < 71,
{r,(js<r<n or 1<r<yj) and r#1,...,ix} otherwise.
R(i1,...,%;J1,-..,Js) denotes the set of r positive integers, for which

if (0;41,...,%;51,-..,7s) €S, then (0;41,...,%;7,51,...,75) €S.
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Since we study the steady-state behavior of the Markov chain M(t),
following [5], we can start with the statement

Average rate of leaving state (¢;1,...,%;41,-..,7s) =

=Average rate of entering state(q;i1,...,%;J1,---,Js),

that is we can build the global balance equations for p(g;i1,...,%;41,---,Js)
by using the rules discussed in Section 1:

rEiy [
LE S DT Js
=Bp(Lyir, . iksdn, - ds) H 4+ YL (05T iy, ik G de)
rEi iR
TEIL Js
+ Z llrp(();il:--~aik;r,jly-~-)j5)+

TER(i1, -\ ikif1,-fs)

S
RV (U TTPNE FPEy [N 15 B YD FI [ (UX TRUE P [T ISR AT PRI A §
r=2

for all 4q,...,%k; J1,.-,Js; 6=0,...,n;s=0,...,n—k,

(2) .Bp(lyll, . ';ik;jly . 'yj.l) = ap(o;ily .. ')ik;jly . --)js))
forall4y,...,%;J1,...,J5;k=0,...,n;s =0,...,n—k, where the probabilities
of meaningless events and coeflicients are defined to be zero.

The system of equations will be simpler if we substitute Equation (2) to
Equation (1). Namely, we have

(Til+p'j1+ Z (AT +7T))p(01111yzk;j1)y]s):

L PUTRRL TSV BURRRY I

= Z (TrP(O;T',il)---,ik;j1’~~-:ja)+

iy, ik
TEIL Js
+ Z ;U-rP(Oiily~~-,ik§7';jly---;ja)+

r€R(i1,. .., kif1,-056)

+ 7:.=P(01 ily .. 'aik—l;jly s )js) + ZAJrP(O)Zl1 . '1ik;j1) -~jr—1;jr+1> "')js)l
=2
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for all iy,...,ik; 1, rjs; k=0,...,n; 5 =0,...,n—k,

(4) Bp(1;8y, ..tk J1, -y Js) = ap(0;71, ...y Tk J1, - -y Js),

for all 4y, ...,%; j1,---,Js; k=0,...,n;s=0,...,n—k.

The purpose of this paper is to solve this system subject to the normal-
ization condition
1

¢g=0 k=0 s=

n n-—

k

p(g, k,8) =1,
0
where

p(qlk’s): Z Z p(q;ilx'-')ik;jly"-yjs)y

(ill"-li’t)ev: (jlv“'lj')ec,l.-k
V% . the set of all (i1,...,ik) (as defined above),
> _k : theset of all (j1,...,7s) (as defined above).

n~k *

Such a system of linear equations could easily be solved by standard
computational methods, e.g. by Gauss-elimination. But it we do not forget
that the unknowns are probabilities and therefore - since the state space is very
large - the round off errors may have considerable effect on them (see [6,7,11])
and when using computer programs to solve the system of equations, the whole
matrix of the equations cannot be stored in a personal computer if n > 3. It is
more efficient to use a recursive computational method to determine the steady-
state probabilities, as described in the following section (as it was proposed by
Tomks [4]).

3. The recursive solution

Let Y (m) be the vector of the stationary probabilities for the states where
the operating system is working, there are k failed terminals, and s = m — &
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jobs are waiting at the CPU ((k =0,...,m), m=0,...,n). That is

(p(O;l,...,m—l,m;O)
p(0;1,...,m—1,m+1;0)

p(0;n,...,n—m+ 1;0)
p(0;1,...,m—1;m)
p(0;1,...,m—1;m+1)

p(0;n,...,n—m+2;n—m+1)

p(0;0;n—m+1,...,n) ,

In words, the elements of Y () are written in lexicographically increasing order
of indices
l1.for k = m and s = 0,

2fork=m—-1and s=1,

m+1.for k=0 and s = m.

Similarly, let Z(m) be the vector of stationary probabilities alike ¥ (m), but
for the states where the CPU is failed. From the definition it is obvious that
m

the dimension of Y(m) and Z(m) is d(m) = ) (n_m)!’:r’l_:_l)!. Using these
s=0

notations Equations (3),(4) can be written in matrix form as

(@) Y(0) = C(O)X(1),
(i)  Y()=CHYGH+D)+DEYG-1), j=1,....n-1,
(i) Y(n)=D(n)X(n~ 1),

(i) Z2(G)=FWXG), 1=0,...,n
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j !
The dimensions of the matrices are (d(]) = 3;0 (TLT)YY;T.:——IY)

F(j5) :d(j) x d(), C(j):d(j) xd(i+1), D(j):d(j) xd(j —1).

The elements of all the matrices can be obtained from the Equations (3),
(4). For example we can use Equation (4) to obtain the elements of matrix
F(k+s) (k+s =0,...,n): the element p(1;7y,...,%;J1,...,Js) of Z(k+
+s5) can be obtained from the element p(0;i1,...,%; j1,...,Js) of Y (k +s) by
multiplying it with % That is, the matrix F'(k + s) contains non-zero elements

only in its main diagonal, and this non-zero element is the constant value %

Similarly, we can use the second line of Equation (3) to build the matrix
C(k+s), and the third line to determine the matrix D(k+s) (k+s=0,...,n).

Applying these notations we can state our main result:

Theorem. The solution of the Equations (i) - (iv) can be given in the
form

(5) : N .

Z(j) = F()X(), j=0,...,n,
where L(n) = D(n), L(j)={-CGH)LG+1)"'D@G), j=1,...,n—1, s0
the system of equations can be solved uniquely up to a multiplicative constant,
which can be obtained from the normalization condition.

The proof of the theorem is the same as it was in [1], only the contents of
the matrices are different in our case.

Applying (5) we can start the recursion with any initial value de-
noted by Y'(0) and the non-normalized p'(g;1y,...,4k;j1,...,Js) elements of
Y'(m), Z'(m) (m = 0,...,n) can be obtained. We can calculate the
steady-state probabilities from Y'(m), Z'(m) (m = 0,...,n) by using the
normalization condition as follows

Y(m) =

- Y' (0 Y'(m)

n-k
> > P81, ik T1, e 0 Js)

=0 k=0 =04, . ixeVE Ji1,.,74€C_,
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Z(m) =
_ Y'(0)
o n n—k . . . .
DY > (g, ks d1, -0 Js)
q=0 k=0 s=0 i1, ,szV: jl,“,,j,eC;_,‘

4. Performace measures

Zl(m)r

We derive the steady-state characteristics from the steady-state prob-
abilities because the model is too complicated to derive the characteristics

directly from the parameters (n, «, 3, ..

.). Some of these characteristics will be

calculated in Tables 1-3 (for n = 4 and n = 3) as examples. We can use these
numerical results to investigate how parameters influence the characteristics.

= 7 (and 0

We employ the following usual notation: 6(z,5) = 1, if ¢

otherwise).

The steady-state characteristics:

() Mean number of jobs residing at the CPU

1
1=:0

n

(i1) Mean number of functional terminals

n n—k
ﬁy:n—; kz_o Zokp(i,k,s).

(iii)) Mean number of busy terminals

n—k
Z Z sp(i, k, s).
k=0 s=0

k —s)p(0,k,s).
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(iv) Utilization of repairman

n n—k n
Ur =3 p(1,k,s) + Z ZpOks).
k=0 s=0

(v) Utilization of CPU

n-1 n—k
Ucpu = Z Zp(O.k,s).
k=0 s=1

(vi) Utilization of terminal i (i = 1,...,n)

Ll

n-— S

k
Ui = Z Z_: Zl >y > (16, ir) = 8(i, u))x

v=liy, ix€V*  j1,..J.€C"_,

Xp(O;il,...,'l:k;jl,...,j,).

(vii) Expected response time of jobs for terminal ¢ (i =1,...,n)
T; =
1 n n_k s . . . . . .
)DEEDY E Z > 6, g)p(gsin, ik g1, ds)
¢g=0 k=0 s=0 r=1 ix€ J1,-J4€C)

A U;

The reader can easily verify the validity of the formulas above. The proof of
the last one can be found in [3].

5. Numerical results

The algorithm described above was implemented on an IBM PC. We show
several examples to illustrate how breakdowns influence the characteristics.
The running times were at about 8 seconds for n = 4. If we compare these
results to the ones described in [1,2] we can see how scheduling strategy
influences the characteristics.

Case 1. Failure-free system.
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System parameters and characteristics:

n=4 a=0.0001 B =29999.0
m; =218 m,=40 Ucpy = 0.903

Terminal parameters and characteristics:

(AP ¥ i ¥i T U; T;

1 0.300 0.600 0.0001 9999.0 0.471 3.741

2 0.400 0.700 0.0001 9999.0 0.415 3.526

3 0.200 0.500 0.0001 9999.0 0.552 4.055

4 0.500 0.900 0.0001 9999.0 0.377 3.303
Table 1.

This case will be the starting point of our investigation. It can be used to
approximate a failure-free system described in [1] using FIFO discipline instead
of polling. The global system characteristics are very similar to the results of
[1]. The response times of the terminals are smaller for ¢ = 1,2; and bigger,
for i = 3,4.

Case 2. Terminal failure.

System parameters and characteristics:

n=4 a = 0.0001 £ =9999.0
n; = 1.254 ng = 2.58 Ucpu = 0.663

Terminal parameters and characteristics:

TN Mi vi T; U; T;

1 0.300 0.600 0.2200 0.5000 0.342 2.993

2 0.400 0.700 0.1700 0.3400 0.331 2.685

3 0.200 0.500 0.1600 0.3000 0.391 3.303

4 0.500 0.900 0.3200 0.4500 0.265 2.516
Table 2.

In this example we can see how terminal failures influence the performance
mcasures. The response times and the number of good terminals are less than
in Case 1. That is, the system works as if there were less terminals. The effect
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of the terminal failures seems to be greater using FIFO discipline at the CPU
(see [1]): the terminal utilizations are smaller, the response times are greater
in our case than it was in [1].

Case 8. CPU failure.

System parameters and characteristics:

n =4 a=025 8 =0.45
nj =1.254 7y =2.58 Ucpu = 0.663

Terminal parameters and characteristics:

Ai Hi Vi Ti Ui T;
0.300 0.600 0.2200 0.5000 0.220 4.656
0.400 0.700 0.1700 0.3400 0.213 4.177
0.200 0.500 0.1600 0.3000 0.251 5.138
0.500 0.900 0.3200 0.4500 0.171 3.915

RESVUR

Table 3.

If we compare these results with Case 1, it can be seen, that the failure
of the CPU increases the response times and decreases the utilizations, as one
can expect.
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