Annales Univ. Sci. Budapest., Sect. Comp. 17 (1998) 331-338

REMARKS ON LANGUAGE EXTENSIBILITY

J. Poial (Tartu, Estonia)

Abstract. Programming languages are often characterized proceeding
from the paradigm they are intended to support - imperative, func-
tional, logic, object-oriented, parallel, real-time, distributed, event-driven
etc. Independently from the paradigm there exist some other impor-
tant aspects of the language design and implementation like user inter-
face of the system, choice of integrated tools, support to incremental
development, whether the system is interpretive or compiles into some
external representation (machine code, assembly language, higher level
language), support to standalone application development (incl. GUI
development), portability, extensibility, compatibility with different stan-
dards and platforms etc. These additional qualities may appear in con-
crete implementation, but may also be a part of the language itself.

This paper focuses on language extensibility that is the notion with
wide range of interpretations. Authors opinions are based on experience
of using and teaching the ”minor languages” Forth [2] and Tcl/Tk [6]
as well as ”traditional” ones [4].

The first part gives a short overview about the evolution of different
types of extensibility.

The second part is devoted to the problems of implementation of
extensible languages.

The third part contains some remarks on programming in extensible
languages.

As a conclusion some similarities between extensible languages and
the language of mathematics are outlined:
o Freedom to create abstractions and notations to express these abstrac-
tions.
e The language itself is not "high level” or ”low level” - it is always on
the level of the Creator.



332 J. Poial

1. Evolution of language extensibility

Let us start from the history of programming languages and have a look
at different types of language extensibility.

Probably the first idea was to introduce subroutines to perform common
tasks by calling the same code from different places (like GOSUB in Basic). To
individualize each call the parameters were introduced (like functions in FOR-
TRAN). Through many languages the concept of procedural extensibility
has been deposited (procedures, functions, passing parameters, ...) that allows
a programmer to extend the language with new operations.

Evolution of data types has a long history also. It started from prede-
termined data structures (FORTRAN, Basic), led to the idea of programmer-
defined data structures (like in PL/I) and became stable in early typed lan-
guages like Pascal, Ada. Let us call this concept the extensibility with data
types that allows a programmer to extend the language with new (passive)
data types. Unfortunately, the possibilities of creating totally new abstract
objects are restricted using this approach. A programmer may describe his/her
own record structure in Pascal, but cannot introduce an associative array, for
example. It is natural to expect a way of creating the abstract data types
In an extensible language.

The next group of tools supporting the language extensibility is macro-
processors that allow to introduce substitutions to the program text. More
sophisticated macroprocessors have their own powerful command languages
comparable to the programming languages. The borderline between the
programming languages and macro languages is sometimes quite fuzzy - in case
of the Forth language, for example, the whole language may be considered as
a macro language (performing actions during compilation phase, not changing
the program text).

An important feature of any programming language is the way it handles
the control flow. The first choice is to provide a fixed set of possibilities deter-
mined by the syntax of the language. We may distinguish between unstructured
approach (GOTO-based) and structured approach (control structures). Even
if the set of control structures is ”rich” enough such an approach does not
allow to introduce implementation-specific abstractions related to the control
flow. The second choice is not to give direct access to the control flow at
all - programmer works on more abstract level and it is up to the compiler
to generate corresponding program (declarative style — functional and logic
programming). Unfortunately, there are many cases when such approach is
inconsistent. Problems of exception handling (e.g. ON-statement in PL/I) and



Remarks on language extensibility 333

processing interrupts have led to the dynamic style of programming the control
flow - event driven model (like in Tcl/Tk or in object oriented systems).

All these different concepts of handling the control flow (”procedural”,
"functional”, ”object oriented”, ... ) are usually not available in a particular
language except languages which provide the extensibility with new control
structures (in more general sense).

Speaking of abstractions related to the modularisation and control we
cannot bypass higher order functions. This concept became natural in
functional languages. In more general it is the question of processing code
as data (e.g. passing functions as parameters). Extensible language should
support introduction of higher order functions.

The same piece of text (or even code in dynamic case) may have dif-
ferent meanings when put into different context. This feature (sometimes
called context switching) becomes a powerful tool when a programmer has
some mechanisms in a language to manipulate it. Examples: static — Forth
vocabularies, dynamic - send-command in Tcl.

Up to now we have listed the features which support techniques of
abstraction, but extensibility may as well have an opposite direction - ex-
tensibility with low level operations. This is a problem with ”very high
level” languages and even with traditional languages to enable an access to
the hardware level. Adding a new device driver, for example, is often an
insurmountable task.

The following properties are not directly related to the notion of extensi-
bility but are important to mention also:

- Modularity. Does the language support grouping of abstractions to
viell-defined and manageable units - "modules” (Modula), ”packages” (Ada),
”clusters” (CLU), ”classes” (OO languages), etc.

- Reusability of resources. Does the language enable to ”avoid program-
ming”.

Theoretically it is possible to implement nearly everything in most existing
languages - in many cases this seems to be a matter of taste. However, the
problems with different languages vary from ”small things” (like procedures
as parameters) to basic philosophical questions about balance between free-
dom and safety, influence of the language to the way of thinking etc. The
main drawback of completed languages (typically having only few types of
extensibility) is their categorical compulsion to make a programmer thinking
“right way” predicted by the author(s). Instead of providing flexible tools to
create problem oriented abstractions these languages often suppress reasonable
solutions and insist on tricks to bypass the unpredictable problems.



334 J. Poial

2. Extensibility and language implementation

Often the following scheme for language implementation is chosen

Language < Abstract machine <& Real machine

Such an approach induces two stages of translation. Relatively portable
stage is the translation from ”sugared” language to the commands of an
abstract machine. The implementation stage of the abstract machine is more
hardware-dependent and may in turn contain several layers.

Extensibility of the language reflects on both translations. The first
possibility is to have a fixed set of ”commands” for the abstract machine. In
that case the second translation is also fixed and all types of extensibility are
handled during the first stage. The second possibility is to share responsibility
- abstract machine itself is extensible and a programmer extends both the
language and the machine. In that case the abstract machine must not be too
abstract initially — much better is to let a programmer feel that he/she has an
access to all “real” resources.

Let us have a look at advantages and drawbacks of these two methods.

1. Fixed abstract machine
- Easier to compile.
- Programmer has to think on the language level only.
~ Safer programming.

- Less possibilities for extensions.

2. Extensible abstract machine

- Harder to compile the programs, usually interpretive implementations that
give short response time during development but cause problems with
turnkey applications.

- Programmer has to think at least on two levels — how to design a suitable
abstract machine and how to express the needed concepts in terms of this
machine.

— More freedom and more responsibility.

- Programmer needs more time to learn to use this freedom and to think on
different levels in a disciplined manner. On the other hand - once getting
used to it there 1s no way back. Even if there are remarkable constraints on
the environment, hardware or application there should be no constraints
on programmers freedom to choose appropriate abstractions.



Remarks on language extensibility 335

There are examples of both approaches in existing languages, e.g. Pascal

and Forth. The question is whether the drawbacks of the second approach
are important enough to resign. It depends on traditions, skills and habits of
programmers, fields of application etc.

Let us list some important properties of the language from the viewpoint

of extensibility to conclude the implementation-related issues.

L.

Clean and ”simple” concepts for both the language and an abstract
machine. Simplicity here means that there are no exceptions in the
language (maybe at most one or two — but this is already a sign of bad
design), that the number of basic concepts is small (at most 5 - 7) and
that the way of handling these concepts is consistent.

. Minimal syntax i1s an advantage that makes it easier to find notations for

extensions introduced. This is not. a problem for the compiler to handle the
"rich” and complicated syntax, but this is a problem for a programmer to
orient oneself in it and to follow the rules of syntactic extensibility.
Laconic style ("high density” languages) supports modularisation and
makes language safer.

. Giving a programmer possibility to extend the abstract machine actually

means that a programmer is given full access to the compiler. It is
important to decrease the probability of causing disaster through this
access. To achieve certain safety the compiler interface (e.g. ”access to
dictionary”) must be "simple” and well-defined.

. Re-usability of resources is an important feature that should be supported

when implementing a system. There is a problem with interpretive
languages which usually do not provide precompiled or dynamic libraries or
provide implementation-specific non-portable libraries. The only resource
that is portable is the program text (in case of choosing the right level of
abstractions).

. Even if the system is interpretive there should be a possibility to compile

turnkey applications using some kind of post-compilation.

. Success of an extensible environment depends on attractive extensions pro-

vided with the system. It is not obvious how to gain the best results when
nearly ”everything is possible”. Tcl/Tk, for example, owes its popularity to
Tk toolkit that contains extensions for X-windows programming. Didactic
example (from the field of text processing) is the Emacs editor — a powerful
tool but not very well designed in providing ”defaults”.

Interpretive implementations are ”cheaper”, give quick response time

during development and provide more flexibility. Compilers usually appear
at the later stage when concepts are stabilised and there is a market for the
language.



336 J. Péial

3. Programming with extensible languages

The author has some experience in teamwork at large applications using
the Forth language - compiler compiler ([10]), compilers for Fortran and
Modula-2, database applications etc. The nature of compiler construction field
determines the need for rich variety of abstractions one can find in programming
languages as well as tools for writing compilers (see also [3]). Programming a
compiler sometimes introduces five levels of thinking:

- run-time behaviour of an application on the target machine;
- mapping host — target (cross-compilation);
- resulting program on the host machine (”abstract code”);

- compile-time behaviour on the host machine (context checking and code
generation);
- translation of the initial program text (translation scheme).

This example demonstrates the complexity of abstractions in a particular
area where it is not easy to use traditional methods. Always when the
problem is complex and experimenting is needed to find innovative solutions
an extensible approach is preferred (we do not solve a problem but create
abstractions to solve a group of problems). For concrete problems the ”safe”
language seems to be a better choice.

The main drawback of an extensible approach is putting all the responsi-
bility on a programmer who needs to be an expert. Even if this is the case some
additional tools are needed to gain safety in managing all levels of ”internals”.
For the compiler compiler and the Forih language some research is carried out
in [8, 9]. There is a danger to ”freeze” and fix too many things when designing
supporting tools for extensible languages. In general this is a problematic 1ssue
to fix right things.

Another topic of large discussions is the standardisation that is more
complicated in case of extensible languages because even the object of stan-
dardisation is not obvious. This work is nearly finished for the Forth language
for now. Unfortunately, this standard is far from being ideal (e.g. the model
of extensibility). To write a portable application in an extensible language a
programmer should first design good layers of (abstract) operations. Following
the standard comes second (but is important, nevertheless). Sometimes
standards change faster than an application and these changes should touch as
few layers as possible.

The main advantage of extensible languages from the viewpoint of a

programmer is the correspondence between his/her skills and the level of the
language. As a rule extensible languages are not ”high-level” or ”low-level” -



Remarks on language extensibility 337

they are on the level of their users. Having a look at the Forth language again
we can find an object-oriented approach ([7]), logic and functional approaches
([1,5]), an abstract data type approach etc. but also the ”assembler” approach,
for example. On the other hand - bad style in extensible languages is much
worse than bad style in traditional languages.

If the language is too high-level for a programmer initially, he/she may
have difficulties to use it efficiently. It is better if the programmer ” grows up”
together with the language and does not bump against restrictions when the
level of abstraction increases.

The way of thinking propagated in this article is the mathematicians’
way of solving problems that is not always applicable. Nevertheless, there
are similarities between extensible languages and the language of mathematics:
both provide freedom to create abstractions and notations to express these
abstractions. Higher level of abstraction is often the only way to solve
complicated problems - not only in theory (e.g. mathematics) but also in
practice (e.g. GUI programming).

References

(1] Belinfante J.G.F., S/K/ID: Combinators in Forth, J. of Forth Applica-
tion and Research, 4 (4) (1987).

(2] Brodie L., Starting Forth, Prentice-Hall, 1987.

[3] Dixon R.D., Embeddings of Languages in Forth, J. of Forth Application
and Research, 4 (4) (1987).

[4] Fischer A.E. and Grodzinsky F.S., The Anatomy of Programming
Languages, Prentice-Hall, 1993.

[5] Odette L.L., Compiling Prolog to Forth, J. of Forth Application and
Research, 4 (4) (1987).

[6] Ousterhout J.K., Tcl and the Tk Toolkit, Addison-Wesley, 1994.

[7] Pountain D., Object-Oriented Forth, Academic Press, 1987.

(8] Poial J., Formal Semantics of Parameter Passing for Forth-programs with
Control Structures, Proceedings of the Second Symposium on Programmaing
Languages and Software Tools, Aug. 21 - 23, 1991, Pirkkala, Finland,
University of Tampere, Department of Computer Science, A-1991-5, 1991,
48-54.

[9] Poial J., Some Ideas on Formal Specification of Forth Programs, 9th Euro-
FORTH Conference on the FORTH Programming Language and FORTH
Processors, Oct. 15-18, 1993, Marianske Lazne, Czech Republic, 1993.



338 . J. Poial

[10] Tombak M., Soo V. and Péial J., A Forth-Oriented Compiler Com-
piler and its Applications, FORTH Dimensions, XVI (5) (1995), Forth
Interest Group, Oakland, USA, 21-22.

J. Poial

Department of Computer Science
University of Tartu

J. Liivi St., 2 - 310

Tartu, EE2400, Estonia



