Annales Univ. Sci. Budapest., Sect. Comp. 17 (1998) 269-276

AN OCR PROGRAM APPLYING
CLASSICAL METHODS AND NEURAL NETWORKS

J. Kémiives, L. Csink, Zs. Cseresznye,
L. Korosi and M. Puskely
(Budapest, Hungary)

Abstract. In this paper we present an attempt to combine classical
methods of character recognition with neural networks. There are a lot
of OCR (optical character recognition) algorithms, but they differ in their
effectiveness regarding different letters. We use a neural network to learn
the effectiveness of each method depending on the given letter. The
principle is similar to that of blackboard systems, but it is realised with
a Kohonen network. We will give an overview of the character recognition
problems we faced, describe our program and give test results.

1. Introduction

Character recognition systems contribute to the process of storing informa-
tion electronically, but they would also give help to the blind reading a paper.
They are cheaper than typing text in. Plenty of image processing techniques
exist ([3], [4], [5]) which were developed for classification of objects. Optical
character recognition is a special case of them because printed characters have
rather unique features ([10], [11]). Just two examples from Hungary.

Recognita [5] is a Hungarian software which was developed using heuristic
algorithms. It has great success, mainly in Europe. It is based on analysing
the contour of characters. It also has a skeletonisation pre-processing method.
These result in font independent recognition. Having extracted the features, a
tree based classification algorithm decides what the examined character is.

Another Hungarian software on the market is OCulaR. It operates with
multilayer backpropogation neural networks.



270 J. Kémiives et al.

In the framework of a project at Kandé Kalman Polytechnic we have tried
to combine the classical methods of OCR with neural networks and examine
their effectiveness. The task was to write a program which is able to recognize
printed text, for example, in a block, and convert it into an ASCII file. The
input of the program is a graphic file made by scanner. The output is an ASCII
file. We made a simple user interface so that the program would be easy to
use, but the tests were made without it.

2. Description of the program

The program consists of a few main parts:
- 1mage acquisition,
- pre-processing,
- image segmentation (separating the spots of different letters),
- recognition of letters, building strings up from the recognized letters,

- checking the found words against a knowledge base, and making modifi-
cations if an error 1s found.

We developed our system under UNIX on Sparc 10 and Sparc Classic
computers, using SunOS 3.5 release.

2.1. Image acquisition

Printed information were transferred to a graphic file. We used a scanner
of 256 grey levels. A 6 x 9 square inch printed area resulted a file in the range
of 0.5-5 megabytes depending on resolution.

2.2. Pre-processing and segmentation

With the greatest care, the pages may be orientated slightly rotated when
being put in the scanner. It will be more difficult to find a row or a printed
string, and the extracted features on the orientation as well. Therefore the
image must be rotated back. We developed a simple method for measuring the
initial, wrong orientation of the image. It is converted to a bi-level one and
two "big” characters of the first row are found. There are two kinds of letters
by their size. " Big” characters are those the top of which is further away from
the baseline than the others (e.g. A...Z, b, d, f, h, k, 1, t). The top pixels are
connected by a line. Ideally this line is horizontal, but mostly it is rotated by



An OCR program and neural networks 271

a few degrees (Fig.1.). After measuring the slant of this line the whole image
can be rotated back by the given angle.

dstortion sl
abo detghi jklmnop grstuvw xyz def
ghijkl mnop grst uvwxyz abed xyz
ghijkl mnopqrs tuvwxyz abedefgh 1
klmno pgrstuvwxyz abedeghijkl
mnopqrstuvwxyz abedefgh 1jklm no
pqrst uvwxyz

Fig.1. The rotated scanning

The rotation causes noise in the image. There are two solutions of this
problem. One is rotating the original grey level image back, and converting
it into bi-level again. Another solution is filtering (see [1], [2], [12]). We tried
median filtering, but since every scanning is a time consuming process, it was
omitted.

To identify the characters, we have to find them first. The search starts
at the top of the image, and the rows are found first. In general empty row
scans separate two adjacent rows. The height of a row is known in advance
and it seems to be too great, the rows can be separated by the minima of the
numbers of pixels in the line scans (Fig.2.).

Sometimes noisy black pixels can be found between two rows in principally
empty scan lines. This may make the program ”believe” that there is another
row. To avoid detecting false rows a minimal row height is defined.

After having found the rows statistics are made on the space sizes between
characters in each one. There will be a ”jump” in the ordered vector of space
sizes between the space size of letters and words. If the space is less than the
space at the jump, it will separate the characters, otherwise it will separate
two words. This allows us not to use pregiven parameters, the program will be
more flexible.



272 J. Kémiives et al.

The characters are normalized before feature extraction. They are placed
into a 40 x 40 matrix. The features are examined in this matrix. Above the
enclosing rectangle of the character, accents are searched for. The existence
and the number of them is one of the features.

erpty scan_lines ¥ 53— noise in empty
a scan lines
histogram on number of pixels in a scan line
i

A()B3jfghilsiks
A RYEIaLEIRE IR

local minima, separates two rows

Fig.2. Separating two rows
2.3. Recognition

Our program applies four, quite well-known, well tested algorithms.

The first one is to scan the letters horizontally, and the number of changes
from background to foreground are stored. Then scan is done vertically (see
Fig.3.).

1
—_— e e N DO RN

1111111

Fi9.3. The slicing method



An OCR program and neural networks 273

The second method determines the number of ”bubbles” in the character.
”8” and "B” have two, ”0”, ”A” and ”d” have one bubble. ”I” and "m” have
none. The number of bubbles is never used as a feature alone. But it means
some additional information.

The third method is contour following. The outer shape of a letter is im-
portant information. QOur program performs segmentation of the outer contour
and stores the endpoints of the segments. The segments are approximated with
straight lines (see Fig.4.).

Fig.4. Contour following

The last method is based on the i1dea that not only the outer shape but
also the placement of the spot of the character renders important information.
In case of a letter ”I” more than the half of the black pixels are at the top of the
spot. Dividing the matrix into not two, but many small parts, the proportion
of the black pixels in a cell will be a relevant feature. We divided the matrix
of the letter into 25 cells and the proportion of the black and white pixels were
determined in each cell.

2.4. The neural network

Our aim is to detect different "k” (or any) letters belonging to the same
class, not making difference between k, k or k.

After the features have been extracted, they will be evaluated. In general,
the features will compose a vector and the learnt patterns are compared to the
actual vector. Comparison of the feature by their Euclidian (or some similar)
distance is too simple: it is difficult to decide which feature should be considered
more important than the other in determining the letter.

Blackboard systems [9] are an effective solution. Their principle is that
different algorithms result in different solutions to a problem. In most cases
each of them has different knowledge about the given problem. An ”inspec-
tor” program should see their results and should give different score to the
algorithms depending on their effectiveness. Each piece of information is used



274 J. Kémiives et al.

corresponding to its importance. It can be achieved with the score system, but
not exclusively with it. The parts of the system can be replaced or new parts
can be added to it, making the system more general and flexible.

A blackboard system needs rather complicated programming. Instead of
this we used a neural network to learn the effectiveness of the algorithm. The
input of the network is the feature vector and the output is the letter. After
many iterations it learns the letters and attaches proper importance to the
features provided by different sources.

A Kohonen network was used for this purpose, but it is not a self-organizing
one ([7], [8]). There are minor differences between ours and the usual one. We
applied supervised learning to increase the speed. Instead of computing the
squares of the differences between weights and new vectors simple differences
were taken into account. The input vector is composed of binary values of the
features. Gray code also was tried but the effectiveness of the program did not
improve.

2.5. Knowledge

The final step in the recognition is applying a database which contains all
the words that are to be recognized. Sometimes, if characters are not recognized
with sufficient certainty, the words will still be able to be identified because of
the possibility of seeking in a database using wildchard characters. The search
1s very simple, we use the UNIX command grep. This database can be modified
at any time. The program is also able to learn unknown characters. This needs
ability of the interaction with the user. A simple user interface was written in
Xhb to communicate.

3. Summary, conclusions

Our experiences show that the program learns the characters very fast.
Figure 5 shows the result of recognition after only two learning cycles. Initially
the network is ”empty”, does not know any letters. During the teaching the
program scans the sample file (containing Times Roman letters) and asks the
meaning of the unknown spots. Then it updates the weights of the neural
network three times. After two such iterations (six updates) the program is
tested with the sample file. The result is shown in Fig.5. It is easy to notice
that the network mixes capital and small letters if they have the same shape.
The reason of this is that the feature vector is very large and the information



An OCR program and neural networks 275

about the size of letters does not carry enough weight. Increasing the number
of elements in the feature vector about size this problem can be eliminated.

abcdefgh“’Jklmnop

A A ? ' abcdefghijklmnoP
MNOPQRSTUVW qrstuvwxyz
XY7Z ABCDEFGHiJKL
123456789017 N oPQksTUw

1234567890!?
Fig.5. Results after a few learning iterations

Otherwise, only the letter "R” is misrecognized. After many learning
cycles the neural network learnt the letters. The test with other character sets
e.g. Courler or Serif) shows that the recognition is quite independent of the
type of the fonts. After five iterations the program classifies the characters by
a 10 percent probability of error.

This 1s the ideal case. The recognition is worse in case of a text scanned
from a newspaper. The use of the word database is great help in the case of
mixing similar characters. ("G” and ”C”,”E” and "F” are difficult to recognize
properly.)

A possible direction of developing the program is improving the services.
A line detection part would be desirable since even books of classical literature
contain straight lines or simple drawings.

References

[1] Al G., Foglein J., Hegediis Gy.Cs. and Szabé J., Bevezetés
a szdmildgépes képfeldolgozdsba, BME Mérnoktovabbképz6 Intézet, Bu-
dapest, 1993.

(2] Parker J.R., Practical computer vision using C, Wiley & Sons, 1993.

(3] Masuda I. et al., Approach to smart document reader system, Proc.
CVPR’85, San Francisco, 1985, 600-686.



276 J. Kémiives et al.

[4] Shimotsuji S., A robust drawing recognition system based on contour
shape analysis, Proc. CVPR’85, San Francisco, 1985, T17-719.

[5] Marosi I. and KovAacs E., Trends, applications, devices in optical char-
acter recognition, Proc. of Conference on Intelligent Systems, Veszprém,
Hungary, 1991.

[6] Csink L., Technical document recognition algorithms, Proc. of Confer-
ence on Intelligent Systems, Veszprém, Hungary, 1991.

[7] Miller B. and Reinhardt J., Neural networks. An introduction,
Springer, 1990.

[8] Beale R. and Jackson T., Neural computing. An introduction, Institute
of Physics Publishing Ltd., Bristol, 1994.

[9] Corkill D., Blackboard systems, Al Expert, 1991.

[10] Downto A.C., Tregidgo R.W.S. and Kabir E., Recognition and
verification of handwritten and handprinted British postal addresses,
International Journal of Patiern Recognition and Artificial Intelligence,
5 (1-2) (1991).

[11] Shridhar M.:and Badreldin A., A tree classification algorithm for
handwritten character recognition, Proc. 7th ICPR, Montreal, 1984, vol 1,
615-618.

[12] Niemann H., Pattern analysis and understanding, Springer, 1991.

J. Kémiives, L. Csink, Zs. Cseresznye,
L. Ko6rosi and M. Puskely

Institute of Mathematics and Computing
Kandé Kalman Polytechnic

H-1431 Budapest, Pf. 112.

Hungary

jozsi@miws.ipan.sztaki.hu
csink@novserv.obuda.kando.hu



