Annales Univ. Sci. Budapest., Sect. Comp. 17 (1998) 891-403

USING COMPILER TECHNIQUES TO CONVERT
AN SQL APPLICATION FOR A NEW DBMS

A.-P. Tuovinen (Helsinki, Finland)

Abstract. We present a conversion system, SQL Converter, that
translates VMS/Rdb SQL embedded in the C language to macros and
function calls of a portable SQL application programming interface. The
system demonstrates straightforward application of compiler construction
techniques to high-level language translation. We describe a modular
architecture that can be re-used for other similar conversion problems, too.

1. Introduction

In this paper we present a conversion system, SQL Converter, that converts
SQL embedded in the C language to parametrized macros and function calls of
a portable SQL application programming interface. The system demonstrates
straightforward application of compiler construction techniques to high-level
language translation. The system was produced for KT-DataCentrum Inc. in
a research project partly funded by the company. The system will be used to
convert a large SQL application to database independent form for porting to a
new database system. The system was implemented as a part of the author’s
M.Sc. thesis [20].

Background. Open, distributed programming environments introduce
new requirements for database management systems (DBMS) and database
applications. The keywords are interoperability, portability and client-server
architecture. Industry standard communication protocols for DBMS clients
and servers are being developed by major companies. Also, there are many
application programming interfaces (API) for developing portable applications.

The relational data model and the SQL data manipulation language are the
de facto industry standards. Nowadays there are many CASE tools that provide
DBMS transparency and portability by supporting different relational DBMS

392 A.-P. Tuovinen

and some standard version of SQL [5]. Also, mmany DBMS vendors provide
gateways to systems of other gender [5]. The emergence of new SQL APIs for
open environments (e.g. Microsoft’s ODBC) will make DBMS interoperability
become reality [12]. Developers of new database applications can take full
advantage of these tools and create flexible and robust applications. On the
other hand, there are great many legacy systems which are not interoperable
nor portable, but which must somehow be adapted to new open operating en-
vironments. However, re-engineering legacy systems is a costly and errorprone
business due to the scale of the changes.

Embedded SQL means embedding SQL statements in programs written
with general purpose programming languages. Embedded SQL is an important
traditional programmatic interface to DBMS; the method is straightforward
and the data exchange scheme between SQL statements and the surrounding
program is simple. Embedded SQL combines the data manipulation power of
SQL and the expressive power of a general purpose programming language
and facilities creating complex applications with clear separation of data
management functions and application logics. Thus, embedded SQL is widely
used. However, because different DBMS vendors provide very different versions
of both SQL and embedded SQL, applications written using embedded SQL
are not very portable.

Changing from embedded SQL to a new generation SQL API provides a
way to increase the interoperability and portability of legacy systems. Manual
re-engineering becomes very expensive, because the process requires analyzing
and rewriting of every embedded SQL statement. On the other hand, the
conversion problem can be viewed as translation between high-level languages,
and compiler techniques can be used to automate the conversion.

Outline of this paper. In the next section we describe our particular
conversion problem in more detail. In Section 3 we present our conversion
system. Finally, in the last section we compare our system with other work in
the field of translating relational query languages.

2. The conversion problem

KT-DataCentrum Inc. is the second largest software company in Finland.
The PRIMA system is a personnel management and payroll application of
considerable size and is one of the main software products of the company.
The system was originally implemented in VAX/VMS environment with the
VMS/Ddb DBMS. Two years ago KT-DataCentrum was faced with the need to
port the PRIMA system to the Oracle DBMS. The company launched a joint

Using compiler techniques to convert an SQL application 393

investigation with the Dept. of Computer Science at University of Helsinki to
determine the requirements of porting the PRIMA system. The author was
assigned to the project by the department.

The PRIMA system is a client-server application where workstations send
service requests over a network to the database server of the system. The
database services are provided by independent programs implemented in C.
The underlying DBMS is VMS/Rdb and the programs use the embedded SQL
of VMS/Rdb [4] to manipulate the database. The amount of C code containing
embedded SQL totals up to a million lines. To port PRIMA to a new DBMS,
the server programs and the database would have to be converted. Obviously,
converting the programs would be the most costly and risky task. In this
paper we concentrate only on the problem of converting the database programs.
Converting PRIMA to a new DBMS had to be made an automatic process to be
economically feasible. Also, the converted code would have to be maintainable
because the converted system would be the new baseline product.

The basic solution to the conversion problem was to translate the em-
bedded SQL to a portable SQL API called Pst/DB (portability software
tools/databases) [17]. Pst/DB is a domestic SQL API similar to the SQL
Call Level Interface (SQL/CLI) by SQL Access Group [1, 13]. The interface
hides the differences in connection management, transaction management and
dynamic execution of SQL statements between DBMS of different make.

Pst/DB guarantees DBMS independence of SQL only if standard SQL
is used. In practice this means using the SQL dialect conforming to the
1989 ANSI/ISO SQL standard [8]. However, the VMS/Rdb SQL contains
many incompatible features annd extensions, that must be dealt with in the
conversion process to ensure DBMS independence of SQL.

2.1. Translation requirements

Converting embedded SQL to function calls of an SQL API is clearly
a translation problem. However, the principal differences in the two SQL
programming interfaces (embedded SQL and Pst/DB) and the differences in
SQL dialects (VMS/Rdb-SQL and ANSI SQL) cause many problems for a
translator. In the following we briefly introduce the main differences and the
requirements they imply.

2.1.1. SQL programming interfaces

Embedded SQL

A programmer inserts an SQL statement as it is into her program when
using static embedded SQL. The variables of the surrounding program are
used directly in the embedded statement to pass data between the program

394 A.-P. Tuovinen

and the statement. Figure 1 shows a code fragment from a PRIMA program.
The embedded SQL statement (called the singleton select statement) returns
the number of rows (COUNT(*)) in the database table given in the FROM
clause, that satisfy the condition given in the WHERE clause. The return value is
assigned to the variable iCount. Here iCount is an oui-parameter and szMpvm
used in the boolean expression of the WHERE clause is an in-parameter.

Queries that may return more than one row of data require using explicit
cursors for iterating over the result data. We will not consider cursors in this
paper due to space limitations.

Programs containing embedded SQL are preprocessed with a precompuler,
which analyzes the SQL statements, stores them for later execution and replaces
them with calls to the executable units containing the stored statements. The
precompiler checks the syntax of the statements and ensures that program vari-
ables (called host language parameters in VMS/Rdb SQL) are used correctly
(e.g. the type of a variable is compatible with the database type of a table
column).

static void vDbChkMpvmLask(CVP_BUF_HANDLE_TYPE pm_hBuffer, int
*pm_error){ char szTmp[11];
szMpvm[17];
int iCount;
eCVP_GetString(pm_hBuffer,szTmp,CVP_CLASS_DISPLAY_FIELD,
PNMAT2_KT_PT_MAKSUPVM) ;
1KonvertoiPvm(szMpvm, szTmp,SQLDATE3,DEFAULT_FORM) ;
EXEC sSQL
SELECT COUNT(*)
INTO: iCount
FROM: PR_LASKEKAY
WHERE LN_MAKSUPVM=:szMpvm AND
LN_LNROTILA='1’;

Fig.1. An embedded SQL statement
Pst/DB

When using the Pst/DB interface the SQL statements are formed incre-
mentally and dynamically at execution time. An SQL statement is passed
as a string to the database server that interprets the statement and returns

Using compiler techniques to convert an SQL application 395

then the result data, if there are any. Program variables can be used to pass
data between the program and the database, but in a rather low-level manner.
For instance, the programmer must explicitly declare the host language types
of the program variables and declare the length of string variables in bytes.
Also, the programmer has to define a number of control objects in the program
which are used to manage the connection to the database server and to identify
the resources reserved by the server and Pst/DB for constructing and executing
SQL statements. Queries are just like other SQL data manipulation statements
expect that there is result data to be handled with the iteration services Pst/DB
provides.

static void vDbChkMpvmLask(CVP_BUF_HANDLE_TYPE pm_hBuffer, int
*pm_error) { char szTmp[11];
szMpvm[17];

int iCount;

eCVP_GetString(pm_hBuffer,szTmp,CVP_CLASS_DISPLAY FIELD,
PNMAT2_KT_PT_MAKSUPVM) ;
1KonvertoiPvm(szMpvm, szTmp, SQLDATE3,DEFAULT_FORM)

SELECT_INTO("SELECT \
COUNT(*) \
FROM \
PR_LASKEKAY \
WHERE \
LN_MAKSUPVM=:szMpvm AND \
LN_LNROTILA=’1’",
INTO(INTOINT(O,iCount ,NOINDICATOR)),
PARSYM(DATPAR(szMpvm)));

Fig.2. The converted SQL statement

Figure 2 shows the example code from Figure 1 converted to a parame-
terized C macro that is syntactic sugar on top of the low-level Pst/Db. The
SELECT_INTO macro hides the control objects of Pst/Db which are needed to
create and execute an SQL statement in the database server. We see that the
embedded statement is converted to a C string which is the first parameter
of the macro. The INTO clause has been left out from the statement. As the
second parameter of the SELECT _INTO macro is an INTO macro where the out-
parameter :Count is bound, i.e. the variable used to store the return value is

396 A .-P. Tuovinen

identified and its type, INT, is declared. In this case the type is deduced from the
C type of iCount. As the last parameter of the SELECT_INTO macro is PARSYM
macro that is used to bind the in-parameter szMpvm. The value of szMpvm
1s logically a date value, because it is compared to the column LN_MAKSUPVM
that has the VMS/Ddb type DATE. However, because date types require special
processing (see Section 2.1.2), the type of szMpvm must be declared to be DAT
instead of a string type, which is the C type of szMpvm. Thus a translator
must analyze the variable declarations of the host program to produce correct
bindings for the in- and out-parameters.

2.1.2. SQL dialects

The 1989 ANSI/ISO SQL standard describes a very limited language
compared to the SQL dialects provided by different DBMS vendors. On the
other hand all the major SQL dialects contain as a subset the data manipulation
language defined in the standard. Also, the standard leaves open many details
(e.g. database connection management) which DBMS vendors are free to define
as they wish.

For instance VMS/Rdb SQL introduces several new data types and op-
erations on them that are not part of the standard. Also, subqueries may be
used more freely as expressions than in standard SQL. VMS/Rdb SQL includes
some new predicates, too.

The date-time data types of VMS/Rdb and Oracle proved to be incompat-
ible. Thus the correct handling of date values requires progammatic support
that would have to be added on top of Pst/Db. But this means that the
translator must notice when date-time data is passed between the program
variables and SQL in order to create correct bindings.

A translator cannot transform all the non-standard features of VMS/Ddb
SQL to semantically equivalent expressions in standard SQL. For instance in
VMS/Ddb SQL it is possible to compare values of different data types (irnplicit
type conversion) in boolean expressions which is not allowed in the standard.
Also, the liberal use of subqueries in VMS/Rdb SQL causes difficult if not
impossible transformation problems. However, warnings should be issued when
non-standard features are encountered during translation.

Many of the shortcomings of the 1989 SQL standard (SQL89) have been
corrected in the new 1992 SQL standard, SQL2 [9]. However, SQL89 is still
the most portable dialect of the language, because there are only few SQL
implementations that claim to be full SQL2 compliant. Thus SQL89 was set
as the target for the translations.

Using compiler techniques to convert an SQL application 397

3. SQL converter

In this section we describe the SQL converter system. First we explain in
general how SQL converter solves the conversion problem defined in Section 2.
Then we give a high-level view of the architecture of the system and describe
the conversion process.

3.1. Overview

The source languages of the translation process are C and embedded
VMS/Rdb SQL. Target languages are C and a subset! of VMS/Rdb SQL.
To be more precise, embedded SQL statements in the source C modules are
translated to parametrized C macros and function calls, where SQL is contained
in static C strings. The macro layer on top of Pst/Db is called PPA (PRIMA
portability adapter).

Programming interfaces

The translation system maintains a complete symbol table of the type and
variable declarations in a source model. Therefore, the C program containing
embedded SQL is parsed and the declarations are analyzed.

The system analyzes the static type of expressions in SQL statements to
be able to create correct bindings for date-time objects, too. The system uses
an in-memory description of the target database to resolve the types of table
colurnns and the expressions where they are used.

There are also a number of other details to take care of. For instance the
translator must expand C structures that can be used as parameters in the
embedded SQL statements to listings of individual fields in the converted SQL
statements.

SQL dialects

We decided not to try transforming non-standard VMS/Rdb SQL features
to standard SQL. First, because this is in some cases impossible, and second,
because the SQL used in PRIMA conforms well to the standard. Only the
problematic date-time data types had to be dealt with, which was done at the
level of the PPA macros. However, the system analyzes the SQL statements
and 1ssues warnings of non-standard features encountered in the statements.

1 without the extensions of embedded SQL

398 A.-P. Tuovinen

Other features

The system produces maintainable code. The original C code surrounding
embedded SQL statements is untouched by the conversion process and the
generated PPA code is pretty printed. SQL converter leaves optionally the
original embedded SQL statements as C comments in the converted programs.

3.2. Architecture

The system was designed and implemented using the well-known tech-
niques of compiler construction. Thus the architecture of the system is modular
and the interconnections between the modules are well defined. The separation
of concerns makes it easy to modify the system. For instance changing the code
generation module has no effect on other parts of the system. The architecture
of our system ressembles closely the architecture of a generic query language
translator described in [10].

ANSIAnalyzer
SyntaxTre

Def:nep
Creat
l SGLConverter SQL cursc
Consists|of
.
DatabaseTable I _]
CParser SQLParser] SQLSemanticAnaly PPACodeGenerato
FileScanngr ClexicalAnalyper SQLLexicalAnalyfer
C-source SQL-source
1 1+ 5QL-target

2
database descrpptlbytStreqm C-targe outPUts"re#;A—tnxqet

Fig.83. The object model

The system components are modelled by abstract data types or classes,
which provide a function interface to other components hiding all the implemen-
tation details. A syntax tree structure is used as an intermediate representation
of an SQL statement during the different phases of conversion.

Using compiler techniques to convert an SQL application 399

3.2.1. Main components

Figure 3 presents the object model of SQL converter. The modelling

technique used is OMT [16]. In the following we describe the responsibilities
of the main components.

CParser collects symbol table information from type and variable decla-
rations. Inserts type and variable descriptors to the C symbol table. The
parser invokes the SQLConuverter object when the parser encounters an
ernbedded SQL statement.

SQLConverter controls the conversion of an SQL statement by invoking
first the SQL Parser to parse the statement and to produce a corresponding
syntax tree. Then the SQLConverter invokes the SQLSemanticAnalyzer
to annotate the syntax tree with SQL type information concerning table
columns, expressions and the corresponding program variables. Next,
the ANSIAnalyzer checks the ANSI conformance of the SQL statement.
Finally, SQLConverter invokes the PPACodeGenerator to generate PPA
macros from the syntax tree. Other functions of SQLConverter include
managing global data concerning cursors.

SQLParser parses the SQL statement and produces syntax tree of the
statement. The parser attaches C symbol table descriptors to the in- and
out-parameters.

SQLSemanticAnalyzer annotates the nodes that correspond to column
names with their database types and deduces the types of expressions
based on the types of the columns used in the expressions. The ana-
lyzer attaches SQL type information to in- and out-parameters using the
database symbol table produced by the FileScanner.

ANSIAnalyzer checks the ANSI conformance of the SQL statement rep-
resented as a syntax tree. The analyzer prints warnings of non-standard
features to the conversion log file.

PPACodeGenerator generates PPA macros from the annotated syntax
tree. The generator uses the type information attached to in- and out-
parameters and C symbol table information to produce correct bindings
for the parameters.

FileScanner reads a database description file that contains the names of
the tables in the PRIMA database and names and types of columns of the
tables. The scanner creates a symbol table where the information is stored
for looking up.

Figure 4 shows the functional view of the conversion process using the

functional modelling notation of OM'T. The main processes, data repositories

400 A.-P. Tuovinen

and dataflows between processes are depicted. Thhe dataflows exiting to the
right are system output and the flows entering from the left are system output.

ze3s characters C-code

C_lexicali analys

C-symbols C-svmools

L @‘He:nal declaz\ =

type + vpriable declaxa:’jr:s

Z-code + emb.

SQuL $IL in corments

\ SQL symbels

SQL star.emED’

syntax tree

C- symbo!l table

variable tvy

e

column tyge

Catabase table

—_—

M SuL scate;

syntax tree

table names + cplumn names + cciump types

(- Install databasD

textual description

r. :aio (ANSI warnings)

syntax tree

FTA macris

enerate PPA codg

PFA curscy deilinticns

Fig.4. The conversion process

3.3. Implementation

The SQL and C parsers are recursive decent. The C syntax is LL(2) and
SQL as much as LL(11). The lexical analyzers provide arbitrary long lookahead
in the input symbol stream. Lookahead is used in some cases to resolve parsing
conflicts. Despite of the extensive use of lookahead the size of the SQL parser
is about 8000 lines compared to the C parser which is only 4000 lines long
(including comments). The system is handcoded in ANSI C and totals up to
38000 lines. The design and implementation of SQL converter took about 10
man-months.

Using compiler techniques to convert an SQL application 401

4. Comparison with other work

Other approaches

Automating database application conversion received some attention in
the late 70’s and early 80’s [19, 18]. After that there is no much literature
on the subject. However, translations between relational query languages have
been studied in other contexts.

Translation schemes

Query language translation techniques have been studied in connection
with heterogeneous distributed database systems, where queries are passed
between different systems. There are at least two different approaches to query
language translation.

The metacompiler approach uses compiler writing systems, that produce
language processors from the specification of language [7, 14, 15]. According
to the authors the benefits of this approach are: (1) the language specifications
are short and abstract which makes the modifications easy, (2) compared with
handcoding a compiler there is much less writing, and (3) the metacompilers
are perfect for incremental translator development. However, the translators
produced by metacompilers tend to be rather inefficient.

In the algorithmic approach a translation algorithm is given for a particular
translation problem, e.g. QUEL to SQL [11]. Algorithms are also given for
translating SQL to relational algebra or calculus [2, 3, 6]. These algorithms are
used, for instance, to give an exact definition for the semantics of SQL.

One common feature in the different translation schemes is that they
use some kind of intermediate representation in the translation process. This
reduces the number of translators needed in a multilingual environment, e.g.
in a distributed heterogeneous DBMS, because only two translators are needed
for every language: source language to intermediate language and intermediate
language to source language.

Conclusions

Our work demonstrates innovative use of wellknown translation tech-
niques to a concrete re-engineering problem. Tests done by engineers at KT-
DataCentrum show that SQL converter performs nearly 100 percent of the
work needed to convert the PRIMA database programs.

The use of compiler construction tools would have made the implemen-
tation of the system easier. However, KT-DataCentrum did not want this,
because they were not familiar with that kind tools. Compared to the

402 A.-P. Tuovinen

metacompiler approach, our system is less flexible, but modular enough to be
re-used for other similar conversion problems. SQL converter is an efficient and
reliable tool that has been produced using disciplined engineering practices.

References

[1] ANSI: SQL Access Group Call Level Interface, Base Document vol. 2.12.
ANSI X3H2-92-143, 1992.

[2] von Biiltzingsloewen G., Translating and optimizing SQL queries hav-
ing aggregates, Proc.of the 13th Conf. on Very Large Databeses, Brighton,
1987, eds. P.Stocker, W.Kent and P.Hammersley, Morgan Kaufmann
Publishers Inc., 1987, 235-243.

[3] Ceri S. and Gottlob G., Translating SQL into relational algebra: Op-
timization, semantics and equivalence of SQL queries, I[EEE Transactions
on Software Engineering SE-11, (4) (1985), 324-345.

[4] Digital: VMS/Rdb Language Reference Manual for v. 4.1., Digital Equip-
ment Corporation, 1993.

[5] Dowgiallo E., Database interoperability and application transportability,
Dr. Dobb’s Journal, 18 (13) (1993), 38-42.

[6] Gogolla M., A note on the translation of SQL to tuple calculus, ACM
SIGMOD RECORD, 19 (1) (1990), 18-22.

[7] Howells D., Fiddian N. and Gray W., A source to source meta
translation system for database query languages - Implementation in
Prolog, Prolog and databases - implementations and new directions, Ellis
Horwood Series in Artificial Intelligence, 1988, 22-38.

[8] ISO: Information Processing Systems - Database Language SQL, Interna-
tional Standard ISO: 9075:1987, 1987.

[9] ISO/IEC: Information Processing Systems - Database Language SQL,
International Standard ISO/IEC 9075:1992, 1992.

[10] Kimbleton S., Wong P. and Lampson B., Chapter 14. Applications
and protocols, Distributed systems - Architecture and implementation, eds.
B.Lampson, M.Paul and H.Siegert, Springer, 1981, 308-370.

[11] Viet C., Translation and compatibility of SQL and QUEL queries, J.of
Information Processing, 8 (1) (1985), 1-15.

[12] McCusker T., Build links to multiple databases, DATAMATION, 21
(1994), 65-67.

Using compiler techniques to convert an SQL application 403

[13]

(14]

[15)

[16]
[17)

18]

[19]

[20)

Perkovic P., Access and ANSI/ISO SQL and X/Open, Proc. COMP-
CON’91 36th IEEE Computer Society Int. Conf., San Francisco, 1991,
eds. L.O’Connor and A.Copeland, IEEE Computer Society Press, 1991,
120-122.

Piatetsky-Shapiro G. and Jakobson G., An intermediate database
language and its rule based transformation to different database languages,
Data & Knowledge Engineering, 2 (1) (1987), 1-29.

Rusinkiewicz M. and Czejdo B., Query transformation in a multi
database environment using a universal symbolic manipulation system,
Computing Trends in the 1990’s. [7th Annual ACM Comp. Science Con-
ference, Louisville, Kentucky, 1989, Association of Computing Machinery
Inc., 1989, 46-53.

Rumbaugh J. et al., Object-orientated modelling and design, Prentice
Hall, 1991.

SEpuiri/ATO: Portable database interface (specification), specification
document, 1993.

Schneiderman B. and Thomas G., An architecture for automatic
relational database system conversion, ACM Transactions on Database
Systems, 7 (2) (1982), 235-257.

Taylor R. et al., Database program conversion: A framework for
research, Proc. &§th Int. Conference on Very Large Databases, Rio de
Janeiro, Brazil, 1979, IEEE Computer Society, 1979, 299-312.
Tuovinen A.-P., Relaatiotietokantojen kyselykielten valisel muunnokset,
MSc Thesis, Report C-1994-70, Dept. of Computer Science, University of
Helsinki, 1994.

A.-P. Tuovinen

Department of Computer Science
University of Helsinki

P.O.B. 26 (Teollisuuskatu 23)
00014 Helsinki, Finland
aptuovin@cs.helsinki.fi

