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INDEPENDENT AND-PARALLELIZATION OF
LOGIC PROGRAMS USING STATIC SLICING

J. Paakki (Helsinki, Finland)
T. Gyiméthy and T. Horvath (Szeged, Hungary)

Abstract. A technique for independent and-parallelization of logic
programs is presented. The method applies static program slicing originally
developed for algorithmic debugging of logic programming. The slicing is
based on the idea of isolating dependent and independent program parts.
By analyzing the (transitive) dependency between positions in the logic
program the slicing is able to statically extract such subgoals that can be
full executed in parallel.

1. Introduction

Program slicing is a standard technique applied in the dependency analysis
of programs. Intuitively, a program slice with respect to a specific variable (at
some programe point) contains all those parts of the program that may affect
the value of the variable, or that may be affected by the value of the variable.
In the first case, the analysis technique is conventionally referred to the as
backward slicing, and in the second case as forward slicing, corresponding to
the data flow direction of producing the slice.

Slicing technique can be classified into static and dynamic ones as well.
Static slicing is based on an analysis of the programe without executing it. As
the consequence, a static slice is valid for all execution of the programe but
it may be imprecise by containing data flow which is actually not manifested
during a perticular execution. Dynamic slicing involves the program’s execution
and hence extracts the precise data flow. On the other hand, a dynamic slice
may be different for each execution and shall therefore always be produced
separately whenever running the program.
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Slicing has usually been applied on imperative languages, such as Pascal
[17], [15]. Such languages are amenable to analyzing the dependences between
variables, thanks to explicitly expressing the data flow within the program in
terms of assignments and input/output parameters. This does not hold for logic
programming languages where the notions of data flow and data dependences
are rather implicit and thus harder to grasp. Indeed, slicing is often mentioned
as one of the modern program analysis techniques still missing from the logic
programming paradigm [8].

Slicing in connection with logic programming can be applied in same areas
as mentioned above for traditional cases. The problem of slicing logic programs
is, however, much more complicated than normally. Before a slice over a logic
program can be produced, its implicit data flow has to be approximated. And
for approximating the data flow, the implicit input/output data dependences
have to be extracted from the program.

The program slicing is based on the annotation inference technique intro-
duced in [3]. Given an annotation, dependence graphs are constructed for the
logic program. Our slicing technique is based on program dependence graphs,
a concept recently introduced as a unified representation for static program
analysis and widely applied as the basis of slicing imperative languages (see
eg. [12)).

So far, the main application area of slicing in general has been algorithmic
debugging [9].

Because slicing is based on the 1dea of isolating dependent and independent
program parts, our techique could also be applied in the and-parallelization of
logic programs. By analyzing the (transitive) dependency between positions
in the program or in the proof tree, slicing is able to statically extract such
program parts that can be fully executed in parallel, in the same manner as
suggested e.g. in [13] and [19] under an abstract interpretation scheme. The
independence information could then be exploited by a compiler to generate
parallel code for the program.

2. Preliminaries

Attribute grammars were originally introduced as a definition formalism
for context-free languages and compilers [16]. In this section we present the
concepts and notations that are needed for establishing a relation from logic
(Prolog) programs to attribute grammars [6], [18], [7]. In what follows, P
will denote a logic (Prolog) program, and T will denote a proof tree in the
conventional sense where each node stands for a resolved atom, and each subtree
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with p(...) as the root and p;(..), ..., pn(...) as its sons coresponds to an instance
of a clause p(...) : —p1(...), ..., pn(...) in the program P. The root node of a
proof tree corresponds to a query atom.

We let the clauses of P be numbered Ci,cs, ..., and the atoms of every
clause be numbered 0,1,..., and denote the 0:th atom is the head, the 1st atom
1s the leftmost atom in the body, and so forth. Let ¢ be a predicate in P. We let
the argument positions of ¢ be numbered 1,2,...; and cenote the k:th argument
position in ¢ with gx. Let Argpos(q) be the set of argument positions in ¢, and
let Argpos(P) = U,¢p Argpos(q).

Let C be a clause in P of the form a, : —a;,...,an. We can now
unambiguously refer to the k :th argument position in a; with the tuple
(C,j,q,k), where g is the predicate symbol of a;. We call such a tuple a
(program) position. Let Pos(P) denote the set of positions in P, and Pos(C)
the set of positions in C. We will not make a distinction between positions
and terms contained in them; e.g. if v is a position, we write v instead of t6,
where t is the term in 7.

For applying techniques of attribute grammars on logic programs, we must
be able to model the data flow within a program. The idea is that some of the
prdicatearguments in P are annotated, either as inherited (|) or synthesized (1),
that is: there is a function (an annotation) p : Argpos(P) — {|, 1,1, O}, where
] isread dual, and O is read unannotated. The flags |, 1,1, O are called modes.
An annotation is partial if some positions are dual or unannotated. Intuitively,
inherited arguments represent input information for a predicate, synthesized
arguments represent output information, dual arguments represent information
that may be input or output depending on the context, and unannotated
arguments represent auxiliary information whose direction is not relevant for
the user. For an n-ary predicate ¢, the annotation p(qr) = m for each
k = 1,..,n is denoted by ¢ : (m;...m,). Notice the essential difference to
attribute grammars: in addition to the inherited and synthesized modes, the
special properties of logic programs call for dual and unannotated modes as
well.

Another important concept is the notion of input and output arguments
of a clause C : Ifu(qx) =] and a; is the head atom of C, or if u(gqx) =7 and
a; is a body atom in C, we call (c, j, ¢, k) an input position. If u(qx) =1 and
a; is the head atom in C, or if p(g;) =| and a; is a body atom in C, we
call (C,j,q,k) an output position. The intuitive explanation for these names
is that data is brought in to a clause through the input positions, and sent
out through the output positions. Notice that dual and unannotated positions
do not express a definite direction of data flow, and that is why they are not
strictly classified as input or output ones. Let Z(C) and O(C) denote the input
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and output positions of C, respectively. We denote Z(C) = Jcep Z(C) and
O(P) =Ucep O(C).

We write C; — C, if the clause C5 can be called from Ci, i.e. there is an
atom a in the body of C such that unification of a and the head of Cy (with
variables renamed) succeeds. The relation — is called the static call graph.

3. Dependence analysis and program annotation

A logic program does not explicitly specify the direction of data flow
within it. The data dependences within a logic program can, however,
be approximated with techniques based on analyzing the sharing of logical
variables: if two terms of a clause have a common variable, they are dependent
and (possibly) represent a data flow.

The static analysis technique in our slicing method has been originally
developed for groundness analysis of (functional) logic programs [2], [3].

In a logic program, information can be passed in two ways: either within
a clause (between two arguments sharing a variable), or between two clauses
(through unificaton at an SLD-resolution step). Let us assume that there exists
an annotation p : Argpos(P) — {l,1,], O}. As for attribute grammars, this
information can be used to extract the direction of information flow: from
input positions to output positions within a clause, and from output positions
to input positions at unification. Recall from Chapter 2 that input and output
positions are defined in terms of inherited (|) and synthesized (1) positions
only and do not consider dual () or unannotated (O) positions whose data-
flow directon is statically unknown. To reflect the data flow, we introduce the
notions of local dependence graph ~¢ for each clause C and transition graph
~c,p for each pair of clauses C and D.

Definition 3.1. [Local dependence graph] For each clause C, the
local dependence graph ~cC Z(C) x O(C') is defined as follows:

B~cv if B and v have at least one common variable

Definition 3.2. [Transition graph] Let C and D be two clauses, b,
the head atom in D, and a; a body atom in C such that aj and b, unify. The
tradition graph ~c,p on O(C U D) x Z(C U D) is defined as follows:

v=(C,j,q,k) v=(D,0,q,k)
y~c,p Biff§ B=(D,0,q,k) or B=(Cjqk)
m(gx) =1 _ p(ge) =1
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As for attribute grammars, the transition graph specifies how clauses and
their arguments are ” pasted” together in a proof tree. If the connected positions
are inherites, data flowa from the (calling) body atom of clause C into the
(calles) head atom of clause D. The flow is reverse for synthesized positions,
from the (called) head atom of D into the (calling) body atom of C.

The total data flow for a logic program can be modeled by combining the
local dependence graphs with the transition graphs. This global dependence
graph 1s an approximation of the data flow in any proof tree for an operationally
complete program.

Definition 3.3. [Global dependence graph] The global dependence
graph ~g 1s defined as follows:

~G= U ~:. U U ~cC,D

CeP C,DeP

We let ~% denote the transitive and reflezive closure of ~, .

Since it may be hard for the user to provide a proper annotation, it can
be automatically inferred (2], [3].

After obtaining the initial annotation from the system the user may
annotate the program further in terms of its intended use by assigning amode
on those positions that are not constrained into a fixed data flow. That is,
the user may define one of the modes |, 1, updownarrow for each predicate
position which is still unannotated (O). Typically the user annotates the top-
level predicate, but in general he/she is free to annotate as many (or as few)
positions that he/she thinks are relevant for his/her intended model of the
program. The degree of annotation, however, may significatly influence the
size of the slice: The more inherited (|) and synthesized (1) annotations, the
more precise a slice.

4. Static slicing

Semantic analysis of programs requires talking into account both data flow
and control flow aspects. One program representation supporting the analysis
of these both are program dependence graphs that have been suggested for soft-
ware engineering tasks such as program understanding, program integration,
program differencing, debugging, and testing [12], [1]. Our basic backward
slicing method also is based on the concept ofprogram dependence graphs that
model the data flow within a logic program in terms of local dependence graphs



312 J. Paaki, T. Gyimé6thy and T. Horvath

and variable sharing, and the control flow in terms of transition graphs and
unification.

The program dependence graph can be condtucted simultaneously with
annotating the program. For slicing it is necessary to know the data depen-
dences on dual and unannotated positions as well, because they also may be
the source of incorrect results even though the direction of their influence is
not statically known. Therefore, the program dependence graph is a superset
of the global dependence graph, by including a conservative two-directional
data flow for all the dual and unannotated positions. Recall also that, unlike
inherited and synthesized arguments, dual and unannotated arguments need
not be ground. Hence, incomplete or undefined information is modeled in our
method by those modes.

Definition 4.1. [Program dependence graph] Let C be a clause, and
let U(C) denote the set of dual and unannotated positions of C. Let f € U(C)
and v € Pos(C). The graph —cC Pos(C) x Pos(C) is defined as follows:

Be—cy and vy —c B iff B and v have at least one common variable.

Let C and D be two clauses, b, the head atom in D, and a; a body atom
in C such that a; and b, unify. Let 8 = (C,j,q,k) € U(C),y = (D,0,q,k) €
U(D). The graph —¢ pC U(C U D) x U(C U D) is defined as follows:

B «¢.p vandy <c p B

The program dependence graph ~p is defined as follows:

~p=~g U U —.U U ~C,D -

CeP C,DeP

We let ~% denote the transitive and reflexive closure of ~p.

The program slice is defined over the program dependence graph (PDG)
of a logic program. We will define a program slice, called p — slice. The idea
behind a p-slice (Definition 5.1) is that if the p-slice with respect to a position r
does not contain a position ¢ then this holds for each proof tree of the program.
More precisely, for any proof tree T holds that if ¥ and g are the tree positions
corresponding to r and ¢, respectively, then v does not (transitively) depend
on . So, we can characterize that r is fully independent of ¢ in the p-slice
case.

In the following P will denote a logic program and G will denote a PDG
of P constructed from a consistent annotation of P. Program positions of P
are denoted by letters p, ¢, r.
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Definition 4.2 [p-slice] A p-slice over G with respect to r is a subgraph
of G, such that a note ¢ € G is in the p-slice for r iff there is a directed path
i G from q tor.

Definition 4.3 [Set of atoms constructed from a p-slice] Let s be
a p-shice of the program P for position r. The set P'(s) constructed from s is
a subset of the atoms of P, such that an atom | is in P'(s) iff | contains a
postition in s.

Using p-slices a strong independence for the atoms of a program can be
introduced. An atom [y is strongly independent of an atom [, iff no atom set
P’(s) contains I, where P'(s) is a p-slice for a program position in ;.

5. Independent and-parallelism

Parallelization of logic programs is an active research area [11]. The
intuitive meaning of the parallelization of logic programs is the following: the
independent goals in a given resolvent must be ‘letermined and then executed
parallelly in independent environments. Three main types of parallelization
have been investigated so far:

(i) The independent and-parallelism is based on the ”divide-and-conquer”
paradigm.

(i1) The or — parallelism is used when more than one clauses from the
program can be unified with the same atom from the goal to be executed.

(ii1) The dependent and — parallelism 1s applied when two or more atoms
from the goal share the same variable.

In this section we present a technique for the independent AND-parallel-
ization of logic programs based on static slicing. The independent AND-paral-
lelization technique has recently attained growing interest, thanks to its obvious
soundnesss and conceptual simplicity when compared to other approaches,
such as dependent AND-parallelism. An extensive general introduction to
the technique is given in [11]. In independent AND-parallelism goals may be
executed concurrently only if they cannot access common variables. To utilize
concurrency to the optimal limit, this nonexistence of shared common variables
calls for dynamic checking. However, since such runtime checks would obviously
be rather numerous and therefore expensive, the presented approaches usually
rely on a static approzimation of sharing which totally eliminates the dynamic
independence checks.
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We citate some omportant concepts and notations from [11]. The goals g,
and g5 are said to be strictly independent for a given substitution 8 if g;6 and
g20 are variable disjoint (i.e. Var(g,10) N Var(g28) = 0). If the goals ¢g; and
go are strictly independent for the substitution 6 then the parallel execution of
g10 and g20 gives correct results. An independence condition is correct w.r.t.
strict independence for the goals g1, g2 and for the set of substitution © if for
any substitution 6 € © it holds that if the condition is true for 8 then g; and g»
are strictly independent for #. An independence condition is said to be locally
correct if it is correct for the set of all possible substitutions. An independence
condition for the goals g; and g5. Let SV I be the set of pairs (u, v) of variables,
where u and v do not belong to the set SVG. In [11] it has been shown that
the condition

i_cond : ground(SVG)Nindep(SVI)

is locally correct, where ground(z) is true if z is ground and indep(z, y) is true
if z and y do not share variables (the symbols  and y denote terms or literals).
Consider the clause of the form p, : —py, ..., pn. In the sequential left-to-right
execution the execution of the literal p; must preceed the execution of p; if and
only if 1 < i < j < n. Hence, a precedence relation <, can be defined on the
set of literals occurred in the body as follows:

pi<«p; iff 1<i<j<n.

Applying the independence condition i_cond defined above, this relation can
be relaxed as follows:

pi <= pj iff pi<spjand
ground(SV G(p;,p;)) or indep(SVI) is false

Clearly, if p; <+ P;j then the execution of p; must preceed of the execution
of p;, otherwise p; and pa can be executed in parallel.

Example 5.1. Consider the clause p(z,y) : —q(z),r(y, ), s(z,y). By the
definition of <x,q(z) <x 7(y,2),q(z) <x s(z,y) and r(y,2) <r s(zx,y). Using
the definition of </, we can relax <, in the ezamples below as follows:

(a)g(z)<mr(y,z) iff indep({z},{y, z}) is false.

(b)g(z)<r s(z,y) if f ground(z) is false.

(e)r(y, z)<n's(z,y) iff ground(y) is false or indep({z}, {z}) is false.

The most obvious case is when all the statically shared arguments of the
two atoms are ground whenever the atoms are invoked. This typical case
of groundness is modeled in our technique simply by having all the shared
positions inherited in the annotation. Thus, inherited annotations directly
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represent one form of independent AND-parallelism. Another groundness-
preserving property is to have the positions as synthesized and thus ground
at the exit of the atoms’ excution. Of course, when computing shared output
information of different atoms in parallel, it must be separetely checked that
the results unify [11]. It is important to notice that the shared positions in the
atom must have the same annotation, 1.e. either inherited or synthesized.

For the other annotation modes (dual, unannotated), unsharing is not
directly obvious but must be checked in terms of the relevant slices (and the
program dependence graph). If these positions depend on the same position
then the corresponding atoms cannot be executed parallelly.

6. Discussion and related work

We have presented a technique for the parallelization of logic programs. We
have concentrated especially on the independent AND class of the paralleliza-
tion schemes. The independent AND-parallelization technique has recently
attained growing interest, thanks to its obvious soundness and conceptual
simplicity when compared to other approaches, such as dependent AND-
parallelism. An extensive general introduction to the technique i1s given in
[11].

In independent AND-parallelism, goals may be executed concurrently only
if they cannot access common variables. To utilize concurrency to the optimal
limit, this nonexistence of shared common variables calls for dynamic checking.
However, since such runtime checks would obviously be rather numerous
and therefore expensive, the presented approaches usually rely on a static
approzimation of sharing which totally eliminates the dynamic independence
checks.

The conventional technique for statically inferring the independence infor-
mation, is abstrct interpretation; see e.g. [13] and [19]. Abstract interpretation
is close to actual execution by approximating the behavior of a program under
an abstract and well-defined domain. Therefore a powerful abstract interpreter
can simulate the program’s concrete run-time execution closely and provide for
quite exact (sharing or alias) information, when selecting a suitable abstract
domain. On the other hand, an abstract interpreter is not absolutely static and
universal because it has to have a specific goal (query) where to start from.

Our parallelization approach is not based on abstract interpretation but
rather on static slicing [10]. Moreover, abstract interpretation is absent even
from our slicing technique whose roots are in the annotation inference technique
originally presented in [3]. The essentiak difference between our scheme and
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abstract interpretation is that we do not analyze the program by abstractly
executing it but rather by employing a purely static analysis technically based
on attribute grammars [16]. Staying solely on a static analysis framework
makes our approach more general since there is no need for knowing how the
query possibly looks like; the results apply for every excution pattern of the
program. On the other hand, abstract interpretation may produce more precise
results due to approximating the program’s behavior with respest to a specific
execution.

The principles of annotation inference and slicing conform well with the
fundamentals of independent AND-parallelism. Our notionof slice is based on a
program dependence graph that includes all the possible dependencies between
program positions and the vaariables therein. Hnece, two atoms are certainly
independent and can be solved in parallel if they do not expose any mutual
data flow within the program dependence graph. Having a total representation
of program dependencies is another novel feature which makes our technique
different from those based on a conventional, more local abstract interpretation.

Recall that by the definition of independent AND-parallelism, two body
atoms can be excuted concurrently if they do not share a varable at run-time.
Notice especially that the atoms may have a common variable in the program,
as far as the sharing disappears when executing the program and execution
reaches the atoms. The most obvious case is when all the statically shared
arguments of the two atoms are ground whenever the atoms are invoked. This
typical case of groundness is modeled in our technique simply by having all
the shared positions inherited in the annotation. Thus, inhaerited annota-
tions directly represent one from of independent AND-parallelism. Another
groundness-preserving property is to have the positions as synthesized and thus
ground at the exit of the atom’s execution. Of course, when computing shared
output information of different atoms in parallel, it must be separately checked
that the results unify [11]. For the other annotation modes (dual, unannotated),
unsharing is not directly obvious but must be checked in terms of the relevant
slices (and the program dependence graph).

The groundness properties of our technique also share some ideas with
those presented in the context of abstract interpretation. For instance, [4] and
[5] suggest abstract interpretation for inferring data-dependence and data-flow
characteristics for a logic program. That approach, however, doesnot consider
program slicing.

In our method both annotation inference and slicing rely on techniques
originally developed for attribute grammars. Yet another area where attribute
grammars can be exploited as the model is parallelization. Parallelization of
attribute grammars has recently been a rather active area of research that has
produced techniques both for analyzing the concurrent properties of attribute
grammars as well as for implementing and executing them in parallel. E.g. [14]
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gives an extensive introduction to the topic. The parallel attribute evalution
methods could be applied for parallelizing the execution of logic programs. This
approach would, in a straihtforward setting, need a concrete proof tree as the

basis [21].
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