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THEOREM PROVING METHOD AND
THE COMPUTER SCIENCE

K. Pasztor-Varga (Budapest, Hungary)

Abstract. In this paper two decision methods, the resolution principle
and the method of tableaux are regarded. We make some comparison
between their abilities and properties. Our aim is to give some idea about
the reasons why the resolution principle and not the method of tableaux is
the basic process in the logic programming.

Some idea is mentioned to regard and to illustrate the work of both
methods. Based on that we suggest some modification of method of
tableaux allowing its more procedural applications.

1. Introduction

It 1s an important problem in logic and in computer science to decide
whether a formula of predicate logic is satisfiable. With other words researches
for algorithms solving the decision problem nowadays are also important. It
1s known that there exists no general solution for the decision problem, which
means that no algorithm can decide the validity (or satisfiability) of arbitrary
first order formulas (Church, 1936 [1]). This result initialized the examination
of the classes of first order formulas and some decidable classes of formulas
were found.

On the basis of the definition of the semantical consequence the equivalent
of the fact that a formula B 1s semantical consequence of a finite set of formulas
F={F, .., F,}isthat F; - F; — ... —» F, — B is logically true (or F1 A...A
F, A-B is unsatisfiable). The solution of the decision problem by the resolution
principle for Skolem formulas is well known. Using Herbrand’s results the first
order resolution calculus and different algorithms realizing this calculus were
elaborated. Amongthem the linear input resolution algorithm seemed to be the
most suitable for computer implementation. Its realizations represent the base
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of the PROLOG type languages ([6, 7]) and the DATALOG type languages [8]
being important part of the tools of data base and knowledge base management
systems. In this paper the linear resolution will be regarded. One other process
to solve the decision problem is the tableau method [2, 5]. Here the deduction
rule is a direct application of the semantics of the first order logic and the only
restriction is the finiteness of the examined formula. However the deduction
rule of the tableau method is more natural as the construction of resolvent, its
application in the mechanical theorem proving is not a wide-spread method.
On the other side this method is applied to verify the satisfiability of a formula
not only in the classical logic but in the temporal logic as well [9].

In this paper both methods will be shortly regarded and we try to find a
way of a larger applicability of the method of tableaux.

2. Resolution principle and the method of tableaux

2.1. Basic concepts of the resolution principle

By the resolution method the decision problem of logic is solved through
the unsatisfiability of the formula F; A ... A F,, A =B. This formula must be in
Skolem form R = Vz;,...,Ve, D, where D isin CNF (D = C; A... AC;) and
the clauses C; (1 < j < r) have no common variables. Consequently R can be
rewritten in form S = Vz,,...,V2,Ci A .. AVzy,...,Vz,C,. Now we define some
main concepts used in the resolution method [3].

Definition 2.1.1. A first order clause is a formula Vz,,...,Vz, (L, V...V
VL), where L; (1 < i < s) are first order literals. In the sequel Ly V ...V L,
denotes a first order clause.

Definition 2.1.2. A literal is an atom or the negation of an atom. A
positive literal 1s an atom, a negative literal is the negation of an atom.

Definition 2.1.3. A substitution © is called a unifier for a set {E, ...
of expressions if and only if £,0 = ... = E,0. We tell that the set {Ey, ..
is unifiable if there is a unifier for it.

:En}
°y En}
Definition 2.1.4. A unifier o for a set {E},...,E,} of ezxpressions is a

most general unifier (mgu) if and only if for each unifier © for this set there
ezxists a substitution A such that = o @ A.

Definition 2.1.5. If two or more similarly negated literals of a clause C
have a most general unifier o, then Co is called a factor of C.
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Definition 2.1.6. Let C; and C; be two clauses (called parent clauses)
with no common wvariables. Let L, and Lo be two literals in C; and C,
respectively. If Ly and —Ly have a most general unifier o, then the clause
(Cro — Lio) V (Cao — Lao) is called a binary resolvent of C1 and Cy. The
literals Ly and Ly are called the literals resolved upon [3].

Definition 2.1.7. A resolvent of (parent) clauses C; and C; is one of the
following binary resolvents:

1. a binary resolvent of C, and C,,

2. a binary resolvent of Cy and a factor of C3,

3. a binary resolvent of a factor of Cy and Cj,

4. a binary resolvent of a factor of Cy and a factor of Cs.

Definition 2.1.8. A resolution deduction of a clause C, from the set
of clauses S is a sequence of clauses (Cy,Cy,...,Cy), where either C; € S
(1 <i<n) orC; is resolvent of parent clauses Cs and Cy (s,t < 7).

Definition 2.1.9. A set of clauses S has resolution refutation if the empty
clause ([]) has a resolution deduction from S.

Remark 1. Let us regard the following partitioning S = {P U G}, where
P is the set of clauses obtained from F; A ... A F, and G is the set of clauses
obtained from —B. During the construction of the resolution deduction of the
empty clause from the set of clauses S (generated from the Skolem formula of
Fy A...A F, A=B) a substitution A for the variables of the elements of the set of
clauses S will be obtained. In principle A substitutes the universally quantified
variables of F; A ... A F, and the existentially quantified variables of B. In
reality the restrictions concerning the simultaneous valuations of variables are
obtained. Regarding the resolution process this means that the empty clause
has a resolution deduction from {PUGA} or from SA (in the last case without
any further substitution).

Remark 2. As we have seen above the clauses of the set of first order
clauses S obtained from the formula D have no common variables. This fact
allows that the variables appearing in the clauses can get values independently.
So the unifying (Def. 2.1.3, 2.1.4) algorithm becomes simpler and as an other
consequence any element of the set of clauses S is usable not only one time
in the resolution deduction. As we have also seen the composition of the
unifier substitutions constructed during the deduction of the empty clause
is a correct answer substitution (Def. 2.1.10). In the applications (A.IL,
theorem proving, PROLOG like languages, knowledge base management ...)
the different resolution algorithms start with the clauses of the negated theorem
formula. All of the linear resolution deduction from a set of clauses attached to
a fixed top clause can be represented by a deduction tree [3, 6]. If the top clause
1s G then the restrictions coming from the theorem appear already at the start
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and then can decrease the used part of the deduction tree [6] until the firstly
obtained empty clause. Naturally if we intend to obtain every appearence of
the theorem the whole deduction tree is regarded.

Definition 2.1.10. [6] A substitution A\ for {P U G} is called answer
substitution if it substitutes the variables of G only. A is a correct answer
substitution for the set of clauses S = {P UG} if the empty clause is deducible
from {PUGA}.

The notion of A (correct) answer substitution is treated in [6, 7] as an
important element of logic programming. In PROLOG interpreters generally
the linear input resolution is implemented but we regard here the linear
resolution.

We can state now several presentation of the decision problem including
the case of resolution principle. Let F = {F},..., F,} be a set of formulas
and B a formula. Let B be logical consequence of F. Then the following are
equivalent. B is the logical consequence of F' if and only if

- {F U {-B}} is unsatisfiable.
- F{ A ... A F, A —B is unsatisfiable.

- The set of clauses S obtained from the Skolem formula of F; A...AF, A—=B
has resolution refutation.

There is correct answer substitution A for B.

By the linear (or any complete) resolution deduction the most general
answer substitution is produced for B.

2.2 Basic concepts of the method of tableaux

By the method of tableaux the decision problem of logic is solved through
the unsatisfiability of a formula R. To apply the method of tableaux to a
formula R the form of the formula R is indifferent. We define here some main
concept used in the method of tableaux ([2, 5]).

Definition 2.2.1. Let C be a formula. A weak subformula of C is a
subformula D of C or D in negated form (—D).

If we regard a formula having the form D = D1©D2, D = =(D1(©D3),
where (©)can be any of the logical connectives A, V, — or D =VeD,, D = 32D,
the semantics give the conditions for the truth values of the direct subformulas
D;, D, resulting the true (or false) truth value of D. For example regarding the
following formulas Yz Dy, 3zD1, D; — D3, D; A D2 and =(D1 A D), they are
true if and only if when respectively D;(z/y) is true for any parameter, Dy (z/a)
is true for at least one parameter, at least one of the formulas —D;, D, is true,
both of the formulas D;, D, are true, at least one of the formulas =D;, =D,
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is true. We can give these semantical rules in a schematic form (Fig.1). These
schemes are the construction rules of a tableau (tableau rules). Regarding the
well formed formulas, there are four different type of tableau rules. The type of
a formula is determined by its tableau rule (Fig.1). A rule attaches one edge or
two edges to a vertex of the tableau with two or one weak direct subformulas
of the elaborated formula.

The tableau rules corresponding to the formulas type «, 3, v, § will be
called respectively rule A, B, C, D.

Dy, — D, Dy A Dy —'(Dl A Dz) Vz D, Jz D,
D | D, Dy, D =D, | =D, Di(z/y) Dy(z/a)

type : f o g v 6
Figure 1. Tableau rules and their types

Definition 2.2.2. A direct tableau of a formula D is obtained by one
application of its tableau rule.

Definition 2.2.3. The complete tableau of a formula D 1s obtained
applying the tableau rules to D and to all of its descendents until the not
elaborated formulas will be literals.

Definition 2.2.4. A branch of a tableau is closed if it contains an atomic
formula A and ils negation —A. A tableau is closed if 1t has only closed
branches.

Definition 2.2.5. A branch of a tableau is called complete if the not
elaborated formulas on the branch are literals. A tableau is completed if every
branch of it is either closed or complete.

Remark 3. The structure of a branch of tableau was investigated by
K.J.J. Hintikka [4]. If a branch in the tableau of a formula D contains 7-type
formulas and it is open, then the branch is infinite. There exist systematic
procedures assuring that the formulas of an open branch will be arranged in
one sequence. Tableaux constructed with such procedure are called systematic
tableaux [5]. In a systematic tableau the open branches are Hintikka sets. The
systematic tableaux will be regarded in point 3.

Remark 4. As the subformulas of a first order formula R generally contain
common variables this must be taken in consideration during the construction
of the tableau of the formula. Here only the tableau rule D can cause some
problem. When the rule D is applied, the existentially quantified variable z
is substituted by a parameter ¢ with proviso (not knowing but supposing that
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z was in the scope of other quantifiers in the original formula). That is using
the rule D we can introduce a new parameter ¢ if ¢ has not been previously
introduced by rules D or C.

Let a formula R be one of the formulas of a branch in the tableau of a
formula D. Since R is a descendent of D then to guarantee that D has the
value true R must be true. After Hintikka’s results follows that [5]

a) in the tableaux of a logically true formula on every branch the sets of
formulas are satisfiable,

b) in the tableaux of a satisfiable formula there is at least one branch where
the set of formulas is satisfiable,

¢) in the tableaux of an unsatifiable formula on every branch the sets of
formulas are unsatisfiable.

Now we give a presentation of the decision problem in case of tableaux.
Let B be logical consequence of F'. Then the following are equivalent. B is the
logical consequence of F if and only if

- {F U {-B}} is unsatisfiable.
- F1 A ...\ F, A -B is unsatisfiable.
- Any systematic tableau of the formula F; A ... A F,, A=B is closed.

3. Systematic tableaux, some idea

The informal definition of systematic tableau construction is the following
[5]. First the subformulas of type «, 3, § will be elaborated on the branches of
the tableau, then the elaboration of every y-type formula follows, but together
with one elaborated y(y) an occurence of the 7y-type formula is repeated.
Applying the rule C the parameter y is not restricted.

From point of view of the theorem proving the notion of the answer
substitution introduced in the resolution principle was a fruitful idea. In the
artificial intelligence this is a tool of obtaining not only the proof of the theorem,
but show every (or some) concrete occurence of it. Now we try to find an
equivalent to the answer substitution in case of the method of tableaux.

During the tableau construction process a substitution 7 is developed on
every branch for the variables of R originally bounded. Parameters introduced
by the rule C can be regarded independent to any other ones on the branch.
But it is not true for a parameter ¢ introduced by rule D (Remark 4). If a
new parameter y is introduced by the rule C on a branch and at the same
time a literal is obtained, then in favour of obtaining complement pairs it is
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recommended to take in consideration the earlier obtained atoms on the branch
and possibly use a parameter chosen earlier on this branch by any of other rules.
That is the whole branch must be in scope to find the conveniable parameter y
for the closure of the branch. As the different branches of the tableau are not
completely disjoint a controlled tableau construction requires some strategy in
choosing parameters.

Definition 3.1. A branch of a systematic tableau is called quasi complete
if the not elaborated formulas on the branch are literals or universal formulas
at least once elaborated. A tableau is quasi completed if every branch of it 1s
etther closed or quast complete.

The tableau of R is closed if and only if R is unsatisfiable (- R is logically
true). But it is supposed that separately the formulas ~B and Fy A ...A F,, are
satisfiable.

Let us regard a closed tableau T, where the rqot formulais R = F; A ...A
AF, A—-B. In principle a branch in this tableau can be closed a) because of the
interpretation represented on this branch does not satisfy F' or =B, b) because
of the unsatisfiability of the formula R. But in the tableau the cause of closure
is not marked. Now a strategy will be shown by which it is possible to obtain
that. The notion of systematic tableau supports the construction of such a
strategy.

Algorithm to find the closed branches of a systematic tableau of a satisfi-
able formula Q.

1. Apply to @ the tableau rules A, B, D until the not elaborated formulas
will be atomic or universal formulas. During this process possibly some
closed branches appear.

2. Apply once the tableau rule C to every v-type formula of the open
branches.

3. Apply the tableau rules A, B, D to the resulting formulas until the not
elaborated formulas will be atomic or universal formulas.

4. Execute steps 2, 3 to the newly obtained v-type formulas until the not
elaborated formulas will be atomic.

5. As the parameters of the tableau rule C are not restricted it is possible
to find the potential complement pairs and then at this point every closed
branch will be obtained. Mark the obtained closed branches.

Definition 3.2. Let us construct the tableau of R using the above
algorithm and starting with =B or with Fy A ... A F,,. The closed branches
of the tableau of =B or of F1 A ... A\ F,, are called firstly closed branches. The
other closed branches of the tableau of R are called secondly closed branches.
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Remark 5. On a branch of the tableau of R a substitution 7 is developed
during the application of the tableau rules. In case of an open branch this means
that there is such a structure on a fixed universe that for some evaluation of
variables (parameters) the formulas on the branch will be true, then so is R.
Then an open branch gives some model of R and every model of R is obtained
as the union of models given by the open branches. If the branch is closed, then
the set of formulas situated on it, including R, is unsatisfiable in the structure
given by this branch. If the tableau of R is closed then R is unsatisfiable and so
F | B. The secondly closed branches contain information about the theorem
B by the substitutions of these branches.

Theorem 3.1. Let the formula R = Fi1 A ... A F, A =B has a closed
tableau. The substitution o obtained on a secondly closed branch gives an
answer substitution.

Proof. Let us use the above algorithm and construct first the quasi
complete tableau Tr of the formula FF = F; A ... A F,,. The open branches
of Tr contain sets of formulas [@1,Q2, ..., @s] defining the structures by the
substituted atomic formulas obtained on the i-th branch [5]. Now we continue
the developing of the open branches of the tableau by the elaboration of the
formula —~B. The tableau of R will be closed. Let o be a substitution on a
secondly closed branch. Generally an open branch of Tr with substitution 7;
on it can be followed by several (closed) branches. Let the number of these
branches be t;. We associate the label (3, j), 1 < j < t;, to the secondly closed
branches. On a branch (4, j) the substitution g;; = n;0p;;. That is the formula
- B is substituted by p;;. So ~Bpj; is false in the model of F'o;;. Then Bo; is
logical consequence of Foy;.

Consequence 3.1. From the Theorem 3.1 follows that if the tableau has
N newly closed branches and o is the substitution on the j-th branch, then
Boy V...V Bopn s logical consequence of F.

Remark 6. Using the resolution calculus the answer substitutions
are generated automatically by the composition of the most general unifiers
developped during the resolution deduction. In case of the method of tableaux
there is no such direct way. To obtain the answer substitution we introduce a
strategy which seems to be good enough, but not optimal.

Strategy for generating the closure of tableau T and obtaining the correct
answer substitutions of B. We start with the subtableau Tr of Tg.
1. If there are open branches of Tr one of the branches of the tableau T is
developped. Let us denote every new parameter by different symbol and
mark by the type of the used tableau rule (C or D).

2. When a literal L appears on the branch we examine whether =L or a literal
K (regarding the type of rules) unifiable with =L appears on the branch. If
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such K exists then we do the unification and we execute the actualization
of the substitution on the branch. (This is important because this branch
can have common part with other open branches.) Now this branch is
closed.

3. If there exists branch of Tr to develop then we continue by the step 1
using the next branch of the tableau. Otherwise the process is finished.
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