Annales Univ. Sci. Budapest., Sect. Comp. 17 (1998) 381-389

ON THE SUPERPOSITION OF
BOOLEAN FUNCTIONS

M. Tombak (Tartu, Estonia)
1. Sillitoe (Boras, Sweden)

Abstract. The use of memory devices as the means of implementing
arbitrarily complex Boolean functions has been applied in a number of
fields, including digital signal processing, control and memory based learn-
ing. The approach applies the literals of the function to be implemented
to the memory address lines and programs, the state of the corresponding
memory cell to provide the correct value. Since the propagation delay of
the implementation is independent of the form of the function for a given
number of literals, the penalty for this flexibility is the number of additional
devices and corresponding increase in the size of the device. The exact cost
depends upon the precise method of implementation, but it is governed by
the number of memory cells, which will be in general O(2"), where n is the
number of literals.

Commercial solutions to this problem, such as the configurable logic
block found in family of Xilinx FPGAs, employ a cascaded RAM network,
the first layer of which consists of two 16 bit RAMs each with 4 independent
inputs and a single 8 bit RAM which forms the final products using the
results of previous layer’s RAMs and an additional external input. Thus
the network is able to implement a limited subset of all possible 9 variable
functions at a greatly reduced hardware cost.

The objective of this paper is to investigate the formal properties
of cascaded RAM networks and in particular those functions which are
expressible with RAM networks sharing common literals and for which
n > 4. The use of common inputsvdoes not necessarily produce a
network which will implement a given function at minimum cost, but does
radically increase the number of functions which can be expressed for a
relatively small increased cost. This work was inspired by the need for the
specification of functions which could be implemented using a 9 variable

Supported by the Estonian Science Foundation Research Grant Nr. 1203.

382 M. Tombak and I. Sillitoe

RAM network.
General method for testing representability of given function via
superposition of functions, sharing its variables, is given.

1. Introduction

The use of memory devices as the means of implementing arbitrarily
complex boolean functions has found application in a large number of fields,
including digital signal processing, control and more recently memory based
learning (e.g. [1]). Rather than forming a direct combinational implementation,
the technique applies the variables of the function to memory devices address
lines and programs the state of the corresponding memory cell to provide
the correct value [2]. In this way, the optimality of a direct combinational
implementation of the function, measured in terms of the propagation delay
and gate count, is exchanged for the flexibility of the sequential design and the
unique ability (if non-volatile memories devices are used) to specify dynamically
the function.

Since the propagation delay of the implementation is independent of
the form of the function for a given number of literals, the penalty for this
flexibility is the number of additional devices and corresponding increase in
the size of the device. The exact cost depends upon the precise method of
implementation, but is governed by the number of memory cells, which will
be in general O(2"), where n is the number of variables. Thus the use of
this approach is often limited to applications where n is small (typically < 4)
or when there is no requirement for the function to be replicated and the
additional cost of a small number of large scale memory devices is justified.
However, with the reemergence of modular designs, which are formed of large
numbers of regularly connected programmable function blocks within a single
chip, the balance between the flexibility of expression available with a memory
based implementation and the cost of corresponding hardware is no longer

straightforward to assess (e.g. systolic arrays, field programmable gate arrays
(FPGAs)).

Commercial solutions to this problem, such as the configurable logic block
found in FPGAs, employ a cascaded RAM network, the first layer of which
consists of two 16 bit RAMs each with 4 independent inputs and a single 8
bit RAM. The 8 bit RAM forms the final product using the results of previous
layer’s RAMs and an additional external input; thus the network is able to
realize a limited subset of all possible 9 variable functions at a greatly reduced
hardware cost.

On the superposition of Boolean functions 383

The objective of this paper is to investigate the formal properties of
cascaded RAM networks and in particular those functions which are expressible
with RAM networks sharing common variables, and for which n > 4. It will be
shown that whilst the use of common inputs does not necessarily result in an
implementation of a particular function with a minimum gate cost as would be
possible with a direct implementation, they can be used to realize large groups
of functions at costs significantly lower than those which would be incured with
a single layer exhaustive RAM approach.

This work was inspired by the need for the specification of the functions
which could be realized by a 9 variable 2 layer RAM network. The network
was an intuitive solution to the design of a binary convolution mask, which
provided the necessary functionality at a fraction of the cost of an exhaustive
RAM implementation, but for which the complete set of functions could not
be readily found.

(0.0) (0,0)

i
<:0»°pcc-
=

Original Transformed

Fig.1. Generalized binary image processing operations

2. Binary image processing

Once an image has been captured and quantized it can be regarded as an
array of pixels, where each pixel represents the averege light intensity of a small
rectangular region of the image plane. Binary images are in which the value of
light intensity is quantized and restricted to either one of two states, black or
white; thus a binary image can be regarded as an array of Boolean variables.

384 M. Tombak and I. Sillitoe

This simplified form of representation reduces the image storage requirements
and renders the processing to a sequence of Boolean mappings. The effect of
these simplifications also reduces the processing time, required by conventional
sequential machines, allowing binary image processing to be applied to many
real time imaging applications. However, in applications such robotics and
document processing the reduction in processing time is still insufficient and
special purpose hardware is required.

Operations on binary images can be generalized as the mappings of
neighbourhoods of pixels in the original image, through a Boolean function,
to a single pixel in the transformed image (see Figure 1). In practice [5] the
majority of the neighbourhoods use 9 pixels, consisting of a central pixel (i.e.
the p pixel at position i(z, y) within the image in Figure 1) and its 8-connected
neighbours (a, ..., g), and the transformed pixel p' is placed at i(z,y) within
the transformed image. Thus binary image processing lends itself to simple
hardware implementations using RAM based look up tables.

| P
RAM
cba shift registerr__pl_)ata
cpd shift register
Data I'hy ¥ shift register

Fig.2. A simplified BIP architecture

On the superposition of Boolean functions 385

3. The architecture of the binary image processor (BIP)

Pixels are sampled from the image in sequence row by row starting at the
top left hand corner of the image, and so form a serial data stream. BIP stores
3 rows of pixels and generates the transformed pixel using a RAM look up table
as shown in Figure 2 (see [4] for a similar approach).

This implies that for a conventional 9 variable neighbourhood a single
look up table would require 512 addressable memory cells, corresponding to
approximately 4100 gates. If however, the number of look up tables were
increased, so that multiple neighbourhoods might be operated upon in parallel,
the number of gates required by this approach becomes a severe limitation.

An alternative approach, designed specifically to avoid this limitation,
replaced the single RAM with 5 16 bit RAMs organized as a two layer network,
such that adjacent RAMs in the first layers shared a common pair of inputs
(Figure 3).

GG
S S S S
G IR GG IR G G
LT
R |
a bdop bcpe d pf g p e gh

Fig.8. The structure of the two layer RAM network

Thus each of the first layer RAMs operated on an overlapping region of
the overall 9 variable mask (see Figure 4).

This had the effect of reducing the simulated gate count to 640, whilst
still allowing the necessary functions to be implemented. However, it was not
possible simply to determine the complete set of realizable functions or the
effects of modifying the network’s shared variables; questions whose answers

386 M. Tombak and I. Sillitoe

are necessary before the approach may be generalized. The remainder of the
paper describes some of the initial results discovered on the way to answering
these questions.

al b
d{ p
bl ¢
al b| ¢
pl e
d{ p| € |m——
flg |n dlp
fl g
pl e
gl h

Fig.4. The partition of the 323 mask

4. The formal model

The problem of the representability of given 9-variable Boolean function
as a superposition of four 4-variable functions, sharing variables accordingly to
Figure 4 can be formulated in general fashion.

Given f(z1,...,zn) : {0,1}* — {0,1}. Does there exist functions g :
{0,1}* — {0,1} and hi(z11,--,Z1n,), - RE(Zk1, -, Tkny), Where £ < n, 1 <
<n;<nandz; € {z1,...,z,} (1 <i<k, 1<j<n;), such that

(1) f(.’l,‘l, ...,In) = g(hl(xlly ...,l‘lnl), ceny hk(:l:kl, cany zknk))?

We will use for representation of Boolean functions their natural enumera-
tion - we enumerate n-variable Boolean functions with numbers 0...22" so that
binary representation of the number of function f is its truth-table ([3]). Let
[f"] be the number of the function f in the enumeration of n-variable Boolean

On the superposition of Boolean functions 387

functions (we omit n if it is known from context). Let [f*]o,...,[f"]2n-1 be
binary digits of [f™].

Theorem 4.1. Variable z; (1 < j < n) is fictive for function f(z,,...,z,)
ff for every r,p (0 < v < P71, 0 < p < 227) [fo] = [flipm, where
m=2""71=2rm+p.

Proof. Variable z; is fictive for f(zy, ..., zn)

<= f(z1,.,2;-1,0,Zj41,..,Zn) = f(z1,..,2j_1,1,&j41,...,zp) for ev-
ery truth assignment ay,...,a;_1,aj41,...,an € {0,1}*! to the variables
L1y ooy Lj=1,Tj41, -y T,

<= in the truth-table of the function f the entries, corresponding to
the argument vectors ay, ...,a;_1,0,a;j41,...,an and ay, ..., 05-1,1, 0541, ..., an
must be equal for every ai,...,a;j_1,qj41,...,an € {0,1}*7};

<= bits with (binary) numbers a;...a;-10aj41...an and o)...aj_11ajyg...
...ay, in the number of the function f, [f"], must be equal for every aj, ..., aj_1,
Qj41, .- 0n € {0, 1}11—1 Le. [fn]al...a_,_ma,“..‘an = [fn]alma,-_llaj_n...an;

<= in decimal:

(2) [f"]m-2"-1+.u+o1,-_1 2n=(=1) 4020 =T a4y 27—+ 4 4,20 =

n
[f]al-Z"‘1+.“+aJ>_1-2"—(1")+1-2"‘1+01+142"—(J'+1)+...+a,.~2°'

Let r and p be numbers with binary representations a;...aj_; and aj4;...an,
correspondingly. We can rewrite (2): [f*];.an-i+14p = [f*]ron-s142n-i4p. If
we take m = 2”7 and [= 2mr + p, we get [f"]; = [f"]izm. The condition
(2) holds for every ai,..,aj_1,a;41,..,an € {0,1}*~! and, therefore, our
conclusion is true for every r,p (0 <r < 277! 0< p<2n7).

Function h;(z;1, ..., Zin,) from (1) has n —n, fictive variables and Theorem
4.1 splits the bits of its number, [h;], into 2"+ equivalence classes, 2" ~"* elements
in each class. If we sort these classes by least numbers of bits in each class, we
get surjection, determined by the list of fictive variables of the function h; —
¢; 1 [0,2" — 1] — [0,2™ — 1], or in binary ¢; : {0,1}" — {0, 1}".

Theorem 4.2. Function f(z;,...,z,) : {0,1}* — {0,1} is representable
via superposition of function g : {0,1}¥ — {0,1} and hi(z11,...,T1n,), .-
v hi(Zer, . Teny), where k <n, 1 <n; <nand zij € {zy,..., 2}

(1 Slska lﬂjfni): inform
(3) f(zly---,l'n) :g(hl(l‘ll,-~-y‘r1n1)y"-1hk($kly---yl'knk))

if and only if there exist binary strings o, ...,a* € {0,1}" so that

(4) if @ill) = pi(m), then of = ok,

388 - M. Tombak and I. Sillitoe

(5) {(af,..af) - f() = 1} N {(apy, .., o) : f(m) = 0} = 0.

Proof. = Suppose there exist functions g, hy, ..., hg so that (3) holds. We
take a! = [h?], ..., ¥ = [h}]. Condition (4) holds due to Theorem 4.1. Suppose
that condition (5) is violated for some {,m, i.e. [h}]i = [Al]lm,..., [P}l =
= [h}]lm, but f(I) # f(m). Then hy(l) = hy(m),...,he(l) = hx(m) and
g(hl(mll,--~,$1n1),--~,hk(i‘3k1,--nl‘knk)) = g(hl(.’l,‘l,...,.’L’n),...,hk(.’L‘],...,l‘n))
cannot agree with f(zy,...,z,) for both bitstrings [and m.

<= Let binary strings !, ...,af € {0,1}" satisfy conditions (4) and (5).
Due to condition (4) o' can be considered as a natural number of n-variable
Boolean function h;, which depends essentially on variables z;1, ..., Z;n,. Define
91, ue) = 38 € {0,1)"[f(8) = 1&ur = h1(B)&..&eye = hi(B)]. Obviously
g(hi(B), ..., he(B)) = f(B) and condition (5) guarantees that g is a function.

We define propositional variables hl,, = [h"]m =17 where 1 <1 <k
and 1 < m < 2", and express the condition (5) in the form of propositional
formula:

(6) A A (\k/ (h%; @ h7}))

ief-1(1) jef-1(0) \=1

After transforming formula (6) into conjunctive normal form we get

™ A A A (\k/ ((hm"'v(h;;)f")).

i€f~1(1) jef-1(0) pe{0,1} \i=1

Condition (4) demands equivalence of some variables. We introduce a new
(smaller) set of variables hj, (1 <1<k, 1 < m < 2™) to satisfy (4), using the
surjection @(hf,) = hiy(m):

(8) A A A (\/ ((hw(i))ﬂ' v(h,¢(j))l">),

i€f=1(1) jef~1(0) pe{o,1}* Ni=l

Every satisfying assignment for (6) gives a tuple of binary strings, for which
the conditions of Theorem 4.2 hold. The Boolean functions hy, ..., hy we are
searching for are functions with numbers [h]*] = h;;...hi,, and function g can

On the superposition of Boolean functions 389

be comnputed using the second part of Theorem 4.2. Formula (8) consists of

If~1(1)] - [£71(0)] - 2% clauses, 2k literals in each clause and 3°5_ n; different
variables. Satisfiability problem with such parameters is feasible for our 9
variable 2 layer RAM network problem.

References

[1] Aleksander I. and Morton H., An Introduction to Neural Computing,
Chapman Hall, 1990.

[2] Lewin D. and Protheroe D., Design of Logic Systems, Chapman Hall.

[3] Regan K. W., Sivakumar D. and Cai J., Pseudorandom Generators,
Measure Theory and Natural Proofs, Technical Report UB-CS-TR 95-02,
Computer Science Dept., University at Buffalo, 1995.

(4] Sterberg S. R., Biomedical Image Processing, IEEE Computer, (1983),
22-34.

(5] Veron D., Machine Vision: Automated Visual Inspection and Robot
Vision, Prentice Hall.

M. Tombak 1. Sillitoe
Department of Computer Science University of Boras
University of Tartu Sweden

2. J. Liivi Str.
EE-2400 Tartu, Estonia
mati@cs.ut.ee

