Annales Univ. Sci. Budapest., Sect. Comp. 17 (1998) 339-354

PARALLEL EXECUTION
OF OBJECT FUNCTIONAL QUERIES

L. Schrettner, T. Gyiméthy, Z. Alexin and J. Toczki
(Szeged, Hungary)

Abstract. In this paper a model is proposed for the parallel execution
of OFL programs on MIMD architecture. OFL can be considered as
a target language for object-oriented query compilers or a convenient
source language for object-oriented query interpreters. The proposed OFL
executor model uses the pipelined evaluation strategy to process queries.

1. Introduction
1.1. Conventional Database Management

An important feature of databases that they ensure a persistent storage
which means that the stored data can be permanently accessed by different
applications and ad hoc queries. Usually, the business applications require only
simply structured data records each stored just in a few bytes of memory. The
transactions are often short and the number of different relationships between
data items is not too big. Relational database systems are very suitable to
handle these requirements. The table-oriented data model involved in relational
systems provides good solution for the business applications. In Figure 1 the
main elements of a conventional database management system (DBMS) are
presented.

Supported by the LPD COPERNICUS Project CP 93:6638 and by MKM
Grant No. 435/94.

340 L. Schrettner, T. Gyiméthy, Z. Alexin and J. Toczki

query

us!
o preprocessor DBMS database

Fig.1. Database system
1.2. Object Oriented Model

There are some applications where the conventional DBMS concepts are
not efficient. For example in the Geographic Information Systems (GIS) 1] the
objects are often structured in a hierarchical manner. A conventional DBMS
does not provide sufficient solution to handle these complex objects.

The object-oriented databases [2] which can be considered as DBMS with
object-oriented data model play an important role in the efficient management
of structured objects. The object-oriented data model supports the construc-
tion of complex objects, the definition of user defined types and methods. The
concept of class is also involved in the object-oriented data model. Similar
objects are grouped together in classes and methods and attributes are attached
to these classes. In the object-oriented systems the objects are encapsulated
which means that an object can be accessed through the methods defined on
its class.

In this paper we present a method for the parallel execution of object
oriented queries. The top-level schema of the object-oriented query process
used in our approach is presented in Figure 2. We suppose that user’s queries
after a pre-processing phase (top-level optimisation) are given in OQL form [3].

From an OQL query an OFL (Object Functional Language) program
is generated and the parallel executor operates on this program. OFL can
be considered as a target language for object-oriented query compilers or a
convenient source language for object-oriented query interpreters.

Parallel execution of object functional queries 341

OFLX <) abstract
(Executor) collections
N
physical connection logical connection '
i
!
OFLX !
translator unit | OQL > OFL [— -~ — ~ 7] Interface unit |
DBMS '
|
I
!
N/
query
user DBMS database
preprocessor]

Fig.2. Database system with OFL

1.3. OFL - Object Functional Language

Based on first drafts [4, 5], the features of OFL can be summarized as
follows: OFL programs are functional expressions and manipulate objects via
function calls.

1.3.1. Objects

Typically some objects contain other objects as their members, these are
called collections. Every collection must support three functions for the purpose
of enumerating their members (see below).

Apart from three special objects, the OFL executor does not recognise the
identity of the objects. These special objects are:

Error! Reference source not found. false boolean false
Error! Reference source not found. true boolean true

Error! Reference source not found. nil the object nil, used by the
built-in functions

342 L. Schrettner, T. Gyiméthy, Z. Alexin and J. Toczki

1.3.2. Object references

In OFL programs an object reference is used to access an object. There
are two kinds of references:

Error! Reference source not found. indirect reference by object
variables, these are

- either false, true, nil referencing the special objects mentioned above,

- or a user variable, defined by using the assign built-in function (see

below).

Error! Reference source not found. direct reference to objects,
these are string literals to the OFL executor. It is the responsibility of the
function to which these direct references are passed to determine the identity
of the object described by the string literal.

1.3.3. Functions

Every function accepts objects as its parameters and passes back a single
object as its result, i.e. functions are single-valued and ’object’ is the only data
type in OFL programs. The same function name can be used to denote several
functions with different arities. A parameter (argument) to a function can be
an object reference or a function call.

There are two kinds of functions: built-in and external. External functions
are not carried out by the OFL execator itself, their arguments are determined
and passed along with the name of the function to the environment in which the
executor 1s run. That environment 1s responsible for carrying out the function
and returning the result to the executor.

There are mandatory (traversal) and optional (behavioural) external func-
tions. Each collection maintains a pointer to its current member internally, this
pointer can be set and moved by the traversal functions, this way the collection
members can be enumerated.

Traversal functions
Current(argument)

Returns the current member of the collection.
First(argument)

Sets the internal pointer to the first member and returns true if the
collection is not empty. Returns false if the collection is empty.

Next(argument)

Returns false if all members have been enumerated. Sets the pointer to
the next member of the collection and returns true otherwise.

Parallel execution of object functional queries 343

Behavioural functions

A behavioural function is any external function that appears in an OFL
program and is not a traversal function.

Built-in functions

A predicate is false, true or a function that returns false or true. All
built-in functions return nal.

assign(object_reference, argument)

object_reference is treated as an indirect object reference throughout
the program. The object it 1dentifies is determined by the argument.

sequence(argument, argument, ..., argument)

Calls the arguments in the given order. The arguments are supposed to
be functions. If an argument is an object reference, it has no effect. The
return values of the functions are discarded.

while(predicate, function)

Calls the function until the predicate becomes false. Each iteration begins
with the predicate evaluation.

if(predicate, function, function)

If the predicate returns true, the first function is called. If the predicate
returns false, the second function is called. If the first parameter is not a
predicate, the behaviour i1s undefined.

forany(object_reference, predicate, function)

Enumerates the members of the collection 1dentified by object_reference
until the call of predicate returns true. Then the function is called. If

the collection is empty or predicate is never true, the function is not
called.

forall(object_reference, predicate, function)

As forany, but enumerates all members of the collection and function is
called each time predicate is true.

1.4. OQL - OFL Transformation

The OQL to OFL transformation is done by the OQL compiler. The
compiler reads in a query and returns its OFL equivalent. The generated code
contains a wide variety of library functions like the ones in the example below.
The OQL compiler is available for UNIX and IBM PC machines as well.

344 L. Schrettner, T. Gyiméthy, Z. Alexin and J. Toczki

An OQL query consists of several defines and a query. Each define
corresponds to a view, 1.e. a collection expression that evaluates when used. A
query can use the previously defined views. For the compilation, the schema of
the data is necessary, too. The OQL compiler can handle the schema definitions
written in ODL language.

The query itself is an expression whose value (it may be either a large
collection or a simpler object) is the result of the query. Therefore the compiler
works as follows: it parses the input, replaces the defines, then builds up an
expression-tree, finally from the expression-tree it generates the OFL code.

The following example shows how the OQL compilers transform a SELECT
query. Selecting from multiple collections means traversing all of the collections
and picking up the suitable objects from them; so the compiler generates
encapsulated

sequence(assign(x,...), forall(x,...))

statements for each item in the FROM part of the SELECT. For the SELECTed
columns it generates Display library procedure calls in the body of the
innermost forall. The Display simply prints the result to the terminal screen.
The conditions in the WHERE part will be used in the headings of the forall
statements for filtering the traversed collection elements.

SELECT p.LastName, v.Color, c.PartLabel
FROM p in Person, v in p.Owner, c in v.Composed
WHERE p.Age=16
sequence(
assign(_person, ’People’),
forall(_person, IntEq(Field(’age’, Current(_person)), ’16’),
sequence(
assign(_vehicle, Field(’owner’, Current(_person))),
forall(_vehicle, true,
sequence(
assign(_part, Field(’composed’, Current(_vehicle))),
forall(_part, true,
sequence(
Display(Field(’lastname’, Current(_person))),
Display(Field(’color’, Current(_vehicle))),
Display(Field(’label’, Current(_part)))
)

Parallel execution of object functional queries

345

Host

OFL Executor

Figure 3. Parallel database machine

2. Parallel Executor

2.1. Parallel Environment

Data Access Layer

For the implementation of the parallel OFL executor we first have to decide
what kind of environment we assume in which the executor runs. We propose
a general parallel database machine architecture and show how the executor

can be implemented on it.

The architecture is based on the MIMD model

346 L. Schrettner, T. Gyiméthy, Z. Alexin and J. Toczki

of parallelism, i.e. processors with local memory communicate on message
channels. The transputers [6] belong to this model and will be used to first
simulate and eventually implement the system.

2.2. Parallel Database Machine

The database machine is separated into two functional units, the Executor
and the Data Access Layer (Figure 3). Both of these are assumed to consist
of several processors. The task of the Data Access Layer is to serve the
Executor. It encompasses both the OFLX-DBMS interface and DBMS modules
(see Figure 2). We do not deal with the internal structure of the access layer
here, it is assumed that it carries out its assigned tasks. With this assumption
we can concentrate on the execution of OFL programs, while realizing that the
internal organization of the access layer is not trivial. The system is connected
to a host machine where query input and query pre-processing takes place.

The OFL Executor uses the pipelined evaluation strategy to process
queries. For this reason, the processors in the Executor unit are connected
to each other in a pipeline (Figure 4). The roles of the functional units will be
discussed later.

OFL Executor

Functional unit 1

Hoet Furj?nonal umt:nﬂ ,

Data Access Layer

Figure 4. Ezecutor internal structure

2.2.1. Query Pre-processing

Before the execution of an OFL program it has to be analysed and pre-
processed so that the executor would be able to evaluate it efficiently. The
papers which define and describe OFL suggest that OFL programs generated
to be evaluated using the pipelined strategy have a common structure. This
structure is best shown by the so-called abstract collection traversal graph,
which is the last step in the generation sequence before an OFL program is

Parallel execution of object functional queries 347

produced. The forall function has the most important role in this respect, it
determines the overall structure of a query.

The pre-processor has to look for the first forall function occurrence in
the OFL program and split up the OFL tree (program) so that the subtree
corresponding to the third argument of the forall is separated. This is
performed iteratively until the resulting subtree contains no forall. The
subtrees found this way will be evaluated by the functional units introduced
in Figure 4. The forall functions selected for code separation purposes all
lay on a path starting from the root of the parse tree. In principle any path
of the parse tree could be selected for this purpose but not all of them can
be expected to be equally preferable. More work is needed to find out what
factors should be considered when the path is determined.

The example program given earlier is sliced as follows:

1. sequence(
assign(_person, 'People’),
forall(
_person,
IntEq(Field(’age’, Current(_person)), ’16°’),
2

))

2. sequence(
assign(_vehicle, Field(’owner’, Current(_person))),
forall(
_vehicle,
true,
?

))

3. sequence(
assign(_part, Field(’composed’, Current(_vehicle))),
forall(
_part,
true,
?

))

348 L. Schrettner, T. Gyiméthy, Z. Alexin and J. Toczki

4. sequence(
Display(Field(’lastname’, Current(_person))),
Display(Field(’color’, Current(_vehicle))),
Display(Field(’label’, Current(_part)))

)

The program is separated into four functional units. Invocations of
the Current function have been replaced with object variables local to the
unit, because the objects of the corresponding collection are sent on the
message channels between functional units and are processed in parallel. These
transformations can easily be carried out by a pre-processor.

2.2.2. Query Evaluation

The evaluation proceeds in two steps. First the subtrees are distributed
to the functional units. In the second step, evaluation of the subtrees begins
in parallel. Functional units can proceed unless an object is available to work
on. The finer structure of the executor is discussed after an introduction to the
INMOS parallel C for transputers.

2.3. Software

2.3.1. Parallel C Features

The INMOS parallel C system consists of an ANSI compliant C compiler
extended with features needed for process creation, scheduling and message
passing [7]. These are implemented as C functions and are separated into
libraries. We plan to base our implementation on this language.

The parallel computational model consists of variables, processes and
channels. Processes are ordinary C functions and run independently of
each other. Variables can be of any C type including user defined types.
Channels are a new data type defined in the extension libraries. They serve
as a communication medium between processes. If two processes reside on
different processors, the only way for them to exchange data is to use channel
communication. Every channel has at most two processes associated with
it, one of them can send messages on the channel, the other can receive the
messages. Communication takes place when both processes are ready for it,
the first reaching the communication point must wait for the other to arrive,
too.

Parallel execution of object functional queries 349

2.3.2. OFL Objects and Functions

An OFL program manipulates objects via functions. In order to be able
to make an OFL implementation, we have to decide how to represent objects
during execution.

Fortunately only a few objects are processed directly by the executor,
most of them are results of external function calls and these resulting objects
are stored and passed to other functions later. For these reasons the objects
manipulated by executor are the boolean constants true, false and the
special object nil that is the result of some second-order functions like forany
and sequence. It is used when a function does not really have a meaningful
result. It can only appear in contexts where the function result would not be
used anyway. We assume also that there exist a standard collection Boolean
consisting of the two boolean constants and an other standard collection Nil
which contains only the object nil.

The representation of objects is therefore quite simple, it is a C structure
that contains the value of the object if they are one of the above three
or contains an identifier otherwise. This identifier is used only outside the
executor, its value is not inspected in any way. For efficiency reasons in a real
implementation objects of small size (e.g. strings) can be stored directly in the
object structure, but this does not affect our discussion here.

Only a small number of functions are built in the language. Other functions
appearing in an OFL program are called external functions and indeed they are
executed by the system to which the OFL executor is connected (in the interface
unit in Figure 2). There are some external functions which are required to be
present so that the executor can work. These are the following, the so-called
traversal functions:

Boolean First(Collection): This function selects an object from the
collection as the first object. If successful, this object may be accessed later by
the function Current.

Boolean Next(Collection): This function selects the next object from
the collection. Again the object may be accessed later by Current. If Next
returns false, then all members of the collection have been enumerated.

Object Current(Collection): Returns the current instance of the spec-
ified collection.

2.3.3. Processes and Configuration

A functional unit consists of the processes shown in Figure 5. The input
and output processes are responsible for handling the communication with
the neighbouring units. The buffer process stores objects which are results of
the execution of the function assigned to this particular functional unit. If the

350 L. Schrettner, T. Gyiméthy, Z. Alexin and J. Toczki

neighbour on the right becomes idle, it sends a message to the output process,
which retrieves an object from the buffer and forwards it to the idle neighbour
for processing.

The most important part of this process structure is the evaluator which
is an OFL interpreter and executes the same code repeatedly to every object
received. Remember that the code assigned to the evaluator is determined in
the pre-processing phase.

Functional unit

Figure 5. Processes in a functional unit

We now give the pseudocode of the evaluator based on a similar sequential
code given in [4] and [5].

Object eval(Expression expr) {
switch(expr_type(expr)) {
case expr_Object:
return(expr); break;
case expr_Function:
switch(func_type(expr)) {
case func forall:
return eval forall(func_params(expr)); break;
case func_forany:
return eval_forany(func_params(expr)); break;
case func_while:
return eval_while(func_params(expr)); break;
case func_if:
return eval_if(func_params(expr)); break;
case func_seq:
return eval_seq(func_params(expr)); break;
otherwise:

return eval extern(expr); break;

Parallel execution of object functional queries 351

};
i
Object eval forall(Expression coll, Expression pred) {
¢ = eval(coll);
ok = eval_extern(First(c));
while (ok) {
if (eval(pred)) {
obj = eval_extern(Current(c));
store(obj);

ok = eval_extern(Next(c));
};
return nil;

h

One thing should be pointed out, the role of the function store. When it
1s invoked, the object parameter is stored in the buffer process together with a
suitable environment information describing the state of the processing. This
1s required so that the next functional unit in the pipeline could continue the
processing of the query.

The code of eval_forany is similar, clearly the store function is not called
at all.

Object eval_while(Expression cond, Expression func) {
while(eval(cond))
eval(func);

return nil;
|5
Object eval_if(Expression cond, Expression t_f, Expression f_f) {
if (eval(cond))
return eval(t_f);
else
return eval(f_f);
I
Object eval_seq(Expression f[], int fsize) {
for (1 =1; i <= fsize; i+ +)

352 L. Schrettner, T. Gyiméthy, Z. Alexin and J. Toczki

eval(f[i]);
return nil;

h

As can be seen, all built-in functions except if return the object nil as a
result. It is the responsibility of the compiler that produces the OFL program
that this behaviour does not cause any problem during processing.

We have not taken into account so far how many processors we have for
the executor. If we have at most as many processors as functional units, then
the scheme above is appropriate. But as the number of functional units is
determined by the number of forallsin a program and that number is limited,
we should consider the case when there are more processors than functional
units. In this case we assign several processors to a single functional unit, but
this induces minor changes in the process structure as shown in Figure 6.

It can be seen that the input, output and evaluator processes are repeated
as many times as necessary, but still there is only one buffer process. Further
the input and output processes of a processor are connected to be able to
communicate with each other directly. This i1s so because this way it is
possible for all evaluators to access new objects via a chain of input and output

processes.

Figure 6. Multiprocessor functional unit
2.4. Performance Measurement - Simulation

We would like to measure the effectiveness of our system without having
to build a parallel database machine and implement all the necessary software
components. For this to be possible, we only implement the OQL-OFL
translator and the OFL executor and substitute all the remaining parts with
software modules that simulate the behaviour of the real ones. Some of
our partners participating in the LPD project are developing cost models for

Parallel execution of object functional queries 353

databases with various physical organization and logical structure. We hope
to apply those results to test our system.

In order to collect the runtime performance data we include a profiling
module into the executor. The task of the module is to accept calls from various
parts of the program and store runtime data in the memory. When a query
has been processed, the data collected are transmitted to the host machine
and stored in files. These files are then subjected to data analysis, for which
purpose a separate software tool is under development. One file is produced per
processor, each file consisting of a series of records that contain a timestamp
and the quantity of some agent at that instant. The data analyser tool produces
data charts in an easily comprehensible graphical format. Runtime data can
browsed, enhanced and compared on the display. With the assistance of this
tool we hope to be able to pinpoint causes of possible inefficiencies and improve
our design.

3. Discussion

We presented a possible solution for the parallel evaluation of database
queries expressed in the language OFL. OFL was proposed as an intermediate
low level language that is independent of data models and can efficiently
be executed. Based on papers describing OFL and a sequential executor,
we designed a parallel executor which tries to retain the semantics of the
language as much as possible and at the same time tries to exploit the potential
parallelism present in queries. We are planning to examine the possibility to
embed the OFL executor in a more general parallel environment that has been
developed for the solution of so-called decomposible problems [8]. Although
this approach seems sensible, we will have to redefine parts of the semantics of
the language with a parallel executor in mind.

References

(1] Gunther O., Efficient Structures for Geometric Data Management,
LNCS 337, Springer, 1988.

(2] Atkinson M., Bancilhon F., De Witt D., Dittrich K., Maier
D. and Zdonik S., The object-oriented database manifesto, Proc. of
DOODS, Kyoto, Japan, 1989.

354

L. Schrettner, T. Gyiméthy, Z. Alexin and J. Toczki

(3]
(4]
(4]
(5]

(6]
[7]

Object Databases: The ODMG-93 Standard, ed. R.G.G.Cattell, Morgan
& Kaufman, 1993.

Gardarin G. et al., OFL: An Object Functional Language to Map
Eztended SQL, LPD Report LPD.PRiSM.003

Gardarin G., Machuca F. and Pucheral P., A Functional Ezecution
Model to Evaluate Object-Oriented Queries, PRiISM Technical Report.

INMOS Ltd., The Transputer Databook, 1993.
INMOS Ltd., IMS D7214 ANSI C Toolset, 1993.

Schrettner L. and Jelly I.LE., A Test Environment for Investigation
of Dynamic Load Balancing in Transputer Networks, Proceedings of the
World Transputer Congress, Aachen, Germany, September 1993, 10S

Press.

L. Schrettner
Department of Computer Science

Jozsef Attila University
P.O.B. 652.

H-6701 Szeged, Hungary
schettner@inf.u-szeged.hu

Z. Alexin

Department of Appl. Informatics
Jozsef Attila University

P.O.B. 652.

H-6701 Szeged, Hungary
alexin@inf.u-szeged.hu

T. Gyiméthy

Research Group

on the Theory of Automata
Hungarian Acad. of Sciences
Aradi vértanuk tere 1.
H-6720 Szeged, Hungary

gvimi@sol.cc.u-szeged.hu

J. Toczki

Department of Comp. Science
Jozsef Attila University
P.O.B. 652.

H-6701 Szeged, Hungary
toczki@inf.u-szeged.hu

