Annales Univ. Sci. Budapest., Sect. Comp. 17 (1998) 367-380

ATTRIBUTE GRAMMAR APPLICATIONS

J. Toczki and L. Schrettner (Szeged, Hungary)

Abstract. In this paper we summarize our research on an application field
of attribute grammars: a compiler-compiler generating parallel compiler
from formal specifications is described. A system processing Latin medical
texts is also mentioned.

1. Introduction

In this paper we summarize our research on an application field of attribute
grammars.

W-SQL machine developed at the University of Sheffield is a transputer
based computer system which is used for parallel processing of large databases.
Executing queries written in several extended versions of SQL and OQL lan-
guage we can find typical formal language processing problems. The transputer
architecture is used in this situation, so we considered the problem of parallel
compilation on distributed systems.

Several parallel attribute evaluation methods are known from the liter-
ature. They benefit from the fact that independent attribute instances can
be evaluated in parallel. Static tree and attribute based distributors (4] and
dynamic dependency based distributors [7] are known.

In the case of most practical programming languages none of these distrib-
utors are efficient alone. Using static distributors, the most serious problem
is that the size and evaluation time of attribute instances usually differ from

This research is involved in the research project ” Large Parallel Databases”
financed by the European Community, project number 93: 6638; partly
supported by the research found OTKA, grant number F12852 and grant
number F012853.

368 J. Toczki and L. Schrettner

each other. On the other hand the author of the attribute grammar has some
knowledge on these costs.

We have prepared the specification and detailed design of a compiler-
compiler system generating parallel compilers. The distribution strategy is
specified by the user, the generated compiler uses a dynamic load balancing
algorithm.

Another possible application field is also summarized. It is well-known
that attribute grammars can efficiently be used for specifying semantics of
formal languages, while understanding of natural languages usually needs more
complicated models. However there are some technical languages using only
restricted structures from a natural language. For example such a field 1s
the pure Latin medical terminology used in recipes, diagnoses and some other
texts. We developed two attribute grammars specifying drugstore recipes and
pathological diagnoses. The semantic parsers prepared from these attribute
grammars can be used in educating medical students, in automatic coding
and processing medical texts and diagnoses. These applications are under
development.

In the next section we describe the structure of our parallel compiler
generator. Some sentences on further research can be found in the last section.

2. A parallel compiler generator

2.1. Preliminaries

The first hand-written parallel compilers were developed in the early
1970s. Most of these compilers run on vector processors and based on parallel
execution of certain phases of compilation. The first significant investigation
into parallel semantic evaluation was made by Schell [11]. Schell’s method - in
essence — is the same as Jordan’s one reported in [4].

The most natural way to build a parallel compiler is to run different
compilation phases as separate processes and form a pipeline. The maximal
possible speedup is the number of phases (usually 3 or 4). However, it is a hard
work to balance different phases. Miller and LeBlanc compared sequential and
pipeline versions of a Pascal compiler having 4 phases and they got 2.5 speed
up as an average [9]. This result shows the limitations of pipelining.

Another possible way to construct a parallel compiler is to split the source
program into smaller independent parts and compile these parts concurrently.

Attribute grammar applications 369

Lipkie was the first who suggested the combination of pipelining with source
fragmentation [8]. Vandevoorde [17] and Seshardi [12] used the same approach
developing compilers running on different architectures. Seshardi investigated
the concurrent processing of declarations as well.

These experience show the importance of pipelining as well as the necessity
of concurrent semantic evaluation. In this paper we concentrate on the
semantic evaluation phase. Concerning lexical and syntactic parsing phase,
pipelining with immediate fragmentation seems to be a proper solution. We
also concentrate on more general methods which can be used in an automatic
compiler development tool.

Compiler-compiler systems generate executable compilers from formal
specifications. Most of recent compiler writing systems are based on attribute
grammars. Experiences with compiler construction proved the feasibility
and efficiency of attribute grammars for compiler specification. A survey of
attribute grammar based compiler generation can be found in (3].

The compiler generator system PROF-LP [10] developed in Szeged has
been used for generating various practical compilers, for example [14], [2]. We
refer to our experiences at appropriate places in the next section. We mention
that these experiences and directions of development in the case of sequential
compilation are summarized in [15].

Now we summarize some preliminary results on parallel attribute evalua-
tion.

Usually there are some independent attribute instances in a syntax tree.
In the case of sequential evaluation a linear order is constructed, evaluating
independent attribute instances in a more or less ad hoc order. In general, it
is possible to evaluate independent attribute instances in parallel.

Kuiper [7] defined the concept of distributor as an algorithm to distribute
attribute instances among evaluation processes. He defines two basic types of
distribution:

e A tree based distributor allocates all attribute instances of a subtree of the
syntax tree to the same evaluation process. The syntax tree is splited at
selected nodes. Selected nodes determined by the production applied at the
node — production based distribution — or by the left hand side nonterminal
of that production — nonterminal based distribution. The distribution can
be either nested or non-nested. In the case of nested distribution subtrees
containing selected nodes are splited again, while in the case of non-nested
distribution, the syntax tree is splited only at the selected nodes closest to
the root.

370 J. Toczki and L. Schrettner

A typical application of tree-based distribution is the fragmentation of a
block-structured programming language. Disjoint blocks are usually indepen-
dent of each other. We can allocate attribute instances of different blocks to
different processes using a nested nonterminal based distributor.

e An attribute based distributor allocates all instances of an attribute to
the same process. The distributor cannot distinguish between different
instances of an attribute. It means a strict limit on potential parallelism. If
we combine it with a tree based distributor, we get a combined distributor.

A typical application of attribute based distribution is to allocate inde-
pendent tables of a compiler to different processes. For example, symbol tables
and label tables are usually independent.

Jordan introduced a third kind of distributors.

e A dependency based distributor allocates all attribute instances of a con-
nected part of the dependency graph to the same process. The allocation
is not predefined. An evaluation order containing parallel execution of
new processes is generated from the dependency graph. In this sense this
method is more ”dynamic” than Kuiper’s distributors.

Dependency based distributors are capable of handling more complicated
situations, when neither tree based nor attribute based distributions are
inefficient.

2.2. Parallel compilation on transputers

The most important feature of transputers from the point of view of
attribute distribution is that there is no shared memory available. Although
it is possible to run more than one process on the same processor, we should
allocate them to as many different processors as possible to increase ”real”
parallelism of the compiler. As inter—processor communication is the most
expensive task on transputers, we should decrease the amount of data sent
between processes allocated to different processors.

Some attributes — e.g. symbol tables - are extremely large, while others
are very small. Some attributes have the same or similar meaning. For example
most of the tables of compilers are represented with a pair of a synthesized and
an inherited attribute. Usually tables are stored in dynamic data structures,
1.e. lists, trees, stacks and the attribute values are only pointers to these tables.
It means that the basic operations ” send the value of an attribute to a process”
or ” compute a semantic function” may have quite different costs.

Attribute grammar applications 371

Only the author of a compiler knows the size of attributes, the complexity
of semantic functions. The author has enough information on which nontermi-
nals can potentially be selected - in the case of tree based distribution -, and on
”logically” independent attributes - in the case of attribute based distribution.

Now we can state the following basic requirements:

e The user should choose between tree based and attribute based distribu-
tion. Probably he/she will choose a combined strategy.

e The user should declare selected and non-selected nonterminals in the case
of tree based distribution and declare the set of attributes evaluated by
the same process in the case of attribute based distribution.

On the other hand there are efficient algorithms to find independent
attribute instances of an attribute grammar. For example, see Kuiper’s
algorithm [7]. An intelligent system can help the user’s decision and check
its correctness using these algorithms.

e The system should help and check the user’s decision on distribution using
dependency analysis.

2.3. Parallel compiler generator

The specification of a parallel compiler is an attribute grammar completed
with evaluation instructions and with the algorithms of semantic functions. We
start from the metalanguage of PROF-LP [10].

We mention here that an augmented metalanguage is defined in [15] con-
taining such elements as regular right hand side productions (sometimes called
eztended cf grammar), augmented semantic functions for such productions,
global table definitions, structured dynamic data type declarations embedded
in a block structured modular metalanguage.

e The metalanguage of PROF-LP augmented with modularity and block
structure is applicable.

e We introduce four level of modularity:

Metalanguage level. A module is usually a large part of the attribute
grammar described in one input file and processed as a whole. A module
1s formed from a set of nonterminals.

Process level. A module is a - possibly different — part of the generated
compiler implemented in one process. The user may develop some other
processes containing the same elements as it is usual in PROF-LP.
Configuration of these physical processes are up to the user.

372 J. Toczki and L. Schrettner

Tree level. A tree module is a connected part of the syntax tree deter-
mined by selected nonterminals. It is the basis of tree based distribution.
Tree level modularity should be compatible with source fragmentation.

Task level. A task is an elementary part of evaluation, subject to
automatic load balancing. A task is a set of attribute instances defined by
the user.

The first two levels are applicable only in large systems. These two levels
are incomparable, either a metalanguage module may contain more processes
or a process may be composed of more modules.

e Production descriptions are applicable in their original form.
e We do not consider the lexical description here.

The input attribute grammar is specified in one or more metalanguage level
module. These metalanguage module sources are parsed separately. However,
most of the test routines check global properties of the grammar. The start
symbol is specified in the main module. It has to be declared as a nonterminal
symbol.
<Parallel Attribute Grammar> = <Main Attribute Grammar Modul>

{<Attribute Grammar Modul>} .

<Main Attribute Grammar Modul> = <Attribute Grammar Head>
<Start Symbol Declaration>
<Attribute Grammar Body>

<Attribute Grammar Modul> = <Modul Head> <Attribute Grammar
Body>

<Attribute Grammar Head> = '"Attribute'" 'Grammar' <Grammar
Name> .

<Modul Head> = "Grammar'" 'Modul' <Modul Name> .

<Start Symbol Declaration> = "Start' '"Symbol"
<Nonterminal Name> " ;'

Global objects declared in different modules can be referred in other
modules. To decrease the size of global symbol tables of the metalanguage
parser we introduce the "USES” clause as usual in modular programming
languages.
<Attribute Grammar Body> = [<Use Clause>] {<Compiler

Modul>} .
<Use Clause> = "Use" <Modul Name> { "," <Modul Name> } ";"

Attribute grammar applications 373

The generated compiler is modular. A compiler module is formed from a
set of nonterminals. Each compiler module is identified with a name, parts of
a compiler module can be specified in different metalanguage modules. These
parts are copied together by the code generator.

Compiler modules do not form blocks in the metalanguage source. All
declarations are visible from other modules. If the compiler is not modular, i.e.
there is only one compiler module, the module name can be omitted.
<Compiler Modul> = ["Compiler" "Modul" <Modul Name>]

<Declarations>

<Declarations> = {<Declaration List>} .

The user has to declare all objects used in the productions: terminal and
nonterminal symbols and attributes. There are two kinds of terminal symbols.
A ”terminal” has only one form and cannot have attributes. Terminals are
usually keywords and special symbols. A ”token” possibly has different forms
and it may have attributes. Identifiers and several constants are tokens in
programming languages. The name of an identifier or a value of a constant is
a synthesized attribute.

The tokens are defined in a separate lexical description. The values of
synthesized attributes of tokens are also defined in the lexical description.
<Declaration List> = <Type Declaration List> ;

<Attribute Declaration List> ;
<Attribute Set Declaration List> ;
<Nonterminal Declaration List> ;
<Token Declaration List> ;
<Terminal Declaration List> ;
<Production List>

The domains of attributes are defined with a data type declared in user-
supplied modules written in the host language.
<Type Declaration List> = "Types"

<Type Name> { "," <Type Name>} ";"

<Attribute Declaration List>=("Synthesized"/"Inherited")
"Attributes"
<Attribute Declaration>
{ "," <Attribute Declaration> } ";"

<Attribute Declaration>=<Attribute Name> ":" <Type Name> .

374 J. Toczki and L. Sc

hrettner

Attribute based distribution is specified with attribute sets.
tributes can be allocated to the same task level module only if they
into the same attribute set by the user.
<Attribute Set Declaration List> = '"Attribute' '"Sets"

<Attribute Set Declaration> {
"," <Attribute Set Declaration>}

”» .
)

<Attribute Set Declaration> = "[" <Attribute Name>
{ ll’ll <Attr1bute Na.me>} n]u u;n

<Token Declaration List> = "Tokens'" <Token Declaration>
{ "," <Token Declaration>} ";"
Token and terminal names and the list of attributes of tokens are
token and terminal declarations.
<Token Declaration> = <Token Name> ["Has"
<Attribute Name>
{ "," <Attribute Name> }] ";"

Two at-
are put

listed in

<Terminal Declaration List> = "Terminals" <Terminal Name>

{ "o <Terminal Name> } UL

The metalanguage blocks are connected to the nonterminals.
declarations are listed in a begin-end block. It is suggested that the pro

Local
ductions

with the same left hand side nonterminal X should be listed in the declaration

block of X. However, it may be uncomfortable in the case of small la
so this style (;f specification is not compulsory.

nguages,

Tree based distribution is described with selected nonterminals. Both

nested and non-nested distribution are supported.

<Nonterminal Declaration List> = '"Nonterminals"
<Nonterminal Declaration> { non

<Nonterminal Declaration> } ";"

<Nonterminal Declaration> = <Nonterminal Name> ["Has"
<Attribute Name>
{ "," <Attribute Name> }]
[<Selection>]
w.r [<Block>]

<Selection> = ("Selected" ["Nested" / "Non-nested"])
/ "Non-selected"

Attribute grammar applications 375

<Block> = "Begin" <Declarations> "End" ";" .

Semantic functions are defined by expressions or functions written in the
host language. We do not specify the exact syntax of expressions and function
calls here, it depends on the properties of the host language. In the case of
ambiguity, attribute occurrences are 1dentified by occurrence indices.

<Production List>="Productions" <Production> { <Production> }.
<Production>=<Syntax> [<Semantics>]

<Syntax>=<Nonterminal Name> "=" { <Symbol> } ;"
<Symbol>=<Nonterminal Name> / <Token Name> / <Terminal Name>.
<Semantics>="Do" <Semantic Function> "End" ";"

<Semantic Function>=<Attribute Occurrence> '":="
(<Expression> / <Function Call>) ";"

<Attribute Occurrence>=<Nonterminal Name> ["[" <Index>"]"]"."
<Attribute Name>

The generated compiler consists of three parts: A static kernel contains
basic routines, the attribute evaluator is generated from the specification, user
supplied parts are copied into the system without any change.

e The kernel contains the following routines.

Input-output and distribution. In this paper we do not deal with the
syntactic parser part of the compiler, so we suppose that the syntax tree
is available.

Task scheduler and load balancer. The dynamic load balancer given
in [13] can be applied as follows. A task means evaluation of a set of
attribute instances. Two attribute instances N.a and M.b are in the same
set if and only if the following conditions hold:

- The nodes M and N are in the same tree module, that is, there are
not selected nonterminals along the path between N and M in the
syntax tree.

- Attributes a and b are in the same attribute set declared by the user.

- The attribute instances N.a and M.b are not independent of each
other. As it is very hard to check this condition, we can use another
conditions instead.

e We can use Kuiper’s algorithm (7] which decides that any two ins-
tances of two attribute occurrences can be dependent in any syntax
tree.

376 J. Toczki and L. Schrettner

e We can use Jordan’s dependency based dynamic distributor [4]. In
its original form it is based on local dependencies of a single pro-
duction. It is easy to extend it to check dependencies of a subtree
(tree module).

We suggest a stmpler method instead. We can use Jordan’s method to form
elementary tasks. The problem is that only attribute instances evaluated
in the same production are allocated to the same task. After that we can
form the unions of these — small — tasks using tree based distribution.

The same universal evaluator algorithm is running on each processor. The
load balancer distributes tasks among processors. The evaluation starts on a
single processor with tasks belonging to the root of the parsing tree. When
a task is executable — that is all its input attribute instances are available -
the processor sends this task to the one of its neighboring nodes. The node
is selected on the numbers of other tasks waiting for execution. Leaving a
tree module means that virtually all tasks evaluating attribute instances of the
module just entered are sent away.

Execution some semantic functions may need extremely long time, others
may be divided into smaller parts. Rutins handling tasks — insert a new task
to the waiting list, declaring input and output parameters, etc. — are available
for the user.

Error handling routines. All error messages are sent to the host

computer.

e The evaluator contains a branch for each task containing semantic func-
tions evaluating the set of attribute instances belonging to this task. It
may start other tasks, as well. An evaluator i1s generated from a process
level module. The evaluator is called by the load balancer whenever a task
1s started.

e The routines containing user written semantic functions are simply copied
into the system. They may send tasks for the load balancer for execution.

The compiler development environment should contain the following
moduls.

Metalanguage parser: checking the formal correctness of the specification.

Dependency analyzer: computing attribute dependencies and checking its
properties against the requirements of the evaluation strategy.

Distribution analyzer: checking dependencies among tree modules, at-
tribute sets and tasks. It can help the user choosing a proper distribution
strategy.

Code generator: generating the evaluator.

Developer utilities: helping the user developing semantic functions.

Attribute grammar applications 377

Execution utilities: helping the user configuring and executing the generated
system.

The development process can be run on the host compiler. We mention that
some suggestions to develop parallel compiler-compilers can be found in [1].
As it can be seen, the structure of the compiler-compiler is very similar to the
structure of a sequential system.

2.4. An application — processing Latin medical texts

While attribute grammars can efficiently be used for specifying semantics
of formal languages, the more complicated structure of natural languages
usually needs enhanced formalisms. However there are some well-defined
subsets of natural languages used by specialists which use only simpler grammar
structures. One of these terminologies is the pure Latin medical language.

Most important medical texts as recipes and diagnoses are always written
in Latin. These texts have a very strict form, only some simple grammar
structures are used. Although medical students study the Latin language as a
foreign language including even some classical literature, they will use only this
very simple structures in practice. It would be very useful to have a software
system to memorize the real "medical” Latin.

Efficient computer systems are used in most hospitals for administrative
purposes. International coding systems - as SNOMED or WHO-code - are used
for coding features of various diseases. This coding are done by the doctor
causing a very boring and inefficient task. It would be very useful if we could
use the computer for coding the text of diagnoses.

We developed an attribute grammar for specifying syntax and semantics of
recipes and diagnoses. This grammar is usable for both tasks mentioned earlier.
A complete system integrating these applications is under development.

As an illustration we give a part of the syntax of recipes:

<Recipe> = <Materials> <Instructiomns> .
<Materials> = <Material Description> +

<Material Description> = <Material> + <Quantity> .
<Material> = <noun> [<Genititive>] <Attribute> * .

<Attribute> = <adjective> <participium> .
<Genititive> = <Material> .
<Quantity> = <Text> <Num> / <Asneeded> / <Asyoulike>

<Text> = [<preposition>] <Unit> <Q>

378 J. Toczki and L. Schrettner

<Unit> = <noun>
<Num> = "(" <preposition> <Unit> <Q> ")"
<Q> = <numeral> .

<Asneeded> = '"quantum" "satis" / '"qu" 'sat"
<Asyoulike> ="ad'" "libitum" / 'ad" "1ib"

<Instructions> = ...

Two grammars together consist of more than 300 productions. The most
important attributes contain grammatical properties of words and phrases.
The vocabulary is divided into smaller pieces according to semantic features
of words. These features are stored in synthesized attributes served by the
vocabulary handler. More detailed description of the system can be found in

[16].

3. Summary

Questions of parallel evaluation of attribute grammars are discussed. Some
programming work is needed to implement our ideas. However we see some
open problems now, so we can draw up some directions of future research.

e How can our generated semantic analyzer be combined with parsing? The
results of Klein and Koskimies [5], (6] also may help solving this problem.

e Which methods and algorithms can be used in parallel compilers? For
example what kind of symbol table handling methods are suitable? Do
these methods have any consequence to the structure of the compiler?

e The basic motivation of our research was to contribute in developing
softwares for IDIOM S machine. We should go on in this direction as
well.

e It is also important to find other application fields, where a compiler
running on transputer is suitable and efficient.

e We can find other special natural-like languages for attribute grammar
specification, as whether forcasts, questions to an information system or
texts of application forms.

Attribute grammar applications 379

(1]
2]

(9]

(10]

(1]

(12]

(13]

(14]

[15]

References

Alblas H.,A blueprint for a parallel parser generator, Technical Report,
Dept. of Computer Science, Univ. of Twente, 92-65, 1992.

Almasi J., Horvath T., Medvey M. and Toczki J., On the imple-
mentation of cellular software development system, Proc. of PARCELLA
88, Berlin, 1988.

Deransart P., Jourdan M. and Lorho B., Aftribute grammars,
systems and bibliography, LNCS 323, 1988.

Jourdan M., A survey of parallel attribute evaluation methods, Proc. of
SAGA, Prague, 1991, LNCS 545, 234-254.

Klein K. and Koskimeies K., Parallel one pass compilation, Proc of
WAGA, Paris, 1990, LNCS 461, 76-90.

Klein K. and Koskimeies K., How to pipeline parsing with parallel
semantic analysis, Structured Programming, 13 (1992), 99-107.

Kuiper M.F., Parallel attribute evaluation, Ph.D. Thesis, Fac. of
Informatics, Univ. of Utrecht, 1989.

Lipkie D.E., A compiler design for multiple independent processor com-
puters, Ph.D. Thesis, Dept. of Computer Science, Univ. of Washington,
Seattle, 1979.

Miller J.A. and LeBlanc R.J., Distributed compilation: a case study,
Proc. of the Third Int. Conf. on Distributed Computing Systems 1982,
548-553.

PROF-LP User’s Guide, Research Group on Theory of Automata, Szeged,
1987.

Schell R.M., Methods for constructing parallel compilers for use in a
multi-processor environment, Ph.D. Th., Rep. 958, Dept. of Computer
Science, Univ. of Illinois at Urbana-Champaign, 1979.

Seshardi V. and Wortman D.B., An investigation into concurrent
semantic analysis, Software, Practice and Ezperience, 21 (12) (1991),
1323-1348.

Schrettner L. and Toczki J., Dynamic load balancing for decomposable
problems, Proc. of Workshop on Parallel Processing in Education, Impact
Tempus JEP/Hungarian Transputer Users Group, Miskolc, 1993.

Toczki J., Gyiméthy T. and Jahni G., Implementation of a LOTOS
precompiler, Proc. of PD 88, Budapest, 1988.

Toczki J., Attribute grammars and their applications, Dr.Univ. Thesis,
Dept. of Informatics, Jozsef Attila Univ., Szeged, 1991. (in Hungarian)

380 J. Toczki and L. Schrettner

[16] Vagvolgyi E. and Toczki J., Computer aided processing of Latin
medical texts, Proc. of VI. National Congress of NJSZT, Siofok, 1995.
(in Hungarian)

[17] Vandervoorde M.T.,Parallel compilation on a tightly coupled multipro-
cessor, SRC Reports 26, Digital Systems Research Center, 1988.

J. Toczki and L. Schrettner
Department of Computer Science
Jézsef Attila University

Arpéd tér 2.

H-6720 Szeged, Hungary
schrettner@inf.u-szeged.hu

