Annales Univ. Sci. Budapest.. Sect. Comp. 17 (1998) 293-306

REPRESENTATIION AND QUERY LANGUAGES
OF FUZZY RELATIONAL DATABASES

T. Nikovits and A. Kiss (Budapest, Hungary)
D. Chretien (Versailles, France)

Abstract. In real life data cannot always be defined precisely. The
existing database management systems cannot handle these imprecise pieces
of information. There have been several attempts to extend the capabilities
of databases in this respect.

In the paper we propose an extended relational data model based on
fuzzy sets. In this model the values of a relation can be not only atomic,
but they can be fuzzy sets as well. These fuzzy sets can represent our
imprecise knowledge. We define an extended tuple relational calculus for
the model. Then we show how the model can be implemented on an existing
relational database management system, how the elements of the model can
be represented by a system of ordinary tables, and how the standard SQL
language can be extended to support the new model.

1. Introduction

In the real world there exist data which cannot be precisely defined.
Ordinary database systems cannot handle these ambiguous data. In the last few
years there have been numerous efforts to extend the underlying data models of
these systems to improve their capabilities of handling imprecise information.
A database system based on such a new model could handle vague information
and could answer queries like this:

”Find all people who are middle aged and whose salary is not very high”.

Supported by the Hungarian National Science Grant (OTKA), Grant Nr.
2149, and the Copernicus LPDB Project, Project Nr. 93:6638.

294 T. Nikovits, A. Kiss and D. Chretien

There are several theoretical models on which this problem can be based. The
most promising from these seems to be the theory of fuzzy sets (Zadeh [10]).
A fuzzy set is the generalization of the characteristic function of a set, that
is a function from the basic set to [0,1]. In a point z the function value f(x)
expresses how much this point can be considered to be an element of the set.

In the last decade there have been several attempts to generalize the
relational data model using Fuzzy Set Theory (Buckles-Petry [2], Prade-
Testemale [5], Zemankova [11], Umano [8]). The common feature in these
models is that they all extend the classical relational model of Codd, so the
basic elements of the model remain the tables. In the extensions the attributes
can have special data types e.g. set type (Buckles [2]), fuzzy set type (Vila
[9]). Another possibility is that we associate a number between 0 and 1 with
each tuple. The so defined fuzzy relations can be handled mathematically well
(Kiss [3], Raju [6]), but they have less practical importance. Some authors use
a mixed model taking ideas from both mentioned extensions (Umano [8]).

Different query languages, too, can be found in the literature for the
different models. There are extensions of relational algebra and relational
calculus as well. A general principle in these query languages is the eztension
principle (Novak [4]) which says how to apply an ordinary function or operation
to fuzzy sets.

As we can see there is not a unique fuzzy data model. We will propose one
which is rich enough to express the new concepts and simple to implement. Our
model will allow fuzzy sets as values in the relations. In addition we introduce
some more functions and relations which will help us to handle the vagueness
in the data.

The rest of the paper is organized as the following. In Section 2 we give the
elements of the model, in Section 3 we define a formal query language, fuzzy
tuple relational calculus for the model. In Section 4 we show how to represent
the model in a relational database management system and finally in Section
5 we introduce an extended SQL language that we will call FSQL.

2. Fuzzy relational data model

In this section we introduce the concepts of the fuzzy data model.

Definition 2.1. Let U be a set. The fuzzy set A over U is a function from
U to[0,1]. A:U- >[0,1] (A(z) - often denoted by Az - is the membership
grade of). We will denote the set of fuzzy sets over U with P(U).

Representation of fuzzy relational databases 295

Definition 2.2. Let Dy, D,, ..., D, be arbitrary domains. A fuzzy relation
R over these domains is a subset of the Cartesian product P(D;) x P(D3) x
... X P(Dyp). A fuzzy database is a collection of fuzzy relations.

A tuple of a relation has the form (a1, az, ..., an) where each a; is an element
of P(D,)

Relations usually have attribute names associated with the domains and
we denote the scheme of a relation with R(A;, Az, ..., A,) where A;-s are the
attributes. Attribute names must be different within a relation, while among
the domains repetition is allowed.

We note that the classical relations are special cases of fuzzy relations while
an element of D; can be considered a special fuzzy set over D;. So D; C P(D;).

Example 2.1. Let R be a relation in which we store the names, ages,
salaries and other data of some people. The attributes of the relation are Name,
Age, Salary etc. A tuple of the relation can be the following:

Name Age Salary
John Taylor Middle-age About 30000

Here the age and salary columns have fuzzy sets as their values, they can
be given by the following functions:

Middle_age About_30000
[. I e
0 /—\ 0 /1\
[30 55 age | 30000 salary

Figure 2.1. Values in a relation expressed by fuzzy sets

With the aid of these fuzzy sets we can express our imprecise knowledge about
the age and salary of the person.

We introduce some other functions which will be part of the data model
as well. One group of these functions is modifiers and the other is similarity
relations.

296 T. Nikovits, A. Kiss and D. Chretien

Definition 2.3. A modifier is a function from [0,1] to [0,1]. A k-ary
similarity relation is a function from D;; X Dj3 x ... x D to [0,1] where
D1, D;s, ...D;) are among the domains of the relations.

Example 2.2. An example for a modifier can be the function named
very which is defined by very(z) = z2. With the aid of similarity relation
similar_age(z,y) we can decide how two people can be considered having the
same age. We will use these functions in the queries. The two abovementioned
functions could be used in the following query: Get the names of people whose

salary is very high and whose age is about the same as that of Mr. Taylor.

The modifiers enrich the model in that we can express personal opinions
with them (e.g. rather, very etc.) The similarity relations can be considered
the extensions of the equality relation.

3. Query languages of the model

For the relational data model there are two well-known formal query
languages: relational algebra and relational calculus. Relational calculus has
two different forms according to how the user sees the data: tuple relational
calculus and domain relational calculus. In the following we will give an
extension of the tuple relational calculus to our model.

3.1. Fuzzy tuple relational calculus

Fuzzy tuple relational calculus is an extension of tuple relational calculus.
The expressions of the calculus have the form {t|F(t)}, where F is a first order
formula whose only free variable is t. ¢ is a tuple variable for which different
tuples can be substituted. We will denote the i-th component of a tuple variable
with t[i] and the dimension of ¢ with ¢(*). The main point in the extension is
that here the truth value of a formula can be not only true (1) or false (0) but
any value between 0 and 1. This value can be compared with a previously given
number A to decide which tuples will belong to the result relation of the query.
We therefore define two different truth values for a formula, the previously
mentioned will be the fuzzy truth value of the formula (FT') which can be any
number between 0 and 1, and we define the truth value of the formula (T)
which can be true (1) or false (0). After substituting a tuple into the formula
this tuple will belong to the result if the truth value of the formula becomes 1.
The formulas can be the following:

Atomic formulas:

Representation of fuzzy relational databases 297

e If R is an n-ary relational symbol, then R(t(")) 1s a formula and the
occurrence of t is free in it. The fuzzy truth value FT(R(t(™)) and the
truth value T(R(t("))) of the formula are 1iff t € R, otherwise both are 0.

e t[i] == u[j] is a formula where the occurrence of ¢t and u is free. The
fuzzy truth value FT(t[i]] == u[j]) and the truth value T'(¢[{] == u[j]) of
the formula are 1 iff ¢[7] and u[j] are identical fuzzy sets, that is they are
identical as functions. Otherwise both are 0.

e t|i] == k is a formula where k is a fuzzy set. The occurrence of t is free
in the formula. The fuzzy truth value FT(t[i] == k) and the truth value
T'(¢[:] == k) of the formula are 1 iff t[i] and k are identical fuzzy sets, that
is they are identical as functions. Otherwise both are 0.

o (t[i] 6 u[j], A) is a formula where 8 is a relational symbol from the set
{<,>,<=,>=,=,! =} and X € [0,1]. The occurrences of t and u are
free in the formula. We define the truth values of the formula based on
the extension principle. Let 6(z,y) = 1 if zfy holds, 0 otherwise. We
substitute the fuzzy sets ¢[7] and u[j] into the function 6(z,y). The result
will be a fuzzy set over the set {0,1} : 6(¢[i], u[j]) = {c/1,d/0}. We fix a
function f from [0, 1] x [0, 1] to [0,1], let f be the following: f(c,d) = c.
Now we define the fuzzy truth value of the formula: FT((t[z] 6 u[j], A)) =
= f(6(t[7], u[5])). The truth value of the formula T((t[:] 6 u[j],\)) = 1 if
FT((t[¢] 6 u[5],1)) >= A, 0 otherwise.

o (I[z] 6 k, A) is a formula where 6 is a relational symbol from the set
{<,>,<=,>=,=,! =}, k is a fuzzy set and A € [0,1]. The occurrence
of t is free in the formula. We define the truth values of the formula
similarly as in the previous case. The fuzzy truth value of the for-
mula FT((t[:] 6 k, X)) = f(8(t[s],k)). The truth value of the formula
T((t[:] 6 k], X)) = 1if FT((t[z] 6 k, A)) >= A, 0 otherwise.

e Let s be an n-ary similarity relation, then (s(Ai, ..., An),A) is a formula
where each A; is a fuzzy set or a component of a tuple variable and A €
€ [0,1]. The occurrences of the tuple variables in the formula are free. We
define the truth values of the formula in the following way. s(A, ..., 4,)
is a fuzzy set over [0,1], so we fix a function g from P([0,1]) to [0,1], let g
be the following: g(A) = A(1). Then the fuzzy truth value of the formula
FT((s(A1,...,A40),A)) = g(s(Ai, ..., Apn)). The truth value of the formula
T((s(A1, ..., An),A)) = 1 if FT((s(A1, ..., An),A)) >= A, otherwise it is 0.

We can build other formulas with the aid of logical connectors, modifiers
and quantifiers.

298 T. Nikovits, A. Kiss and D. Chretien

e If F and G are formulas then (F AG,) is a formula, too, where A € [0, 1].
The occurrences of the tuple variables in the formula do not change. The
fuzzy truth value of the formula FT'((F A'G,A)) = min(FT(F), FT(G)).
The truth value of the formula T((FAG,A)=1if T(F) =1, T(G) =1
and FT((FV G,))) >= A, otherwise it is 0.

e If F and G are formulas then (FV G, \) is a formula, too, where A € [0, 1].
The occurrences of the tuple variables in the formula do not change. The
fuzzy truth value of the formula FT'((F V G,)\)) = max(FT(F), FT(G)).
The truth value of the formula T((FVG,A) = 1if T(F)=1o0or T(G) =1
and FT((F V G,))) >= X, otherwise it is 0.

o If Fis a formula and m is a modifier then (m(F'), A) is a formula, too, where
A € [0,1]. The occurrences of the tuple variables in the formula do not
change. The fuzzy truth value of the formula FT((m(F), \)) = m(FT(F)).
The truth value of the formula T((m(F'), X)) = 1 if FT((m(F),A)) >= A,

otherwise it is 0.

o If F is a formula then (=F,) is a formula, too, where A € [0,1]. The
occurrences of the tuple variables in the formula do not change. The fuzzy
truth value of the formula FT'((-~F,))) = 1 — FT(F). The truth value of
the formula T((—=F,))) = 1 if T(F) = 0 and FT((—F, X)) >=), otherwise
it 1s 0.

e If ¢ has a free occurrence in the formula F then (Vt F, A) is a formula, too,
where A € [0,1]. All the occurrences of the variable ¢ in this formula
are bound. The fuzzy truth value of the formula FT((Vt F,)\)) =
= Inf{FT(F) | for all the pcssible tuples ¢t}. The truth value of the
formula T'((Vt F,A)) = 1if T([") = 1 and FT((Vt F,))) >= A for all
the possible tuples t, otherwise it is 0.

e If ¢ has a free occurrence in the formula F then (3t F,)\) is a formula,
too, where A € [0,1]. All the occurrences of the variable t in this
formula are bound. The fuzzy truth value of the formula FT((3t F,\)) =
= sup{FT(F) | for all the possible tuples t}. The truth value of the
formula T'((3t F, X)) = 1 if there cxists a tuple ¢t for which T(F) = 1
and FT((3tF, X)) >= A, if there is no such tuple then the truth value is 0.

Formulas can be constructed only in the abovementioned way. If a tuple
variable has a frec occurrence in a formula then we call this variable free in the
formula, otherwise it is called bound. To simplify the notation we can write F
instead of the formula (F,0).

Representation of fuzzy relational databases 299

Example 3.1. We give some example queries and express them in fuzzy
tuple relational calculus. The scheme of the relation R is the same as in the
previous example.

[Name] Age I Salary |]

[Query 1] Who are the people whose age is 30 with certainty level 0.7 ?
{s™) | 3t(R(t) A (1[2] = 30,0.7) A (¢[1] == s[1]))}

[Query 2] Who are the people whose age is young with certainty level 0.8
or whose salary is very high with certainty level 0.9 ?

{sW)3t(R(t) A (t[1] == s[1]) A ((¢[2] = young, 0.8) V (very(t[3] = high),0.9)))}

[Query 3] Get the pairs of people whose age is similar with certainty level
0.87

{u® | 3t 3s(R(t) A R(s) A (similar_age(t[2], s(2]),0.8) A (u[l] ==

== 1[1]) A (u[2) == s[1]) A ~(u[1] == u[2]))}

4. Representation of the model

In the previous sections we gave the formal definitions of the fuzzy
relational data model and defined a formal query language for this model.
We would like to implement this model over ordinary relational database
management systems, so we would like to represent all the elements of the model
with ordinary tables. We will not exploit the specialities of any RDBMS, we will
base on the common core of them. That is why we will restrict the previously
defined model and will allow only special fuzzy sets, special modifiers and
special similarity relations to occur.

Fuzzy relational data model is an extension of the relational data model,
where the columns of a relation can have a new data type, the fuzzy type. We
can store imprecise information in the columns having this type. The values in
the fuzzy type columns can be some fuzzy sets. As we saw, the ordinary integer,

300 T. Nikovits, A. Kiss and D. Chretien

float, date and character type data (as elements of the underlying domains) can
be considered as special cases of fuzzy sets, so in a fuzzy type column we can
store ordinary values as well as fuzzy sets. Now we will allow only special fuzzy
sets as values which can be characterized by finitely many parameters.

So in a relation we can have the following data types:

1. The standard data types (integer, float, date, character ... etc.)
2. The fuzzy version of the data types (fuzzy integer, fuzzy float, fuzzy date,
fuzzy char, ...etc.)

We can store the following data in the columns of a relation:
In the columns, whose data type is some standard data type, we can store the
ordinary values allowed in the underlying relational system.
In fuzzy columns we can have the following special fuzzy sets depending on the
underlying domain of the column:

1. Trapezoid fuzzy sets, if the underlying domain is ordered.

2. Fuzzy sets given by continuos linear sections, if the underlying domain
1s ordered.

3. Discrete possibility distributions on any given underlying domain.

We consider the underlying domain as ordered if it is integer, float or date.

Example 4.1. We will have a relation EMPLOYEE whose columns will
be Name, Salary, Age and Language (meaning the languages spoken by the
person). The data types of the columns are the following: Name column
1s character type, Salary and Age columns are fuzzy integers and Language
column is fuzzy character.

The following table shows one possible instance of the relation.

EMPLOYEE
Name Salary Age | Language
George Scolt 28000 42 { 1/English, 0.4/French,
0.8/Japanese}
John Tavlor { 1/25000. 0.9/26000. 0.8/27000 } 29 German
Paul Smith trapezoid(21000. 24000. 28000. 34000) | 34 {1/Russian. 1/Spanish}
Adam Clark lincar(0/20000, 0.4/25000. 1/27000. 56 English
0.7/32000. 0/35000)

In the Salary column we can see an example for each possible value a
fuzzy integer column can have. The salary of Mr. Scott is given by an ordinary
integer value that can be stored in any RDBMS. In this case we have precise

Representation of fuzzy relational databases 301

information about the data. The salary of Mr. Taylor is given by a discrete
possibility distribution. Its meaning is that we have only vague information
about the salary. There are more than one possible value and each value has
a corresponding possibility. In this case we have only finitely many possible
values for the salary. In the last two tuples we have infinitely many possible
values for the salary, every value having a possibility. The values and the
corresponding possibilities are given by the two special fuzzy sets. We can see
these fuzzy sets in the pictures below:

0 21000 24000 28000 34000 0 | 20000 25000 27000 32000 35000

Figure /.1. Trapezoid and linear type fuzzy sets

All columns in the model having ordered underlying domain can have
values given by one of these four possibilities. The Language column shows us
what we can store in a fuzzy character column. In the case of Mr. Taylor and
Mr. Clark we have precise information about their language knowledge. In the
two other tuples the discrete possibility distributions give us the finitely many
possible values and their corresponding possibilities.

Similarity relations:

We will allow only similarity relations with two arguments in this restricted
model. With these relations we can give how much two different values in the
database can be considered approximately equal or similar to each other. We
will use these similarity relations in queries.

When we define the similarity relation we have tc give the domain type
on which the relation is based. Both arguments of the relation should come
from this type. The measurement of the similarity is a number between 0 and
1. So the similarity relation is a function having two arguments of the same
type and yielding a number between 0 and 1. This function can be defined
in the following ways: If the function has only finitely many discrete pairs of
elements as argument, then we should give all the pairs and the corresponding
similarity values for them. In this case the relation have to be symmetric, that

302 ‘T. Nikovits, A. Kiss and D. Chretien

is it should give the same similarity value for the pairs (A, B) and (B, A). The
relation have to be reflexive in the sense that for every element A it should give
1 as a similarity value for the pair (4, A).

When the underlying domain is ordered we can give the similarity degree
of two values as a function of the difference between the two values. Only some
special functions will be allowed, these are the step functions. We define the
function with (a, b) pairs, where a denotes the maximal difference between the
two values and b gives the similarity degree for these values. We can compare
the age of people with the similarity relation similar_age. If the difference of
ages between two people is under 3 years then we consider them as of the same
age (possibility value 1). As the difference of ages grows, we consider them less
and less the same age, so the possibility value decreases. We can express this
with the following step function:

1, if |[z—yl <3
07, if 3<|z—y|<6
04, if 6<|z—y|<8
0, otherwise.

similar_age(z,y) =

We can define the step function with the following parameters:
similar_age(step, integer,1/3,0.7/6,0.4/8).
Modifiers:

Modifiers are functions from [0,1] to [0,1]. They can modify the possibility
value belonging to a value. Because of the finite representation we will allow
only functions defined by finitely many linear sections. An example for this
can be the modifier very which is defined by the following parameters and can
be seen in the picture below:

very = {0/0, 0.2/0.4, 0.4/0.6, 1/1}

). . - =

04 .. _ ..
02 ..

Figure 4.2. Modifier given by linear sections

Representation of fuzzy relational databases 303

So far we gave all the additional objects that are part of our extended fuzzy
data model. This data model will be implemented over an ordinary RDBMS,
so the definitions of the fuzzy sets, modifiers and similarity relations and all
the information about the relationship among the different fuzzy objects will
be represented by ordinary tables. Here we give the system of tables by which
we can represent this information. The set of these additional tables will be
called the meta-database and the tables themselves are the meta-tables. The
meta-database in our model consists of the following meta-tables:

FUZZY COLUMNS
[Tablc name [Column name lColumn id lCqumn tvpe]

FUZZY OBJECTS

[Column id IObjccl name IObjcc(id IObjccl tvpe]
MODIFIERS

[object id [valuc [Modified valuc]
SIMILARITY DISCRETE

[Object id [Object 1 [Object 2 [value]
SIMILARITY STEP

[Object id | Difference lV:lluc]

" TRAPEZOID

[Objccl id]Valuc 1 [anuc 2]V;lluc 3 I\’uluc 4
LINEAR

[Object_id [value [Possibility]

DISCRETE i

[object id | value [Possibility

The name of every column which allows some fuzzy handling will be stored
in the FUZZY_COLUMNS meta-table. The different fuzzy objects will be
stored in different meta-tables. The relationship between the objects will be
created through the identifiers.

304 T. Nikovits, A. Kiss and D. Chretien

5. An extended SQL language: FSQL

We restricted our fuzzy model in the previous section to be able to
implement it over relational databases. We need a query language to create,
delete and update these new elements, too. In the field of relational databases
SQL is the language which became standard in the latest years. All the market
leader systems support some version of SQL. That is why we chose this language
as the basis of the query language of our model. We defined some extensions
which enables the language to handle the fuzzy objects as well. We will refer
to this language as FSQL. The commands of the language can be divided into
two subsections - as is the case with SQL - Data Definition Language (DDL)
and Data Manipulation Language (DML). In the following we will show the
main concepts of the extensions.

5.1. Data definition language

The data definition language contains the statements by which we can
create and drop the elements of the model. We preserved the DDL commands
of SQL and defined new commands for the fuzzy objects. All our extensions
are based on the previously presented representation. We give here only one
example for the command by which we can create a new similarity relation.

CREATE SIMILARITY name <data_def>
<data_def> ::- (DISCRETE, <discrete_def>) | (STEP, <step_def>)
<discrete_def> ::- <possibility>/<value> <value>
{, <possibility>/<value> <value> }
<step_def> ::- <possibility>/<value> {, <possibility>/<value> }

5.2. Data manipulation language

With the commands of the data manipulation language we can insert,
delete, update and query the elements of the model. The syntaxes of the
standard SQL commands became a little more complex to be able to handle
the fuzzy elements as well. The syntax and semantics of the SELECT statement
changed most significantly. The FSQL SELECT is based on the fuzzy tuple
relational calculus. When we evaluate the search condition given after the
WHERE clause, then the result will not be true (1) or false (0) as in the
ordinary case, but it can be an arbitrary number between 0 and 1. To decide
which tuples will qualify the user can give a A level and the tuples having truth
value greater than this A will belong to the result. Instead of the ordinary
comparison predicate we can use the following construction.

<comparison> ::- <expression> § <expression> [WITH J] |

Representation of fuzzy relational databases 305

similarity relation(<expression> , <expression>) [WITH] |
modifier(<expression> 6§ <expression>) [WITH] |
modifier(similarity relation(<expression> , <expression>)) [WITH 1]

Example 5.1. We give an example Select statement here for the query
that we saw in Example 3.1. Who are the people whose age is young with
certainty level 0.8 or whose salary 1s very high with certainty level 0.9 ?

SELECT Name

FROM Employee

WHERE Age = young WITH 0.3
OR very(Salary = high) WITH 0.9

6. Conclusion

In the paper we gave a possible extension of the relational data model,
based on fuzzy sets, by which we can handle imprecise information. We defined
a formal query language for the model, the fuzzy tuple relational calculus. Then
we turned to the practical aspects of implementation. We showed how this
model can be represented by a system of relations. Finally we extended the
standard query language of relational systems to this model. Our restricted
model can be the basis of further work when we will investigate additional
possibilities of how fuzzy sets can be used in modelling imprecise concepts.
This model was defined so that it could be implemented on relational databases.
In the future, however, new data models, especially object oriented ones, will
become more and more widespread in the field of databases, too. Our future
work will be focussed on the possible extensions of these models as well.

References

(1] Bosc P. and Pivert O., About Equivalences in SQLf, A Relational
Language Supporting Imprecise Querying, IFES’91 Brussels, vol. 3, 1991,
309-319.

(2] Buckles B.P. and Petry F.E., A Domain Calculus for Fuzzy Relational
Databases, Fuzzy Sets and Systems, 29 (1991), 327-340.

306

T. Nikovits, A. Kiss and D. Chretien

(3]
(4]
(5]
[6]
7]
(8]

[9)

Kiss A., A-Decomposition of Fuzzy Relational Databases, Annales Univ.
Sci. Bud. Sect. Comp., 12 (1991), 133-142.

Novak V., Fuzzy Sets and their Applications, IOP Publishing Ltd., 1986.
Prade H. and Testemale C., Generalizing Database Relational Algebra
for Treatment of Incomplete or Uncertain Information and Vague Queries,
Information Science, 34 (1984), 115-143.

Raju K. and Majumdar A., The Study of Joins in Fuzzy Relational
Databases, Fuzzy Sets and Systems, 21 (1987), 19-34.

Ullman J.D., Principles of Database and Knowledge-Base Systems,
Vol.I, Computer Science Press, 1988.

Umano M. and Ezawa Y., Implementation of SQL-type Data Manip-
ulation Language for Fuzzy Relational Databases, Proc. Conf. on Fuzzy
Systems, Japan, 1991, 276-280.

Vila A., Medina J.M., Pons O., Cubero J.C., Prados M. and
Diaz J., A Knowledge Representation Model for Fuzzy Databases, ACM
Trans. on Database Systems (submitted)

Zadeh L.A., Fuzzy Sets as a Basis for a Theory of Possibility, Fuzzy Sets
and Systems, 1 (1978), 3-28.

Zemankova-Leech M. and Kandel A., Fuzzy Relational Databases a
Key for Ezpert Systems, TUV, Rheiland, 1984.

T. Nikovits and A. Kiss D. Chretien
Department of General Computer Science Laboratoire PRiISM
Eotvos Lorand University Université de Versailles
VIII. Mizeum krt. 6-8. Saint-Quentin-en-Yvelines
H-1088 Budapest, Hungary 45, Av. des Etats-Unis
nikovits@ullmann.inf.elte.hu 78035 Versailles Cedex
kiss@ullmann.inf.elte.hu France

Didier.Chretien@prism.uvsq.fr

