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A SPECIFICATION TECHNIQUE FOR SCHEDULING
THE METHODS OF CONCURRENT OBJECTS

L. Kozma and E. Récz (Budapest, Hungary)

Abstract. Object-oriented programming methodology has been rapidly
accepted by the experts. The most critical applications can often involve
concurrency, but several problems have been identified with the integration
of inheritance and concurrency. A lot of methods can be defined on a
concurrent object but some operations make sense only when the object
is in certain states. Synchronization mechanisms are necessary to delay
such requests and these requests can be processed when the state of the
object makes them safely possible. This paper deals with a similar problem
called scheduling when some method of a concurrent object is selected for
execution to achieve more effective functioning in some sense. We apply
the graphical interval logic, GIL, for specifying scheduling the methods of
concurrent objects.

1. Introduction

Object-oriented programming methodology has been rapidly accepted by
the experts. The need for data abstraction to promote program modularity
and the claim for developing correct programs for real applications underlie
this rapid acceptance. Recent advances in hardware technologies can assure
extremely low hardware failure rates for devices. Unfortunately, technologies
for software engineering have not matched this advance. The most critical
real applications can often involve concurrency. Reasoning about concurrent
systems is considerably more difficult than reasoning about sequential systems.
Moreover nondeterminism and the reactive character of these concurrent ap-
plications make them hard to develop, to validate and to test.
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It turns out that concurrency is a natural consequence of the concept
of objects, but several problems have been identified with the integration of
inheritance and concurrency. The first problem is that the term inheritance
has two primary meanings: a mechanism by which object implementations can
be organized to share codes; and a classification of objects based on common
behavior or common external interfaces. So the term inheritance has been
resource of confusion. The fact is that the inheritance structure used for code
sharing and the conceptual subtyping hierarchy originated from specialization
are not the same things. They lie on different levels of abstraction in the system:
inheritance is concerned with the implementation of the classes, while the
subtyping hierarchy is based on the behavior of the instances and it describes
how an object can be seen from the outside, by other objects [1,4,5,15, etc.].

The additional problems are related with difficulties in integrating sharing
protocols in systems based on actor model and with the fact that synchro-
nization constraints often interfere with inheritance. Concurrent objects can
be defined as entities that encapsulate data and operations into a single
computational unit. Models of concurrent computation based on objects must
specify how the objects interact and different design concerns have led to
different models of communication between objects.

A common semantic approach to modeling objects is to view the behavior
of objects as functions of incoming communications. This is the approach
taken in the actor model [2]. A lot of methods can be defined on a concurrent
object, but some methods make sense only when the object is in certain
states. Synchronization mechanism is necessary to delay such requests and
these requests can be processed when the state of the object makes them
safely possible. Several language constructs and specification methods were
suggested for solving synchronization problems of concurrent object-oriented
programming (3, 6 - 12, 14, etc.].

This paper deals with a similar problem called scheduling the methods of
concurrent objects. The notion scheduling is used here, when some method of a
concurrent object is selected for execution to achieve more effective functioning
in some sense. We describe an application of the specification technique
suggested in [13, 17]. A graphical interval logic (GIL) is used to specify the
scheduling of the methods of concurrent objects. GIL is a visual temporal
logic in which formulas resemble the informal timing diagrams familiar to the
designers of hardware systems and to software engineers as well. A well-known
scheduling example, the ”disk scheduler” is specified to illustrate our idea.

The paper provides an overview of the actor model and its extensions in
Section 2. A technique is suggested for specifying scheduling policies in Section
3. We give an example in Section 4. Some concluding remarks are discussed
in Section 5.
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2. Models of concurrent objects

There are different kinds of models of objects: the actor model introduced
by G. Agha in [2]; the process model of objects applied in programming
languages ABCL, POOL, Concurrent Smalltalk, etc.; other models used in
concurrent logic languages and in functional programming languages. The
traditional sequential process model allows arbitrary control structures to be
specified within the body of a given object, but on the other hand this model has
several disadvantages. For instance the sequential process that is optimal on
one architecture may not be so on an other one with different characteristics [1].
From point of view of semantics the behavior of all concurrent object-oriented
languages can be modeled by actors whether they use a process model or an
other one.

The basic actor model is object-based and not object-oriented. This means
that the model considers each object to include a behavior and a mailbox, but
neither the behavior nor the mailbox can be objects. This makes the inheritance
hard to handle in the basic actor model. The behavior of an object consists
of a so called script and a set of acquaintances. The script is a code body
defining the response of the object when a message is received. When the
object processes a communication (an answer for a message), it determines the
behavior that will be used to process the next communication. The object may
also send messages to specific target objects and create new objects. The target
object in this case can be any object referenced in the received message, any
acquaintance of the objects, and any object created during execution of the
script. An object’s mailbox holds messages that have arrived but not yet been
processed. One of the most important features of object-oriented languages is
the inheritance. In basic actor model the script is a monolithic code and this
leads naturally to delegation protocols, but delegation is not the most effective
approach for code sharing [1,3, 4, etc.]. The actor model has to be extended to
directly support inheritance and make it object-oriented.

The reflective model of objects fulfills the above conditions. This model
suggested in [3] extends the basic actor model in the following way. An object
is composed of four other objects: the meta, the container, the processor and
the mailbox object. The composition can be recursive. The meta object
manages the three other resources of an object. The container represents the
acquaintances and the script 1s a set of slots. The script is decomposed into
methods, each of them can be an object similar to the other acquaintances
of the object. The processor object is responsible for locating an appropriate
method to handle a communication, performing the execution, and coordinat-
ing behavior (state) change. The mailbox object holds messages that have not



256 L. Kozma and E. Ricz

yet been processed as in the basic model, but in the reflective model it may be
used to mediate different scheduling policies that determine the next message
to be processed. To support sharing protocols between objects the reflective
model separates the message passing activities into two levels. The object
level deals with messages between objects, while the reflective level deals with
messages between containers. The containers are responsible for implementing
the sharing protocol as well.

Using reflective model of objects we can separate and localize not only the
synchronization schemes, but also the scheduling policy from the main bodies
of methods. This allows dynamic operations on the methods themselves in
order to control the messages acceptable by an object. As notions scheduling
and synchronization are very close to each other, the scheduling policies can
be inherited in a similar way to the synchronization schemes suggested by [7].
The advantages of this model are as follows:

(1) The same language features can be used for implementing a scheduling
policy as for implementing synchronization code.

(2) The manner we re-use the synchronization code is the manner we re-use
the scheduling code.

(3) The reflective model offers a high degree of encapsulation and re-use
for synchronization code.

A useful technique is shown during the next sections for specifying schedul-
ing policies.

3. A technique for specifying scheduling policies

Experiences have shown that temporal logic specifications are too complex
to be readily understood. This complexity comes from the need to establish
the temporal context where the properties, such as invariance and bounded
liveness, must be held. Interval logics can decrease this complexity by defining
temporal intervals to represent such contexts. The GIL was developed as a
language and a tool set for the behavioral specifications and verifications of
concurrent software systems [13,17]. We apply formulas of GIL for specifying
scheduling methods of concurrent objects to achieve more effective functioning
In some sense.

GIL allows the user to construct arbitrary intervals of time and to express
properties that apply to those intervals. GIL also uses predicates that may
have different truth values at different points of time to represent propertics
of systems that change with time. Like in linear-time temporal logics, in
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GIL the computations of a system are modeled as linear sequences of states,
where every state has assigned truth values to the predicates included in the
specification. The basic construct of GIL is the interval representing a finite
or infinite computation of a system. An interval can be represented by a left-
closed right open line segment: [). The time progresses from left to right inside
an interval. Every interval has an initial state, but since contexts are infinite
an interval has no a final point. The individual states are represented by points
on a line segment with the horizontal dimension showing progression through
the context. The basic interval formula

E——)
init
asserts that a formula init holds at the first state of the interval. The derived
operator henceforth can be represented by the interval formula
E—)

It asserts that the formula inv holds at every point in a context. The eventually
property sometime can be formulated as follows:

E<)

having the meaning that the property sometime holds at some state within the
interval.

The intervals in the above formulas could represent the entire computation
of the system, or they could be extracted from larger intervals using search
operators that locate, starting from a specified state, the earliest state at which
a property called target formula holds. The following search primitives are
defined in GIL:

f

represents a search to a target formula f;

represents the search to the right end of the context. The dot represents the
starting point of the search. The search fails if the target does not hold at any
future point in the context. The future always includes the present. A search
to the right end of the context permits the specification of a tail interval;

2
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represents a strong search operator. The strong search operator is required not
to fail and it 1s denoted by double arrowhead. A strong interval formula is an
interval formula that is required not to be empty and is drawn by a bold line:

The star * denotes a so-called point operator. This operator appears
directly below the point located by the final search in a sequence of searches
and constructs the tail interval that starts with the point so located. The
target formula of the searches and the formulas that are asserted to hold on
intervals can be arbitrary GIL formulas, so GIL formulas can be constructed
in a hierarchical or nested way. GIL formulas can be read from left to right
and from top to bottom [13, 17, etc.].

4. Disk scheduler, an example

A well-known scheduling example is the disk scheduler problem [10]. In
this case a concurrent object is defined for controlling a disk device. For the
seek of simplicity, it is assumed that a single operation access is defined for the
object. The operation access has only one parameter, the number of the track
to be accessed. What is desired is that the average waiting time for access
be minimized. This is accomplished by having the head of the disk sweep
continuously in one direction, accessing each track it encounters for which an
access message has been arrived, until no more requested tracks remain in the
direction being swept. Then the head reverses its direction and sweeps back,
again accessing requested tracks as it encounters them. The essential idea is
that at any given moment the next track to be accessed is the closest one to
the actually accessed track in the direction currently being swept.

4.1. Specification of the disk head scheduling

For simplicity, we consider a disk with three tracks. The following state
predicates are used:
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o The predicate at$n is true when the head of the disk is at track n and
false when it is not, for n=1,2,3. We suppose that the. number of track is
growing up from left to right.

e The predicate movingforward (denoted by mfwd) models the situation,
when the head leaves a track and the direction of moving is forward or
backward. If movingforward is true then the head is moving to forward and if
movingforward is false then the head is moving to backward.

e The predicate access$n (denoted by a¥n) is true when the head is at
track n, in this case the contents of the track n can be accessed.

e The predicate req8¥n is true when there is an outstanding request for
accessing the contents of the track n.

o The predicate arriveforward (denoted by afwd) is true whenever the head
arrives at a track from the forward direction and it remains true at least until
the head departs the given track.

Init. ExclusionSn$m (1 <n<m<3).
E—)

at$l

~rcq§

~r1cg.

= EiY

3 % “at$m

The formula /nit means that the disk head begins operation at the track 1,
there are no requests for services and all tracks are not accessed.

The formula Ezclusion$n$rn means that the head is never at two different
tracks simultaneously.

FwdFrom$1. FwdFrom$2.
E o) E N
ats] 282
A —ais] “at52
- :nfwd
fwd
l"‘ N <=>
ats2 I >X .
E ~at$] D ) ET)

~atf2 /

~at$3

The formula Fwdfrom$1l means that the head moves forward when it
departs the track 1, arriving at track 2 without first sweeping any other tracks.
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The invariant of this formula expresses the following. The track 1 is the location
that the head has just left. The formula asserts that the head is moving forward
at every such point and that it reaches the track 2 before either of the other
tracks. The strong search requires that the head eventually arrives at the track
2 and the strong interval requires that it takes some time to arrive at track 2.

The formula FwdFrom$2 expresses that the head moves forward when it
departs the track 2 precisely if it moves directly to the track 3.

-deFroms 2. BwdFrom$3.
E ) 2 )
L aus? a8l
e x_“n PRS- .}-‘63
e Zmfwd
<=> e >>
g >H as2
usl
= = )
—us3 / 53

The formula BwdFrom$2 expresses that the head moves backward when
it departs the track 2 precisely if it moves directly to the track 1.

The formula BwdFrom3$3 means that the head moves backwards when 1t
departs track 3 arriving at track 2 without sweeping any other tracks first.

Safeaccess$n n=1,23. ReqService$n n=1,23.
E- ) E )
~a$n ~req$n

->

- ) o>

The formula Safeaccessdn means that the contents of a track can be
accessed only when the head is at that track.

The formula RegqService$n expresses that the contents of a track can be
accessed only in response to a request for service of the track.
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ArriveFwd. ArriveBwd.
E - D A E— D \
"x N\ "x N\
p— 3 | e
~afwd ofwd
) £
V ~at$2 ) v ~u32 /
= ]/, = )

The following formula ArriveFwd expresses whenever the head arrives at
the track 2 from the track 1 predicate afwd is true, and remains true at least
until the head departs the track or it remains true forever inside the context if
the head does not depart the track 2.

The formula ArriveBwd tells whenever the head arrives at track 2 from
the track 3 afwd is false, and it remains false at least until the head departs
the track 2 or the head remains at track 2 forever.

ContinueFwd. ContinueBwd.
C C )
E D E
as2 a$2
afwd ~afwd
= =
K ~a$2 ~a$2
L L
mfwd ~mfwd
<=> <=>
req$3 reqS1

The formula ContinueFwd means if the head is moving forward when it
arrives at the track 2, it continues moving forward when it departs the track
2 precisely if someone requires service for contents of track 3 by the time the
head departs.

According to the formula ContinueBwd if the head is moving backward
when it arrives at the track 2, it continues moving backward when it departs
the track 2 precisely if a service is required for the track 1 by the time the head
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departs. The above two formulas require that, once the head starts sweeping
in a given direction, it changes direction only if no one requires service at a
track in that direction.

SafeDepart$n n=1,23. WaitService$n n=1,2,3.

E )‘] E D

atSn req$n

= =>

NE::, ] J R )::;n]

The formula Sa fe Depart$n states that the head departs a track only when
the access is finished.

The formula Waitservice$n states that a request for a service at a track
is only canceled if the track is being serviced (the access is taking place).

CancelService$n n=1,2,3. ServeReqsAtSn n=1,2,3.
E D) E
asn atSn
= reqn
__.,‘........A_..>>|_‘sn —
. P)
~reqSn at$a

The formula CancelService$n expresses that an access always takes place
during finite time, and the request for service at the current track is canceled.

The formula Serve Reqs At$n states that if a service is requested for a track
while the head is at the track, then the access takes place before departing the
track.

ServeReqsOnArrival8n n=1,23. NoServeDepart3n n=1,2,3.
E ) ) E )
~eta atSn
DS ) ~reqSn
:(Sn ~aSn
reqsn (reqSm V reqSk)
atSn ) ) ~atSn )
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The above formula Serve ReqgsOnArrival$n states that, if a request for
an access of a track is arrived by the time the head reaches the track, then the
access takes place before departing the track.

The formula NoServeDepart$n ensures that the head departs a track
without first accessing its content whenever nobody requires service of the
track and a service is required for a different track (where m and k are used to
denote the other tracks {m, k} = {1,2,3}\ {n}).

4.2. Analysis of the specification

The use of formal specifications is very important both in the hardware
design and in the software technology. The specification can be analyzed
for potential consequences and this helps better understanding of the design.
Analysis can demonstrate that specification ensures higher-level system require-
ments correctly. A graphical proof system presented in [13] could be used for
checking the validity of the consequences. The major advantage of the proof
technique [13] is that a proof can be represented using pictures that show the
temporal flow of the argument. Using the time line representation allows one
to align appropriate points in the picture. This helps us to see the points where
invariants are being instantiated, the relationships between different points and
intervals, etc.

The specification of a disk head scheduling is very similar to the specifica-
tion of the elevator [13]. The main difference is the following. The specification
of the disk head scheduling ensures: if a request arrives for a track while the
head is at that track then the request is always serviced before departing
the track, so this specification is not starvation-free. The following theorem
expresses this fact and its proof shows that a complex proof can be splitted
into more manageable steps [13].

Theorem. Service$n.

~
()

aSn

Proof.
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WaitService$n:
o N
L J
req$n
=> }
~req$n
.
aSn
Arrive$n?:
E D
reqSn
F—< )
| N
at$n
\%
-
E D
(at$m V at$k)
where {m, k} = {1,2,3}\ {n}.
Note: The correctness of the above step can be proved as a lemma.
ServeReqsAt$n:
E D
o
at$n
reqn
M
at$n
=
E D
req$n

at$n
W}
asSn

Q.E.D.

Lemma 1. WaitService$n = ArriveSn.



Scheduling the methods of concurrent objects

265

Proof.
Wait:S‘ervice.%‘n:
[t N\
C J
reqSn
=> }
~reqSn
: )
asn
Safe$n: (Lemma 2).
C N\
| - \ J
a$n
asSn )
ArriveSomeTrack: (Lemma 3).
- ) N\
=
~atsn
~atSm
:a)(Sk
C D
| N/ )
at$n
\"
atSm
A\
atSk )
Arrive$n-at§m?: (Lemma 4).
- ) N\
| -
atSm
req$n
E O D
L aSn
v
= ) )
t (at$m V at$k)
(Lemma 5).

Arrive$n-at$k?.
s

O

a$n

( at$m V-at$k)
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=

E D)
req$n
c A
E—<x )
\Y)
E ),

(atSm V atSk)

Q.E.D.

The Proof of Lemma 2, Lemma 3, Lemma 4 and Lemma 5 can be
constructed in a similar way as the proof of Lemma 1. For example the
correctness of Lemma 2 follows from the formulas Init, SafeAccess$n and
SafeDepartdn.

5. Discussion

The above example shows that the specification technique based on graph-
ical interval logic can be applied in the design of the concurrent object-oriented
programs as well. We have some experience in specifying concurrent systems
using propositional temporal logic. In this paper we have used the GIL and we
can state that the complexity of the specification can be really decreased while
its reliability is increased [18].

There are several other techniques for specifying synchronizing and
scheduling of concurrent systems [10, 19, 20, etc.]. The scheduling predicates
introduced in [20] give a powerful mechanism allowing the programmer to
schedule the order of execution of operations based on relative arrival times,
values of parameters and built-in synchronization counters. The scheduling
predicates can be efficiently implemented, but the proof of the derived prop-
erties of the specified system is rather complicated. The control modules
suggested in [19] are the early ancestor of the scheduling predicates. The
event oriented synchronization technique developed by Laventhal in [10] is an
extension of first order predicate logic by so-called events. The result is a mixed
system. The implementation of a specification 1s a hard task and the proof of
the properties of the resulted system is very complicated.
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