Annales Univ. Sci. Budapest., Sect. Comp. 17 (1998) 355-365

TYPE CHECKING AND
PROBLEM OF OVERLOADED ARGUMENTS

L.Szarapka, Z.Budimac and M.Ivanovié
(Novi Sad, Yugoslavia)

Abstract. The aim of this paper is to reveal, from more sides than
before, the benefits which type checking brings to the efficiency of functional
programs. For the first time, several strategies for dealing with the problem
of overloaded arguments (of which one, the so-called LL approach is an
original one) have been analyzed. The influence of these different strategies
to the execution efficiency has been established. Efficiency is analyzed on
two abstract machine architectures.

1. Introduction and previous work

Functional programming is one of many programming paradigms in use
by computer scientists, educators, and practitioners. Pure functional programs
consist solely of (mathematical) expressions and functions. On the other side,
(impure) functional programs make use of the “procedural” apparatus as well
(locations, statements, assignments, ...). Functional programming emerged
with McCarthy’s LISP and Landin’s ISWIM in the late fifties. Recently,
functional programming became more popular with the invention and efficient
implementation of: purely functional input/output operations, purely func-
tional arrays, and powerful purely functional programming language HASKELL
8]

Type checking of functional programs is nowadays a standard feature of
functional programming languages. Type checking of (functional) programs
offers two advantages:

e many potential run-time errors can be discovered at compile-time, during
type checking (for example addition of a logical value and an integer),

356 L. Szarapka, Z. Budimac and M. Ivanovié

e language implementations are potentially more efficient, because correct
types are assumed at run-time and no additional checks are needed.

Type checking of functional programs was for the first time implemented
in the functional programming language ML [4], where Hindley’s type inference
system for A calculus was reinvented by R. Milner (and since then traditionally
named as “Hindley-Milner Type System”). Hindley-Milner type system can
often find the most general type for every identifier occuring in a functional
program, even if the identifier’s type is not declared. In this way functions of
a functional program are (if possible) polymorphic.

Definition 1.1. A function (operator) is polymorphic if it does not depend
on the types of its arguments (operands). This means that the body (i.e. action)
of the function (operator) is the same regardless of the argument types.

Note that what is called “polymorphic” in the functional programming
community is called “generic” in the object-oriented community.

However, in cases when operands of overloaded (arithmetic) operators are
lifted up to the level of function arguments, Hindley-Milner type system cannot
infer the most general type without additional help of the programmer. There
are currently several ways to deal with this problem (further: “problem of
overloaded arguments”) in functional programming languages.

Definition 1.2. A function (operator) is overloaded (or “ad hoc poly-
morphic”) if it performs different actions depending on the argument (operand)

types.

Note that what is called “overloaded” in the functional programming
community is called “polymorphic” in the object-oriented community.

The literature on type checking of functional programs is extensive. How-
ever, there are not many papers dealing with the influence of type checking to
the execution efficiency of (type-)checked programs. Furthermore, there are no
papers dealing with problem of overloaded arguments and its influence to the
execution efficiency. The aim of this paper is to reveal from more sides than
before the benefits what type checking brings to the efficiency of functional
programs. For the first time, several strategies for dealing with the problem of
overloaded arguments (of which one, the so-called LL approach is an original
one) have been analyzed. The influence of these different strategies to the
execution efficiency has been established. Efficiency is analyzed on two abstract
machine architectures.

The rest of the paper is organized as follows. Second section gives a
very short and informal overview of a type checking algorithm and introduces
the language LL which was used for all analyses. The third section explains
the problem of overloaded arguments in more details and possible ways to
override it. The fourth section presents isolated benchmark tests for every of

Type checking and problem of overloaded arguments 357

three solutions given in the third section. The fifth and sixth sections show
performance of (abstract) SECD and SK reduction machine with respect to
type checking and solution of the problem of overloaded arguments. The last
section concludes the paper.

2. An overview of type checking algorithm and LL

The type checking algorithm for a functional program infers its most
general type. If inference is successful, a program is correctly typed, otherwise it
is not. Informally, a type checking algorithm can be explained on the following
example:

Example 2.1.The inferred type for the identifier len defined as
len(x) := if x = [] then 0 else 1+len(tl(x))

is [T] — Num, i.e. a function which maps a list of any type into a number
(where T represents a “type variable” and stands for any type).

The function in the above example returns a number, because both
branches of the if-expression are numbers: either the number 0, or the result
of the addition. An argument x of 1en have to be a list, because it can be equal
to the empty list [J or must have a “tail” (in t1(x).) There are no constraints
concerning the type of the list elements, so they can be of any type.

For a more formal overview of the type checking (i.e. type inference)
algorithm we refer to (for example) (3, 5]. To the rest of this section we
introduce the language LL that was used for all analyses described in this

paper.
2.1. The language

LL is intermediate functional programming language [1]. It is a LISP-
like language suitable for representation of many higher-level functional pro-
gramming languages and for implementation on many concrete and abstract
machine architectures. By implementing a type checking algorithm on an
intermediate language, the type checking became available to every language
which is implemented by translation to the intermediate language.

The most important language constructs of LL are the following (in
abstract syntax):
e tuple n F, ... E, is a data constructor which constructs an n-tuple with
elements F,,... E,.

358 L. Szarapka, Z. Budimac and M. Ivanovié

e list E, ... E,, is a data constructor which constructs a list of n elements.
Note that the number of elements in a tuple is known in advance, while in
the list 1s not. If an LL program is to be type-checked, then the types of
elements in a tuple can be different, while the elements of a list must be
of the same type.

e lambda V' E has the value of a (new) function which will evaluate the
expression E, when called with actual argument in place of V.

e E,.FE, is an application of an expression E; to an expression Ej (i.e. a call
of function E; with argument FE;.)

elet Vi=F,;...;V,=E,in E has the valueof F where V;;1=1,...,n
are identifiers which are in F replaced with corresponding E;. The scope
of every V; is corresponding F;.

e letrec Vi = E;;...;V, = E, in E has the value of E where V;,1 =
= 1,...,n are identifiers which are in F replaced with corresponding F;.
The scope.of every V; is every E;,1==1,... nand E.

e if F then FE; else E, has the value of F if F has the logical truth value
TRUE. Otherwise the conditional expression has the value E5.

Besides these basic building blocks, LI. contains about 50 built-in func-
tions.

Example 2.2. The call of 1en and its definition (from ezample 2.1) would
be in LL written down as (in abstract syntaz):
letrec
len = lambda x (if (= x (list)) then O else (+ 1 (len (tl x))))
in
len (list 1 2 3456 7 8 9 0)

The type system (i.e. rules for infering a correct type) for LL is appropriate
extension of the type system described in [3].

3. Problem of overloaded arguments

The Hindley-Milner type system sometimes cannot infer the most general
type.

Example 3.1. Consider the following definition of a function: £(x, y)
= x+y, where + 1s overloaded operator and can accept both integers and real
numbers as its operands (as well as their combination.) The possible types for

Type checking and problem of overloaded arguments 359

function £ are thus (Int x Int) — Int, (Int x Real) — Real, (Real x Int) —
— Real, and (Real x Real) — Real.

In these cases a programmer must supply appropriate declarations to
enable the type checking algorithm to proceed.
There are two general ways of dealing with this problem:
e ignore it (like in ML), or
o “forget” the difference between integer and real numbers. This can be
done:

- conceptually (or statically, at compile-time), by building a mechanism
into the compiler which will accept any number but will later separate
them, and generate appropriate code according to types (like in
HASKELL, through a mechanism of type classes), or

- truly, (or dynamically, at run-time), by having only one data type (for
example Num) and generating the code which will always first check
the number type(s) and after that apply appropriate action. If so,
then 1t is the case that numbers are represented internally either as
integers or real numbers and coercion between them is allowed only:

* from integer to real numbers (like in MIRANDA [11] (trademark of
Research Software Ltd.), or
* from integer to real numbers, and vice versa, like in LL [1].

It can be noted from the above observations that there is no simple solution
to the problem of overloaded arguments - there is always someone in the chain
from programming to program execution which has to “pay the price” for a
solution to the problem. To summarize,

e from a programmer’s point of view, an approach taken in HASKELL,
MIRANDA and LL is better than the approach in ML, because the
programmer need not worry about number types,

e from a compiler’s point of view, the ML’s, MIRANDA’s and LL’s approach
is better than HASKELL’s approach, because it need not be extended to
support compile-time analysis of number types,

e from an “executor’s” point of view the ML’s and HASKELL’s approach
is better than MIRANDA’s and LL’s, because there is no need to check
internally whether the number is a real one or an integer.

(In the preceding items we informally introduced a relation “is better”
with a meaning “to do less”).

Since the main concern of this paper is the influence of type checking to
an ezecution efficitency of polymorphic functional programs, the cost of type
checking at compile-time will be in the rest of the paper neglected. It must
be said, however, that extensions to a (HASKELL) compiler to support type

360 L. Szarapka, Z. Budimac and M. Ivanovié

classes are relatively complex and time consuming (see for example [10], [1] p.
69.)

4. Three approaches to number representation

We observe three possible solutions to the problem of overloaded ar-
guments which can affect the ezecution efficiency of polymorphic functional
programs:

1. HASKELL’s (or ML’s) approach, where real numbers and integers are
separate types and have distinct internal representation, with forbidden
coercions,

2. MIRANDA'’s approach, where there is only one numeric type (i.e. Num,)
distinct internal representation, and coercions are allowed from integer to
real numbers,

3. LL approach, which is similar to MIRANDA approach, but coercions
from real numbers to integers are also allowed (always when the “inter-
nal representation” cannot “see” the difference between integer and real
representation of the same number).

Note that MIRANDA and LL approaches to internal number represen-
tations and coercions are not only interesting as possible solutions to the
problem of overloaded arguments. These two approaches also enhance the
data abstraction of functional programming languages by hiding the differences
between internal number representations from a programmer (LL being “more
declarative” than MIRANDA) [2].

We implemented all three approaches in LL. Every of three approaches is
in two versions - with and without type checking at run-time. Performances
of all six implementations of addition and multiplication are displayed in the
following tables. Data is obtained by measuring the time needed for 30,000
operations of four possible operand types (on a 12 MHz 286 machine.)

Performances of integer addition are given as procentual delays with
respect to the fastest implementation of 0.1 ms (denoted as 0%.) Similarly,
performances of floating point addition, integer multiplication and floating
point multiplication are given with respect to the most efficient implementation
of corresponding operations (0.38 ms, 0.11 ms, and 0.42 ms, respectively).
Integer operations are separated from floating point operations with a line in
the tables. Note that a floating point operation is used whenever at least
one operand is a real value. Results of measurements with assumed correct

Type checking and problem of overloaded arguments 361

types are denoted as “TC’. As ’No TC’ are denoted results where types are not
checked previously (and are checked at run-time).

Add HASKELL MIRANDA LL

TC] No TC TC J No TC TCT No TC
Int x Int 0% | 27.03% | 35.83% | 35.83% | 35.83% | 35.83%
Real x Int - -] 8.77% | 5.77% 5.77% 5.77%
Int x Real - - 11.72% | 11.72% | 11.72% | 11.72%
Real x Real {| 0% | 7.28% | 14.56% | 21.49% | 144.32% | 151.15%

Mul HASKELL MIRANDA LL
TC | No TC TC | No TC TC | No TC
Int x Int 0% | 21.49% | 48.96% | 48.96% | 48.96% | 48.96%
Real x Int - -] 3.01% | 3.01% 3.01% 3.01%
Int x Real - - 871% | 8.71% 8.71% 8.71%
Real x Real || 0% | 6.49% | 13.54% | 19.56% | 129.61% | 136.58%

Performances of subtraction and division are comparable with the given
ones for addition and multiplication, respectively.

There are several obvious conclusions drawn from the displayed data:
typed implementations are (somewhat unexpectedly) only sometimes more
efficient than untyped ones, because type checking of operands cannot be
completely avoided. LL approach is the least efficient one, while HASKELL
approach is the most efficient of all threee. MIRANDA’s approach is more
efficient than LL’s only in the cases when both operands are real values (when
MIRANDA does not examine the possibility of coercion into an integer). These
results obtained by isolated measurements can be similar only theoretically with
performances of “real” programs. However, exact relationship between these
results and performances of programs cannot be easily established. It depends
on at least two conditions:

e the number of numeric operations in a program, and

o the number of operations with real numbers which give an integer as a re-
sult (because integer operations on coerced values in LL are executed much
more efficiently than floating ones on uncoerced values in MIRANDA).

In the following two sections, we examine the influence of type checking
and the three approaches to number representation, to an execution efficiency
of “real” (numeric and non-numeric) functional programs.

362 L. Szarapka, Z. Budimac and M. Ivanovié¢

5. Efficiency of SECD machine

SECD machine was the first abstract machine invented for implementation
of functional programming languages [9, 6]. It implements a “strict” semantics
of functional programming languages, i.e. an “eager” evaluation. SECD ma-
chine is still a good basis for many other (and more modern) abstract machines
(G machine, for example) and excellent test bed for “eager” implementations
of functional programming languages.

The execution efficiency of 10 benchmark programs was measured on
the SECD simulator. Benchmark programs were divided into three groups:
programs involving integer arithmetics (Fibonacci numbers on two different
ways, Takeuchi function and integer matrix operations), programs involving
real arithmetic (computing of 7, real matrix operation and Takeuchi function
with real numbers), and programs involving symbolic computation and no
numerical operations (queens on a chess board and two manipulations with
“lazy” lists).

The results are displayed in the following two tables. The first table
presents a speedup of type checked programs with respect to programs that are
not typed checked (hence type checking has to be done at run-time) for all three
described approaches to number representations. The second table presents the
speedup of (checked and unchecked) MIRANDA’s and HASKELL’s approach to
number representation with respect to (checked and unchecked) LL’s approach.

Speedup: type checked vs. unchecked programs
Programming Integer Real Symbolic
language Arithmetics | Arithmetics | Computation
LL 41.45% 32.14% 42.57%
MIRANDA 40.93% -34.15% 41.92%
HASKELL 40.93% 34.46% |- 41.92%

Speedup: with respect to LL (checked or unchecked)
Programming Integer Real Symbolic
language Arithmetics | Arithmetics | Computation
MIRANDA (checked) 0.01% 0.08% 0%
MIRANDA (unchecked) 0.01% 0.11% 0%
HASKELL (checked) 0.01% 0.08% 0%
HASKELL (unchecked) 0.01% 0.12% 0%

As expected, if type checking is done at compile-time (and thus avoided at
run-time), execution efficiency is significantly improved. Note that the results

Type checking and problem of overloaded arguments 363

of symbolic computation show an improvement which is as much as possible
independent of the chosen approach to number representation (and solution of
a problem of overloaded arguments). The smaller speedup of programs with
integer operations in the case of MIRANDA’s and HASKELL’s approaches can
be explained by the following law: “the faster the execution, the smaller gain
by optimization”. Indeed, as the second table shows, LL’s approach is generally
slower with integer operations than MIRANDA’s and HASKELL’s approach.
As expected, there is no difference between LL’s and HASKELL’s approach
in symbolic computations. An interesting result, however, is that programs
with real number operations are only slightly more efficient than corresponding

LL equivalents!
6. Efficiency of SK reduction machine

SK reduction machine was a first abstract machine to implement nonstrict
semantics of functional programming languages, i.e. “lazy” evaluation [7]. SK
is nowadays in widespread use and is a basis for similar machines.

The execution efficiency of the same 10 benchmark programs was measured
on the SK machine simulator. The results are presented in tables analogous to
the tables in previous section. '

Speedup: type checked vs. unchecked programs
Programming Integer Real Symbolic
language Arithmetics | Arithmetics | Computation
LL 24.85% 20.12% 24.95%
MIRANDA 24.46% 22.46% 25.01%
HASKELL 2447% |- 33.03% 25.01%
Speedup: with respect to LL (CHECKED OR UNCHECKED)

Programming Integer Real Symbolic
language Arithmetics | Arithmetics | Computation
MIRANDA (checked) 0% 0.89% 0%
MIRANDA (unchecked) 0% 1.12% 0%
HASKELL (checked) 0% 0.89% 0%
HASKELL (unchecked) 0% 1.12% 0%

The speedup of the SK reduction machine is smaller to the performance

364 L. Szarapka, Z. Budimac and M. Ivanovié

of the SECD machine. Generally, it is another “proof” of the law from
previous chapter. More specifically, it can be explained by more rigid internal
representation of a functional program in SK machine than in SECD machine
(most of the time, an element to be fetched is surely a list and therefore need
not be type checked).

6. Conclusion

As shown (and expected), the gains of type checking at compile time are
worth implementing the algorithm as a part of a compiler on both architec-
tures: SECD machine (for “eager” evaluation) and SK machine (for “lazy”
evaluation).

The main conclusion of the investigation presented in this paper is,
however, that MIRANDA’s and LL’s approaches to solving the problem of
overloaded arguments, do not worsen performances significantly even in the
case of heavy numeric operations. In most cases it can be a successful replace-
ment for more sophisticated (and more complicated) HASKELL’s concept and
implementation of type classes.

References

[1] Budimac Z., A contribution to the theory of functional programming
languages and to an implementation of their processors, PhD Thesis,
University of Novi Sad, Faculty of Science, Novi Sad, 1994.

[2] Budimac Z., Abstracting number representation, Proc. of 39. Conf. of
ETRAN, Zlatibor, Yugoslavia, 1995, 235-237.

(3] Damas L. and Milner R., Principal type schemes for functional pro-
grams, Proc. of IX. ACM Symposium on Principles of Programming
Languages, Albuquerque, USA, 1982, 207-212.

[4] Gordon M., Milner R., Morris L., Newey M. and Wadsworth C.,
A metalanguage for interactive proof in LCF, Proc. of V. Annual ACM
Symposium on Principles of Programming Languages, 1970, 119-130.

(5] Hancock P., Polymorphic type checking, Peyton Jones, S., The imple-
mentation of functional programming languages, Prentice Hall, London,

1987, 139-162.

Type checking and problem of overloaded arguments 365

[6]

Henderson P., Functional programming - Application and implementa-
tion, Prentice Hall, New York, 1980.

[7] Turner D.A., A new implementation technique for applicative languages,
Software - Practice and Ezperience, 9 (1979), 31-49.

[8] Hudak P., Peyton-Jones S. and Wadler P. (eds.), Report on
the programming language HASKELL - a non-strict purely functional
language Version 1.2., SIGPLAN Notices, Num. 5 (1992), R.1-R.164.

[9] Landin P.J., The mechanical evaluation of expressions, Computer Jour-
nal, 6 (4) (1964), 308-320.

[10] Peterson J. and Jones M., Implementing type classes, Proc. of ACM
Conf. on Programming Languages and Design, Albuquerque, USA, 1993,
227-236.

[11] Turner D.A.;, MIRANDA System Manual, MIRANDA Version 2, Re-
search Software Ltd., 1989.

L. Szarapka Z. Budimac

M. Ivanovié

University of Novi Sad University of Novi Sad

Faculty of Civil Engineering Faculty of Science

Dept. of Mathematics and Informatics Institute of Mathermatics

Kozaracka 2/a Trg D. Obradoviéa 4

21000 Novi Sad, Yugoslavia 21000 Novi Sad, Yugoslavia

ilehel@unsim.ns.ac.yu [zjb,mira]@unsim.ns.ac.yu

