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SYNTHESIZING OMT STATE DIAGRAMS

T. Mannist6, T. Systa and J. Tuomi
(Tampere. Finland)

Abstract. OMT is a well-known object-orientated software development
methodology. Various possibilities to support the automated construction
of OMT state diagrams are considered. The proposed facilities are included
in a\prototype environment whose basic components are a scenario editor, a
state diagram editor and a state diagram synthesizer. We discuss automated
support for generating a state diagram on the basis of a set of scenarios and
generating concepts of OMT notation for an existing state diagram.

1. Introduction

The use of object-orientated approach to software development has become
popular during last years. This is partly explained by the fact that there are
various techniques and languages avialable supporting this approach. However,
most of the CASE tools supporting object-orientated programming are hardly
more than specialized graphical editors giving tools for creating and editing
the specifications of certain modeling techniques. The support of these tools
is often limited to consistency checking and code generation. SCED has been
developed for improving automated support for dynamic modeling in object-
orientated software construction.

OMT (Object Modeling Technique [14]) has become a popular analysis
and design method in object-orientated software development. Its virtues are
relatively precise and rich notation, and systematic development steps (at least
when compared to some of its competitors). OMT has been adopted as the
basis of software development also in many industrial environments.

In OMT dynamic modeling is based on a variant of a finite state automaton
in which both states and transitions can be associated with actions. The OMT
variant of a state automaton is called a state diagram. A state diagram basically
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consists of states and transitions. A state is an abstraction of attribute values
of an object. In a system objects stimulate each other by sending and receiving
events. A transition is a change of state caused by an event. Various other
additional notations (such as entry, internal and exit actions of states, actions
attached to transitions, nested states and concurrency notations) are allowed
in state diagrams to make the description more expressive, compact, readable
and precise.

The state diagram is composed after analyzing the behaviour of the system
using scenarios, i.e. sequences of events occuring during a particular example
run of the system. A scenario is presented formally as a diagram in which
the participating objects are drawn as vertical lines, and events sent from one
object to another are drawn as horizontal arcs between the object lines; here
we will use the term scenario to refer to this particular representation.

Scenarios are a natural and effective medium for thinking in general and
for design in particular. There are four sources of argumentation supporting
a scenario-based approach to object-orientated design. These correspond to
the four disciplines or areas of research and development work, that underpin
object-orientated design more broadly: cognitive science, usability engineering,
software engineering and experience applying object-orientated design [4]. In
cognitive science, e.g. artificial intelligence, stories are characterized as a basic
representation for descriptions and explanations of events. Scenarios suit well
for giving these sequential examples. In usability engineering it is important to
make the communication between users and designers possible and both ways
understandable in the early stages of design. Users need not understand the
underlying design or implementation in order to provide highly specific change
requests when these requests are given in form scenarios. Because of their clear
and simple representation scenarios are easy to use and understand. In software
engineering system designing can use interaction scenarios for designing user
training and documentation as well as usability tests. Scenarios seek to be
concrete; they focus on describing particular instances of use, and on a user’s
view of what happens, how it happens, and why. Scenarios are often open-
ended and fragmentary: they help developers and users pose new questions,
to question new answers, and open up possibilities [4]. Scenarios can be used
in different levels of abstraction, and they can easily be refined. In object-
orientated design scenarios and use cases are widely used for showing object
integration.

SCED uses the OMT methodology, presented by Rumbaugh et al. in
[14], as a guide-line, although the resulting system could be useful for other
methods as well, in particular for methods with a scenario-driven approach.
The software consists of three main components: a scenario editor, a state
diagram generator (synthesizer) and a state diagram editor. State diagrams can
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be synthesized automatically on the basis of scenarios by giving instructions
for the synthesizer. Finally, the user can automatically or by using the state
diagram editor add advanced OMT notations to state diagrams. Support for
checking the consistency between state diagrams and scenarios is also available.

State diagrams and scenarios are widely used not only in some other object-
orientated modeling techniques (e.g. OOSE method developed by Jacobson
[8]), but also in software engineering as general. Hence the use of SCED is not
limited to the OMT method or even to object-orientated software construction.

In Section 2 we will study the relationships between scenarios and a state
diagram, and the basic idea and properties of the algorithm used for the state
diagram synthesis. In Section 3 we show how the synthesized state diagram can
be optimized using advanced OMT notations. In Section 4 the functionality of
SCED is briefly introduced. Finally, in Section 5 we present some concluding
remarks.

2. Automatic synthesis of state diagrams

In OMT scenarios are usually given first for "normal” cases and then for
different kinds of ”exceptional” behaviour. When a sufficiently complete set
of scenarios exists, they are transformed into a state diagram, describing an
example path in the state diagram; a state diagram is the union of all possible
(usually infinite) scenarios.

A basic observation behind SCED is that the construction of scenarios,
i.e. the sequences of evets occuring during a particular execution of a system,
and the fusion of these scenarios into a state diagram can be supported by
automatic tools far more than what is done by current systems. Biermann
presents a method for synthesizing programs from their traces [2]. The method
is originally used in an ”autoprogramming” system which automatically con-
structs computer programs from example computations executed by the user.
The system is presented by Biermann et al. in [2, 3].

The idea is that the user specifies the data structures of a program and
describes (graphically) the expected behaviour of the program in the case
of an example input in terms of primitive actions (like assignments) and
conditions that hold before certain actions. Essentially, the user gives traces
(1.e. sequences of such actions and conditions) of the expected program, and the
algorithm produces the smallest program that is capable of executing the given
example traces. Moreover, after giving some finite number of example traces,
taken from a program, the algorithm produces a program that can execute
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exactly the same set of traces as the original one - that is the algorithm learns
an unknown program.

Roughly, Biermann’s algorithm works as follows. First the minimal
number of states n is estimated for the state diagram. Each action item in the
trace is then associated with a state one after the other. If a nondeterministic
state results (i.e. different actions will be performed after the state for the same
condition), the algorithm backtracks to a previous position where there was
some freedom in associating an action with a state, and takes another untried
choice. If at some point n+1 states are needed, the algorithm backtracks again.
If backtracking is no more possible, a state diagram with n states cannot be
achieved, n is increased by one, and the whole process is repeated.

Biermann’s algorithm defines a minimum labeling for actions. This means
that the number of different instances of actions in the resulting program, i.e.
the number of nodes in the directed graph illustrating resulting program, is
minimized.
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Fig.1. Two ATM scenarios: one for describing a case of bad account,
and one describing cancellation after entering a wrong password

Due to the similarity between the concepts of a program (in Biermann’s
sense) and a state diagram, Biermann’s algorithm can be applied to state
diagram synthesis as well. A program trace corresponds to a vertical object
line in a scenario: each outgoing event arc corresponds to an action (sending
the event), and each incoming event arc corresponds to a condition (the event
arrives). Hence, an event arc is interpreted as an action from the sender’s
point of view and as an event from the receiver’s point of view. A condition
corresponds simply to the arrival of a particular event. Together with some
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relatively straightforward conventions (see [9]) Biermann’s algorithm therefore
synthesizes state diagrams from a set of scenarios.

Two example scenarios are shown in Figure 1. A synthesized state
diagram for object ” ATM” is shown in Figure 2. For practical state diagrams
of reasonable size the algorithm is fast (the synthesis takes only fractions
of a second), but unfavourable state diagrams may take tens of seconds to
synthesize. This is due to exhaustive search used in the algorithm. Biermann et
al. have discussed techniques for speeding up the algorithm in [3]. Comparing
to some other inference algorithms for synthesizing programs from their traces
Biermann’s algorithm has an advantageous possibility to use partial traces, i.e.
traces not starting from an initial state or ending at a final state. Specially
when applied to state diagram synthesis, it would be sensible to require that a
scenario begin at an initial state for all the participants.
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Fig.2. State diagram for class ATM

The main problem in applying Biermann’s method for state diagram
synthesis is that the programs are more ”complete” than state diagrams: there
is usually a valid continuation for every possible combination of variable values
in every point of a program (except after halt statement), but there is usually
not a valid transition for every possible event in every state. For this reason
the learning results of Biermann do not necessarily hold for state diagrams.
The main cause for this difference is the fact that in the case of state diagrams
the traces (scenarios) do not give sufficient information, since the forbidden
transitions are not represented. In most cases this yields to a synthesized state
diagram that overgeneralizes the given scenarios. Usually this is exactly the
desired effect, but in some cases the result is not what the user expects. As
an example of overgeneralization consider the state diagram in Figure 2. It
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accepts both event traces specified in Figure 1. However, the state diagram
accepts many other event traces as well, e.g. traces in which the user enters
a bad password several times. In fact, it accepts an infinite number of event
traces. There is no way to tell which event traces are ”real” ones specified in
scenarios and which are not.

This problem can be solved in several ways. We could simply require
that the scenarios should also cover forbidden transitions - that would give
the algorithm sufficient information to avoid undesired overgeneralization.
However, this would be rather inconvenient and unnatural for the user. A
slightly better way to exploit user-given information is to give the user a
possibility to give descriptive labels to certain actions in the scenarios: if two
actions that could be merged into same state by the algorithm have different
labels, the algorithm can keep the actions in separate states. This possibility is
offered in SCED: the labels are used as state names in the state diagram. This
approach does not always seem to be sufficient or very convenient, since events
corresponding to actions to be separated might appear in several scenarios.
In SCED tools for splitting and merging states after the synthesis are offered.
In addition, scenarios can be desynthesized out of the state diagram. Hence
detecting possibly overgeneralized states before or during the sythesis becomes
less important. It also means that the responsibility of finding such states and
separating them is left to the designer. This seems to be the most versatile
approach to handle the overgeneralization problem.

3. Generating OMT notations

A synthesized state diagram consists of states, actions in states and
transitions that usually are labeled. Due to Biermann’s method each state
can have at most one action [2]. We call this kind of state diagram a plain
state diagram. In this section we discuss how an OMT-type state diagram can
be generated on the basis of a plain state diagram.

In an OMT state diagram more information is attached to states and
transitions than in a plain diagram. There are several ways to attach infor-
mation to states. E.g. states may have entry actions, i.e. actions that are
executed immediately after entering a state. Correspondingly, ezit actions
are executed immediately after leaving a state. Furthermore, an event can
cause an action to be performed without causing a state change. Such actions
are called internal actions. Actions can also be attached to transitions: an
event corresponding to a transition may cause an execution of actions. Such
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actions are called transition actions. All these OMT actions are instantaneous
operations: executions of them have duration insignificant to the resolution
of the state diagram. When optimizing a state diagram by generating OMT
notations, some normal actions of a plain state diagram (associated with a
keyword “do”) are moved and used as OMT actions. Hence, also all normal
actions are regarded as intantaneous operations. Continuous and sequential
activities that take time to complete should not be changed when optimizing a
state diagram. Allowing them requires a way they could be distinguished from
instantaneous actions.

Using OMT-style notation makes it possible to reduce the number of
needed states and transitions. While generating OMT concepts, we aim to
minimize the number of needed states and transitions so that the information
content of the state diagram is preserved: both the original plain state diagram
and the resulting OMT state diagram should accept exactly the same scenarios.

3.1. Gathering several actions into a single state

-4
2

Fig.3. Gathering actions

A state diagram may include transitions that fire automatically after the
activity associated with the source state is completed. Such transitions are
called automatic transitions. In a plain state diagram several actions can be
gathered into a single state by removing automatic transitions and states they
enter. This can be done for the longest sequence of normal actions which
is approved by all the paths in a state diagram on the right. The reversal
operation to action gathering is straightforward: needed states and automatic
transitions are added.

3.2. Reducing the number of states and transition by combining

In this section we introduce a way to add internal, entry, exit and transition
actions into a state diagram. Adding these concepts not only makes a state
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diagram more compact but it also emphasizes the similar behaviour of different
paths running through a state diagram.
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Fig.4. Subdiagrams that could be replaced by OMT concepts

It can be seen [16] that a plain state diagram may include two kinds
of subdiagrams which could be shown in terms of these concepts. These
subdiagrams are shown in Figure 4. In Figure 5 an example state diagram
on the right is generated from a plain state diagram on the left by adding
OMT actions.

Fig.5. A plain state diagram on the left and a state diagram with OMT
concepts on the right

The information associated with a state should be easily seen. If entry,
exit or internal actions are used, all the essential information connected to the
state is written inside the state box, the state itself shows what has to be done
just before entering the state, immediately after leaving the state or when a
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certain event is received which does not cause a state change. Therefore we
prefer combining information into states to combining it into transitions. Hence
internal, entry and exit actions are formed before transition actions. Entry and
exit actions can be formed for a state even if it already has internal actions.
An internal action can be seen to contain more specific information than entry
or exit actions, firing an internal action depends on a single event while firing
entry and exit actions may depend on several events. For these reasons we
form internal actions before entry and exit actions. Hence generation of these
OMT concepts is done in order: internal, entry/exit and transition actions.
The following list contains cases in which these concepts can be adopted. The
states in subdiagram 1 in Figure 4 are called ”state 1” and ”state 2” in top-
down order. Correspondingly, the states of subdiagram 2 are called ”state 17,
"state 2”7 and ”state 3”. All such subdiagrams are handled separately.

1. Internal actions

Subdiagram 1: All transitions entering state 2 have to be leaving transitions of
state 1.

2. Entry actions
Subdiagram 1: In addition to the automatic transition there cannot be any
other transition entering state 1. While forming an entry action all transitions
entering state 2 have to be changed to enter state 1.
Subdiagram 2: In addition to the automatic transition there cannot be any
other transition entering state 3. While forming an entry action all transitions
entering state 2 have to be changed to enter state 3.

3. Exit actions
Subdiagram 1, subdiagram 2: All transitions leaving state 1 have to be entering
a state with actions ”a2”. In addition all transitions entering these states have
to leave state 1. While attaching an exit action to a state all transitions leaving
the states to be removed (like state 2) have to be changed to leave state 1.

4. Transition actions

Subdiagram 1, subdiagram 2: "eventl” has to be the only entering transition
attached to state 2.

3.3. Nested states

Rumbaugh’s nested state diagram is a form of generalization on states.
Generalization is an ”exclusive-or relationship”. An object in a high-level
diagram must be in exactly one state in a nested diagram. The states in
the nested diagram are all refinements of the state in the high-level diagram
[14].
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In OMT state diagrams states may have substates that inherit the transi-
tions of their superstates. Rumbaugh uses a contour, i.e. a large rounded box
enclosing all of its substates, as the notation for a superstate. This notation is
similar to Harel’s notation for clustered states [7]. Nested contours are good
for conveying the intuitive feel that the general case includes all its specialized
varieties but awkward to draw if nesting exceeds two or three levels [14]. For
our purposes adopting superstate concept to SCED state diagrams is desirable
because of its powerful way to outline the structure of state diagrams and to
decrease the number of transitions needed.

Fig.6. Two state diagrams for the same state machine

Superstates can be formed in a state diagram if there are several states with
similarly labeled leaving transitions, all of them entering the same state. When
forming a superstate we replace all such transitions with a single, similarly
labeled transition. The new transition is drawn from the superstate contour.
We say that this transition is a leaving transition of the superstate. Figure 6
shows two state diagrams for the same state machine. The transitions with
label ”x” in the upper state diagram are replaced with one leaving transition
of the superstate in the lower state diagram. The number of needed transitions
decreases from five to three. A state diagram may have mutually disjoint or
nested superstates. Hence two superstates can be formed for the same state
diagram if one of the following conditions is satisfied:

1. the sets of substates are mutually disjoint;

2. one set of substates is included in the other and the labels of leaving
transitions in corresponding superstates differ.

Otherwise we say that superstates are mutually contradictional. There
can be several, also mutually contradictional, possibilities to form superstates.
While constructing superstates automatically, we cannot make a difference
between these possibilities on the basis of semantics. Hence, we have to specify
another criteria for comparing two alternative superstate combinations. Even
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though maximizing the reduction in the number of transitions is in accordance
with our principles for generating other OMT concepts it may not always result
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Fig.7. The user interface of SCED

in a state diagram best suited for user’s needs. If there are many transitions
between a certain substate and states outside the superstate, the state diagram
does not probably meet the user’s intentions: the exceptional behaviour of
the object in substates is more common than the similar behaviour of the
object in these substates giving a reason to form a superstate. Transitions
that represent the exceptional behaviour, i.e. transitions between a substate
and states outside a superstate, are called critical transitions. The problem is
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that we cannot minimize the number of transitions needed and the number of
critical transitions at the same time.

If we decided to minimize the number of transitions needed we would still
have an NP-complete problem to solve [16]. So far, superstates are generated
in the following way: the largest set of states, in which all states have a
similar transition, forms the first superstate. The second largest set forms
the next superstate if it does not contradict to the already formed ones, and so
on. Although this greedy method minimizes neither the number of transitions
needed nor the number of critical transitions, it gives satisfying results in most
reasonable cases. The advantage of this method is that it is fast.

4. SCED

A central idea of SCED is to support a design-by-example approach for
OOA/D. Similar direction is taken also by Jacobsen et al. 8], although in their
method the use of scenarios is less systematic: we expect that many steps from
scenarios to running software can in fact be automated.

The facilities described in this paper are part of a prototype environment
for developing dynamic models of object-orientated software [16]. The project
has been carried out in the University of Tampere and in the Tampere
University of Technology in cooperation with Finnish industrial partners, which
have given us useful feedback about their usage patterns of scenario editing
tool and provided valuable commentary during the development of SCED. The
name of the software ”SCED” (SCenario EDitor) was originally given to the
scenario editor component, but later adopted for the whole environment. A
more detailed description of the functionality of SCED is given in [15] and [16].

SCED consists of two independent editors: a scenario editor and a state
diagram editor. Typically most of the user interaction is concentrated on use of
these editors. To large extent, both of the editors can be manipulated directly
avoiding the use of several dialogs.

The scenarios that can be edited and processed with SCED are somewhat
more elaborated than the scenarios used with OMT methodology described in
[14]. SCED offers various other concepts for scenarios to make the description
more compact and precise.

SCED state diagrams lack a notation to describe concurrency. Otherwise
they are similar to the ones in OMT. The automatic layout facility in SCED
for state diagrams is based on a layout algorithm for orthogonal drawings by
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Nummenmaa [11]. An implementation of this algorithm for ER-diagrams has
been described in [12]. One of the features of this algorithm is that the nodes
in the drawing need not be of the same size, actually the sizes are completely
arbitrary. In the state diagram notation used in SCED nodes (i.e. states) of
different sizes occur naturally as the states may or may not contain additional
such as internal actions, entry/exit actions, etc.

The basic layout algorithm has been modified to better support the layout
of state diagrams and enhanced with a number of optimizations (e.g. node
alignment, node packing and bend elimination) to improve the readability of
the resulting layout.

The third part of SCED in addition to scenario and state diagram editors
i1s a generator which is not a user-visible component of SCED. At any time
during scenario editing the user can select one participating object and ask
the generator to synthesize a state diagram automatically for this object. The
synthesis can be done for one scenario only or for a specified set of scenarios. In
the latter case the generator synthesizes each scenario that includes the selected
object. Scenarios can also be synthesized to an existing state diagram. The
resulting state diagram is editable using the state diagram editor. Further,
the generator can be asked to add advanced OMT concepts to state diagrams
or to remove them, preserving the information. SCED can also be asked to
generate an event flow diagram on the basis of the current scenario set. Event
flow diagrams are shown in a matrix form and they are not editable. Finally,
support for checking the consistency between a state diagram and scenarios is
available. Various services are offered by SCED for analyzing state diagrams
with respect to scenarios.

SCED views a set of related scenarios as a project. The project window,
which shows the names of scenarios belonging to the project, can be used to
select scenarios for which a desired operation is done. The user interface of
SCED is shown in Figure 7.

SCED has been developed in - and for - the Microsoft Windows operating
environment. The tools that are being used for the development work have
been selected so that porting to Unix with OSF/Motif should be possible with
moderate effort. These tools are:

1. Borland C++ - C++ language compiler [6].

2. LEDA - Library of Efficient Data types and Algorithms [13]. Portable
across wide range of platforms, MS-DOS and several Unix systems.

3. wxWindows - GUI library. Portable between MS-Windows, Windows NT,
Motif, Open Look.

Borland C++ provides an object-orientated layer to insulate the applica-
tions programmer from direct access to MS-Windows API. This layer is called
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the Object Windows Library (OWL) and it is included with the Borland C++
and Application Frameworks package. However, the OWL was directly tied to
Borland C++ environment, because a non-standard method is used to associate
C++ functions to MS-Windows message. OWL is not currently available with
other GUI environments besides MS-Windows and OS/2. Furthermore, OWL
does not obviate the need to communicate directly with the MS-Windows API.

To support the porting of SCED to Unix/X-Windows environment and
- more significantly - to simplify the SCED’s actual development a portable
object-orientated GUI library - wxWindows - has been used in the current
SCED implementation instead of OWL.

5. Conclusions

SCED has been in use at NCS (Nokia Cellular Systems) during the SCED
project since 1993. The software has been actively used by almost 100 designers
and engineers. The response among users has been favourable especially when
compared with commercial tools and their support for creating and editing
event traces or scenarios.

SCED has been mostly used inside NCS as a scenario editor, thus the state
diagram related facilities have so far seen relatively little actual production use.
The scenario facility of SCED has been used on many different levels of software
design/implementation process, e.g. for describing the behaviour and interac-
tions among dynamical objects in a subsystem (object as a participant), and
for documenting the behaviour and connections between different subsystems
(subsystem as a participant).

While SCED has proved itself as a viable alternative in dynamical object
modeling it 1s clear that to become a more useful tool SCED should be
integrated with the entire design process. It would be highly desirable to
integrate SCED with the enterprise’s object repository or database. This
would enable SCED to make consistency checks e.g. to ensure that objects
used in scenarios are defined in the object database and the events (and their
visibility) correspond to defined methods in the object database. Adding an
object database and object diagram editing facilities would make SCED very
useful as an independent tool.
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