Annales Untv. Sci. Budapest., Sect. Comp. 17 (1998) 235-252

REPRESENTATIONS AND QUERY LANGUAGES
OF NESTED RELATIONS

Gy. Koviacs (Budapest, Hungary)
Cs. Hajas(Debrecen, Hungary)
I. Quilio(Versailles, France)

Abstract. In real life applications it is often needed to store
and handle complex objects. The first normal form assumption of
the relational model turned out to be too restrictive for such applica-
tions, therefore more advanced data models have been investigated for
years, e.g. the nested relational model and object oriented data models.

In this paper we present the concept of nested relations. A value in
such a relation may be itself a relation, thus allowing to directly represent
structured data. We give an cverview of the related query languages, such
as relational algebra and calculus, and an SQL-like language called NF2-
SQL. Since currently we are working on the relational implementation of a
DBMS supporting nested relations, we also show in the paper how nested
relations can be represented by traditional (flat) relations.

1. Introduction

The relational data model ([2], [13]) has become the most popular data
model implemented in many database management systems. However, the
assumption that relations are always in first normal form (attributes may hold
only atomic values) restricts the applicability of the model in a large extent,
because real life applications (e.g. multimedia, geographical applications) often
require to model and store highly structured, complex objects.

Supported by the Copernicus LPDB Project, Project Nr. 93:6638.
Partially supported by the Hungarian National Science Grant (OTKA),
Grant Nr. T016524.

236 Gy. Kovacs, Cs. Hajas and I. Quilio

In the nested relational model (also called NF2, Non First Normal Form
relational model) a value of a relation itself can be a relation. Subrelations
may also contain relations as their values, that i1s the depth of nesting may
be arbitrary. This makes it possible to represent structured data in a natural
way and also decreases redundancy. The NF? model has been investigated for
years, several authors have defined the model and extensions of the relational
algebra and calculi for nested relations ([3], {4], [5], [7], [9], [12]). Also some
SQL extensions have been proposed ([8], {10]).

Although the NF? model provides data structuring facility it still has
limited applicability. To overcome the limitations of the NF? model more
advanced data models have been proposed. In [8] an extended NF? model is
presented which allows additional data types, such as lists and multisets (bag).
Others have been working on incorporating object orientated concepts into
database technology (e.g. [1]). Although object orientated models are more
general than the nested model, from database management point of view they
have several critical points, e.g. lack of updates. In our approach the NF?2
model is considered as an intermediate step to overcome some of the problems.

The rest of this paper is organized as follows. In Chapter 1 we formally
define the main concepts of the NF2 model. Chapter 2 gives an overview of the
nested relational algebra and tuple calculus, and also some extended algebraic
operations are presented. A nested SQL extension is described in Chapter 4,
and in Chapter 5 we show how nested relations can be represented with flat
relations. In Chapter 5 a short overview is given and a little discussion on
object oriented themes.

2. The nested relational model

In this section we introduce concepts of the nested relational model. Our
formalism is a modified combination of the approaches found in [5] and [12].

We assume that there is an infinitely enumerable set U of attribute
names. Attributes and relation schemes in the nested model are constructed
from this set. An attribute has a name and a scheme, where the name is
from U and the scheme is a set of attributes, may be empty. We will have
two kinds of attributes, atomic attributes are attributes with empty scheme,
and attributes with nonempty scheme are called composite (or structured)
attributes. Attributes can be referred to by their names if no ambiguity occurs.

Representations and query languages of nested relations 237

Now we formally define these notions and we introduce the function names
on attributes and schemes which gives the set of attribute names occuring in a
given attribute or scheme, respectively.

Definition 2.1. The set of attributes U, the set of schemes Sy and the

function names: (U U Sy) — 2V are defined recursively as follows:

(1) 0 € So and names(0) = 0;

(2) VA€ U :< A,0 >€ U and names(< A, >) = {4};

(3) IfX),..,Xn €U andVi,j=1,.., nwithi # j names(X;)names(X;) =
=0, then {X;,..., X»} € So and names({X,, ..., X,,}) = U™ names(X;);

(4) If S € So, A € U - names(S), then < A,S >€ U and names(< A,
S >) = {A}Unames(S);

(5) There are no other elements in & and Sp.

Since an attribute consists of a name and a scheme component, we define
two functions on attributes returning these components. Moreover, the sets of
atomic and composite attributes are formally defined.

Definition 2.2. The functions name: ¥ — U and sch: f — Sy are
defined as follows. Let X =< A, S >€ U be an attribute. Then name(X) =
= A€ U and sch(X)=S€S.

Definition 2.3. The set of atomic attribuies U, and the set of composite
attributes Uc are the following sets: Ua = {X € U | sch(X) = B} and Ue =
={X €U | sch(X) # 0}.

Consequence 2.1. From Definition 2.3: i = U, UUc and U NlUc = 0.

In the classical (flat) relational model a relation scheme is defined as a
nonempty set of attributes, where all the attributes are atomic. The same
definition is applied to nested relation schemes, but the attributes in the scheme
may be both atomic and composite. Obviously, flat relational schemes are a
special case of this definition.

Definition 2.4. A nested relation scheme §Q is a nonempty scheme. Let
S denote the set of nested relation schemes, or briefly relation schemes. Hence

S = So — {0}.

Note the dualism between relation schemes and schemes of composite
attributes. This comes from the nested nature of the model. We will see
that a nested relation can be viewed as a value of a composite attribute.

On instance level, a (nested) relation instance over a relation scheme
1s a finite set of tuples over the scheme, where a tuple over a scheme is a
mapping that assigns values to the attributes occuring in the scheme. To
atomic attributes atomic values are assigned, and for composite attributes the
assigned values are relation instances over the corresponding attribute schemes.

238 Gy. Kovacs, Cs. Hajas and 1. Quilio

A nested relation consists of a nested relation scheme and a relation instance
over this scheme. See formal definition below. We do not distinguish between
different types of atomic values, we assume a universal infinitely enumerable
set V of atomic values.

Definition 2.5. The set of (nested) values V, the set Ix of all (nested)
relation instances over X € § and the set Tx of all tuples over X € S are the
smallest sets that satisfy:

(1) YU (UxesIx),

(2) Ix ={R | RC Tx and R is finite };

B)Tx ={t: X =VIVY eXNUs: (Y)EV and VY € X NUc : t(Y) €
€ Isch(Y)}-

Definition 2.6. A nested relation or briefly a relation R is a pair R =
= (Q,w), where € S is a relation scheme and w € Iq is a relation instance
over §2. We extend the function sch introduced earlier to relations. For R =
(Q,w) : sch(R) = .

Nested relations can be represented in several ways. For relation schemes
we can use the usual linear form. With tabular representation we can represent
both the scheme and the value of a relation. These will be illustrated in the
next example.

Example 2.1. Let us suppose that a big stock stores the orderings of
their clients in a database. They store the names of clients, the article names,
ordering dates and the quantities. We show an example how the data can
be organized in a nested relation called CLIENT_ORDER. The scheme in our
formalism can be defined as:

sch(CLIENT_ORDER) = {<CLIENT, 0 >, X,}, where

X, = <ORDERINGS, {<ARTICLE, 0 >, X»} >, where

X, = <ORDER_ITEMS, {<O_DATE, 0 >, <QUANTITY, 0 > } >

The linear form of the scheme of the relation:

CLIENT_ORDER(CLIENT, ORDERINGS(ARTICLE, ORDER ITEMS
(O_DATE, QUANTITY)))

The tabular representation of the relation:

Representations and query languages of nested relations 239

Table CLIENT ORDER:

CLIENT ORDERINGS
ARTICLE ORDER_ITEMS
O _DATE QUANTITY
C&A Shoes 15/12/94 500
28/12/94 100
T-shirt 15/12/94 150
23/01/95 200

Fig. 2.1. Tabular representation of a nested relation

3. Nested relational algebra and calculus

The well-known relational algebra and calculi are query languages for
the classical relational model. Algebraic operations have been defined in the
algebra, while in relational calculi (domain calculus and tuple calculus) queries
are expressed in terms of formulas of first order logic. In this chapter we present
the extensions of these query systems to query nested relations.

3.1. Nested algebra

Beside the 5 basic operations (union, difference, Cartesian product, se-
lection and projection) the nested relational algebra contains two additional
operations, nest and unnest. We do not present the precise definition of each
operation here, only an overview is given and the new operations are defined
precisely. The approach is similar to the one in [5] with some augmentation
and adaptation to our formalism.

The set operations can be applied to relations with the same scheme and
their semantics 1s as usual. The Cartesian product and projection operations
do not require any modification, they are defined in the same way as in the
classical relational algebra. In order to be able to express comparisions between
composite attributes the set of atomic conditions in the selection operation is
augmented with the usual set comparision operators, such as C, C, D and D.

Nest and unnest are new operations in the algebra, they are used for
restructuring nested relations. Nest makes a relation more nested, while unnest
makes a relation less nested. The content of the relation changes according to
the new structure (scheme).

240 Gy. Kovécs, Cs. Hajas and 1. Quilio

Definition 3.1. Nest(v) operation. Let (Q,w) be relation, X C Q and
A €U - names(Q).

vx.a(Q,w) = (), where @' = (2 - X)U{< A, X >} and

if 2 = X, then v’ = {w},

if Q £ X, then

Ww={teTn |H €w: tlg-x =
=U[a-x ANM(A) ={t"|x |t EwAtla-x =t"|a-x}}

Definition 3.2. Unnest(u) operation. Let (2,w) be a relation and X €
€EQNUc.

wx (Qw) = (,w'), where @' = (@ - {X}) Usch(X) and

W={teTo | €w: tlo_{x} = t'la-{x} Atlsenx) €'(X)}.

The operations of the algebra can be applied to one or two relations. Since

the result is always a relation, we can build arbitrary algebraic expressions by
sequentially applying the operations, as illustrated in Example 3.1.

Example 3.1. Let us take the nested relation from Figure 2.1 and give an
algebraic expression which results in a table in wich only the orderings before
31/12/94 are kept and data are grouped by the clients and the ordering dates.
The appropriate expression:

VARTICLE,QUANTITY:0_ITEMS(00 DATE<31/12/94(LORDER ITEMS

(rorpeRINGS(CLIENT ORDER))))

CLIENT O_DATE O_ITEMS
ARTICLE QUANTITY
CE&A 15/12/94 Shoes 500
T-shirt 150
C&A 28/12/94 Shoes 100

Fig.3.1. Result of the algebraic ezpression

It is important to note that all the operations of the algebra can only
involve attributes at the highest level of the scheme. Queries on lower
level can only be expressed by first unnesting the attributes to the highest
level, performing the operations and nesting back to the original structure.
Unfortunately nest and unnest are not inverse operations, only a nest can
always be undone by an unnest.

Representations and query languages of nested relations 241

Proposition 3.1. Let R = (Q,w) be a relation, X C Q and A € U —
names(2). Then pa(vx.a(R)) = R.

There are two reasons why an unnest cannot always be undone by a nest.
The first is that if we have two tuples equal on all attributes not being unnested
then the corresponding nest will not give back the original two tuples. Instead,
it will produce only one tuple with a value (relation) of the unnested attribute
which is the union of the two relations being the values of the original two
tuples on the unnested attribute. The other reason is that if the attribute
being unnested contains empty relations as values, then by definition those
tuples will be lost after the unnest.

The latter problem can be solved by using and exact handling of null values
([7], 11]). The first problem can be overcome by uniquely tagging the tuples
of the relation. One possibility is that the tag for each tuple is the tuple itself
as a composite value. This means that an extra composite attribute is added
to the scheme holding these values. We do not give here the precise definition,
but we use this tagging operation (7).

Proposition 3.2. Let R = (},w) be a relation and X =<
€ QNUc. Moreover, let us suppose that for each t € w : t{(X) #
R = ma(vy.a(px (7(R)))).

Proposition 3.2 says that any unnest can be undone by the corresponding
nest if the tuples are tagged before unnesting. It is also true that there
an algebraic expression can be given to express the tagging operation. The
consequence of these is that any lower level operations can be expressed in the
defined nested relational algebra.

3.2. Nested tuple calculus

In this section we discuss the nested relational tuple calculus, a logic based
approach to query nested relations. In the calculus queries are expressed
in terms of logical formulas. Because of lack of space, we give only a short
overview.

Formulas are built in the usual way. They contain tuple variables where
the variables may have free and bound occurences. Relatively to the classical
relational tuple calculus, we have additional atomic formulas to express compar-
isions between composite attributes. More complex formulas can be obtained
by applying the usual logical operators (and, or, not). The nested structure
requires the set building formula of the following form to be introduced.

t(X) = {s| ¥(s,u,v,...2)} is a formula if ¥(s,u,v,...) is a formula with
free tuple variables s,u,v,...,z, X € Uc, and ¢ 1s a tuple variable with no
free occurrence in W¥. It expresses that for a given interpretation of tuple

242 Gy. Kovics, Cs. Hajas and 1. Quilio

variables t, u, v, ..., the value assigned to X by t is equal to the set of s satisfying
U(s,u,v,...) with the given u, v, ... interpretations. If there is no such s, then
the interpretation: false.

In the nested tuple calculus a query has the following form:

{t [¥(@®)}-

WU(t) is a formula with one free tuple variable t. The result of this query is a
nested relation containing tuples that satisfy .

To avoid queries of which result is not computable in finite time, the notion
of safety is also extended for formulas of the nested calculus. Roughly speaking,
safe formulas are formulas having only variables limited by the content of the
database (set of relations) being queried.

Dealing with the flat relational model we know that the relational algebra
and the relational tuple calculus have equivalent expressive power. The
following theorem states that the same holds for their nested extensions. The
proof is omitted in the paper.

Theorem 3.1. The nested relational algebra and the nested relational
tuple calculus are equivalent in expressive power.

3.3. Extended operations

Although we saw in Section 3.1 that queries involving lower level attributes
can be expressed by the operations of the nested algebra, it is still desirable
to have operations that can be directly applied on lower level of relations ([3],
[12]). Beside convenience, the other reason is that a sequence of unnest and
nest is not an efficient way of performing such a query. In this section we
introduce some extended operations. Our approach is similar to the approach
in [3].

Let us first consider the set operations. For instance the way how union
works does not necessarily meets the wishes of the user. If we take the union
of two nested relations each having a tuple with the same values on all the
atomic attributes, the result will contain both individual tuples. However,
the user may want to see only one tuple with the common atomic values
and the subrelations in the tuple should be the unions of the corresponding
subrelations of the original two tuples. That is the union should be done on
each level of nesting. Similar consideration can be made for the difference and
intersection operations. With keeping the originally defined set operations,
extended set operations are introduced in the algebra with recursive semantics.
In the paper we only show the definition of the extended union, the others are
defined similarly. An example is shown on Figure 3.1.

Representations and query languages of nested relations 243

Definition 3.3. Ertended union (U¢). Let (Q,w;) and (Q,w;) be relations
and A=QNUy,.
(,w1) V¢ (Q,ws) = (Q,w'), where

W={teTa|(t €Ew AVly Ewy:tr]la #t|a)
V(tEwrs AVt Ewy: t1|a #t|a)
V(3 €Ewi Aty €Ewr: (tla =ti|la =12]a
AVX € QNUc : (X)) = t1(X) U® (X))}

a1 b1 a2 b3 a1 b1 al b1
b2 b4. b2 b2
a2 b2 a3 b1 a2 b2 a2 b2
b3 b3 b3
a2 b3 b4
b4 a3 b1
a3 b1
Rl R2 Rl UR2 Rl U R2

Fig.3.2. Union and ezlended union

The other operations (Cartesian product, selection, projection, nest and
unnest) can also be extended in such a way that they can be applied to lower
level attributes. We cannot give all the definitions here, we take the selection
to illustrate this mechanism.

Definition 3.4. Let S € S be a relation scheme. L is a selection list
on Sif L is empty, or L = {< X1p,, L1 >,....< XunF,,Ln >}, n > 1, where
X; € SNUc, F; is a selection condition on sch(X;) and L; is a selection list
on sch(X;). Xi # X; if i # j. If F; is empty then interpreted as true.

In the above definition a selection condition on a scheme means that the
condition involves only attributes occuring in the scheme.

Definition 3.5. Eztended selection (0¢). Let (Q,w) be a relation, let
F be a selection condition on € and let L be a selection list on Q. Then
0% (2 w) = (Q,w'), where
if L is empty, then ' = {t € w | F(t)},
ifL={< Xir,,L1 > ..,<Xnr,,Ln >}, n>1, then
W={teTa | cw: (Ft')Atly =t|yA
(X)) = aﬁl'Ll(sch(Xi),t’(X,-)) #0,i=1,..,n)},
where Y = Q — {Xy, ..., Xp}.
The rest of the extended operations are similarly defined, some auxiliary
notions are introduced, such as projection list for projection, nest list for nest,

244 Gy. Kovacs, Cs. Hajas and 1. Quilio

etc. We note that the extended operations can be expressed in the basic nested
algebra.

4. NF2-SQL: An SQL extension for nested relations

SQL is the most widely used query language for relational databases. We
have defined an SQL extension, referred to as NF2-SQL, which enables to
query nested relations. Recently, we have been working on the compilation of
NF2-SQL and in the first implementation only a simplified SQL extension has
been developed, similar to the one presented in [10]. In this section we present
the most important aspects of our extension. The subsections are organized
according to the three main parts of the language, the data definition language
(DDL), the query language and the data manipulation language (DML). The
data control part (DCL) is not discussed in the paper.

4.1. Data definition

The data definition language (DDL) contains statements to create and
drop nested tables (relations) and views and to change the schemes of tables.

Like in SQL, the CREATE TABLE statement has two forms, one creates
an empty table with the specified column (attribute) names and data types,
and the other creates a table based on a given query and the table will be
initialized with the result of the query.

In the former case the keyword TABLE is introduced to describe composite
columns, and the own scheme of such a column is specified after the keyword
in the usual way. It can also be specified if a column is nullable or not (WITH
NULL or NOT NULL). As we will see in Chapter 5, users may choose the
way how composite values (subtables, table-values) should be represented.
The keywords BY VALUES and BY COLUMN stand for value and column

representations, respectively. See next chapter for details about this.

Example 4.1. The following statement creates the nested table of Figure
2.1.
CREATE TABLE CLIENT ORDER
(CLIENT CHAR(20),
ORDERINGS TABLE BY COLUMN NOT NULL
(ARTICLE CHAR(15),
O_ITEMS TABLE BY VALUES

Representations and query languages of nested relations 245

(O_DATE DATE,
QUANTITY INTEGER)));

A view can be created with the CREATE VIEW statement. After the
AS keyword a query must be specified which defines the view. Optionally, the
whole (nested) scheme of the view can be given which must be compatible with
the result of the query. Nested tables and views can be dropped with the DROP
TABLE and DROP VIEW statements. No changes to the corresponding SQL
statements are required.

The schemes of nested tables can be changed with the ALTER TABLE
statement. We can ADD, DROP and MODIFY columns on arbitrary level of
nesting. This is not further detailed.

4.2. Data retrieval

The most essential part of a database language is the query language to
retrieve data stored in the database. In SQL it consists a single SELECT
statement, which is general enough to express all the queries expressable in
the relational algebra and calculi. Even more sophisticated queries can be
expressed in SQL with aggregate functions (COUNT, SUM, etc.).

The query language part of NF2-SQL, discussed in this section, consists
of the extended SELECT statement, and according to the new operations of
the nested algebra, it contains two additional statements, namely NEST and
UNNEST. First we present the essential aspects of our extension and then we
give some example queries.

A query in NF2-SQL has the following form:

<subselect> { < set_operator > <subselect> }

[ORDER BY order_column [ASC | DESC] {, order_column [ASC | DESC]
} , where

<set_operator> ::= [DEEP] { UNION [ALL | DISTINCT] | INTERSECT |
EXCEPT }

The subselects may be SFW expressions, NEST statements or UNNEST
statements, detailed later, all yielding compatible nested tables. The semantics
of the above syntax is that the given set operations are performed on the tables
resulted by the subselects and the final result is ordered by the columns (only
atomic) specified in the ORDER BY clause. The keyword DEEP before a set
operator stands for the recursive interpretation of the operation, see extended
operations in Section 3.3. For UNION the ALL keyword prescribes to keep
multiple tuples, like in SQL.

246 Gy. Kovics, Cs. Hajas and 1. Quilio

SFW expressions consist of the same clauses like in SQL, namely SELECT,
FROM and optionally WHERE, GROUP BY and HAVING, and also the
semantics 1s the same. First the Cartesian product of the tables given in the
FROM clause is performed, then the tuples satisfying the search condition
of the WHERE clause are selected. If there is GROUP BY clause then the
remaining tuples are partitioned based on the equality of values in the listed
columns. The partitions are further filtered by the search condition of the
HAVING clause, if there is. Finally, the expressions given in the SELECT
clause are evaluated.

In NF2-SQL some essential extensions for SFW expressions have been
introduced. In the FROM clause not only table and view names are allowed, but
arbitrary queries can be given to specify tables. This accords to the principle
of orthogonality in programming language design (see also [10]). The given
queries are evaluated before performing the Cartesian product.*We can assign
names (iterator variables) for the queries to refer to their tuples.

The SELECT clause of an SFW expression contains expressions. We
distinguish between atomic expressions and nested expressions. Atomic ex-
pressions are the ones allowed in SQL, that is they are built from constants of
atomic type, outermost level atomic column names, arithmetical operators and
built in function calls. Obviously, atomic expressions are not enough to express
querles on subtables, therefore we allow nested expressions to be nested in the
SELECT clause.

Nested expressions are either highest level composite column names or
restricted SFW expressions. The restriction applies to the FROM clause of the
nested SFW expression. Such a FROM clause may contain at most one (in most
cases exactly one) outermost level composite column name (not subsitutable
with query) and some other tables specified by name or query. In the evaluation
of a nested SFW expression for a tuple, the table-value of the tuple in the given
composite column is taken. Column names in the result can be specified like
m SQL.

The search condition in the WHERE clause 1s built from predicates and
the logical operators AND, OR and NOT. Predicates are atomic conditions.
Comparing to SQL we have introduced the following extensions. For compar-
ision between composite columns we have the CONTAINS and SUBSET OF
predicates with their usual meaning. With the IN predicate we can build tuples
and examine if they occur in (sub)tables, like ("John’, 20, ...) IN (SELECT ...).
All the other predicates, e.g. LIKE, EXISTS, etc., are kept without changes.

The aggregate functions COUNT, SUM, AVG, MAX and MIN are special
built in functions known from SQL. They can occur in the SELECT clause of
SFW expressions and can be applied to expressions not containing aggregation
calls. The set of values that correspond to the argument expression for each
tuple 1s taken and the result is a single value, that is the result of such a query

Representations and query languages of nested relations 247

is a table with one tuple. In NF2-SQL aggregate funcions can be applied only
to atomic expressions, except COUNT which can be applied also to composite
columns.

If we specify GROUP BY clause then the set of tuples is partitioned and
the aggregate functions are evaluated for the partitions separately giving a
value for each partition. That is the result may contain several tuples. We
allow only atomic columns in the GROUP BY clause. We can also filter the
set of partitions, the selection criteria can be given in the HAVING clause.
Similarly to SQL, the HAVING condition may contain aggregate functions.

An important point is that if aggregation is applied in a nested SFW
expression then an implicit unnest is performed if there is no GROUP BY,
because from user point of view the single tuple of the result of the expression
is part of the higher level tuple. If there is GROUP BY then the result is a
table-value, therefore no unnest should be done, even if the result contains only
one tuple.

The syntaxes of the NEST and UNNEST statements are as follows:
NEST <table>

ON column_name {, column_name} AS new_column_name
UNNEST <table>

ON column_name {, column_name}

The table can be specified by an arbitrary query in both statements. The
columns in NEST must be on the same level of nesting. The semantics of the
statements are defined by the corresponding algebraic operations. As can be
seen, more than one unnest can be performed with asingle UNNEST statement,
all the columns must be composite.

Example 4.2. Let us take the CLIENT ORDER table of Figure 2.1 and
the following ARTICLES table:

ART_NAME PRICE
Shoes 3500
T-shirt 1200
Jeans 2500

Give the articles ordered by C&A, and for each article list the quantities
of ordering items where the date of order was before 1995. In NF2-SQL:
SELECT ARTICLE, (SELECT QUANTITY
FROM ORDER_ITEMS
WHERE O_DATFE < 01/01/95)
FROM (UNNEST CLIENT ORDER

248 Gy. Kovécs, Cs. Hajas and I. Quilio

ON ORDERINGS)
WHERE CLIENT = "C&A’ ;

The result of the query:

ARTICLE ORDER ITEMS
QUANTITY
Shoes 500
100
T-shirt 150

For clients with first letter ’C’ give how much they spent on the days when
they oredered something. Only those days must be listed when the client spent
more then 300000. Let the scheme of the result be the following: (CLIENT,
DAY SPENT(O_DATE, TOTAL)).

SELECT CLIENT, (SELECT O_DATE,SUM(PRICExQUANTITY)
ASTOTAL

FROM ORDERINGS AS O2, ARTICLES AS A
WHERE A.ART NAME = O2.ARTICLE
GROUP BY O_DATE
HAVING TOTAL > 300000) AS DAY _SPENT

FROM (UNNEST CLIENT ORDER

ON ORDERITEMS }YAS O
WHERE O.CLIENT LIKE 'C% "’ ;

The result is:

CLIENT DAY_SPENT
O _DATE TOTAL
C&A 15/12/94 1930000
28/12/94 350000

4.3. Data manipulation

The DML of NF2-SQL consists of the INSERT, DELETE and UPDATE
statemens for adding new tuples to a nested table, removing tuples from a table
and modifying tuples in a table, respectively. In SQL all these statements
always refer to database tables. However, in nested tables, where tables
may contain subtables, it should be possible to perform these operations on
subtables. Since any update operation on a subtable means a modification of
the tuple in which the subtable occurs, the operation can be embedded in an
appropriate UPDATE statement on one level higher (see also [10]). This will

Representations and query languages of nested relations 249

be the mechanism to express database updates on subtables occuring on lower
level of nesting.

With the INSERT statement we can add new constant tuples to a table,
or the tuples to be inserted can be specified by a query. We do not necessarily
must assign values to all attributes, but in those cases we have to give the ones
we want to. When assigning values to composite columns, table constants,
table names or queries can be given.

The deletion of tuples from a nested table i1s based on selection criteria
which must be given in the WHERE clause of the DELETE statement. The
search conditions may be the same as in the SELECT statement. The tuples
satisfying the condition are deleted from the table.

To modify tuples in a table UPDATE statement is needed. The SET clause
of the statement specifies what new values are assigned to which columns. For
composite columns the new values can be any expressions yielding tables of
the appropriate type. Remember the role of UPDATE to carry any DML
statements to be applied to subtables. This means that on the right side of
the assignments in the SET clause also DML statements may occur. During
UPDATE only tuples are modified that satisfy the search condition given in
the WHERE clause of the UPDATE statement.

Example 4.3. Delete those ordering items of C&A where the article 1s
T-shirt and the date is 15/12/94.
UPDATE CLIENT ORDER
SET ORDERINGS = (UPDATE ORDERINGS
SET ORDER_ITEMS = (DELETE FROM ORDER_ITEMS
WHERE O_DATE=15/12/94)
WHERE ARTICLE = "T-shirt’)
WHERE CLIENT = C&A’;

5. Relational representation

As we said before, we have been implementing a DBMS supporting nested
relations. We build our system on relational DBMSs, such as Ingres and Oracle.
In this approach nested tables are represented with flat relational tables and
NF2-SQL statements are translated to SQL statements manipulating those
representing tables. In this chapter we shortly present how we represent nested
relations with flat tables.

250 Gy. Kovacs, Cs. Hajas and 1. Quilio

One possibity is that table-values occuring in nested tables are stored
in separate flat tables and the tuples to which the subtables belong to only
contain references (table names) to the corresponding flat tables. If the
subtables themselves contain table-values then the same principle can be
applied recursively. This way of representation is referred to as the value
representation.

Since subtables being in the same composite column have the same scheme,
they can be stored in one flat table. However, in such representation we must be
able to determine that which tuples of the flat table belong to the same table-
values and to which higher level tuples those table-values belong. To solve
these problems we add a new column (DOWN) to the flat table representing
the (outermost) nested relation and we put unique tuple identifiers into this
column. The flat table storing the tuples of subtables occuring in a composite
column is also augmented with an additional column (UP) where references
(tuple identifiers) to the higher level tuples are placed. Notice that doing this
we have solved the whole problem, because with an appropriate selection on
the flat table we can get the tuples that belong to a given higher level tuple.
This representation can be applied recursively on each level of nesting and is
referred to as the column representation.

Since the described representations are related to composite columns and
not tables, it is possible to mix the value and column representations when
representing a nested table. On the other hand for perfomance reasons it is
good to keep both representations. The choice is passed to the user by allowing
the TABLE BY VALUES and TABLE BY COLUMN options in the CREATE
TABLE statement of NF2-SQL.

Obviously, not only the contents of nested relations must be represented,
but also some meta data, e.g. the schemes of nested relations. We do not
further discuss this part, we only note that all the meta data are stored in flat
tables and are maintained by the system via SQL.

6. Conclusions, towards object-oriented databases

In this paper we have given an overview of the nested relational model, an
extension of the relational data model where the first normal form assumption
is omitted. The nested relational algebra and calculus have been discussed
and an SQL extension, called NF2-SQL, have been presented. Finally, we have
shown how nested tables can be represented with flat relational tables.

Although the nested model provides structuring facility, it is not satis-
factory for more advanced applications, e.g. multimedia and geographical

Representations and query languages of nested relations 251

applications. More general and powerful models can be obtained by integrating
database models with object oriented concepts. Working on such models have
become very popular nowadays (e.g. [1], [6]).

In [1] a database model called ODMG is provided as a standard proposal
for object oriented databases. An object database consists of collections
of objects. All the well known object oriented concepts (classes, methods,
inheritence, object identity, polymorphism, etc.) are parts of the model. Also
they make a clear distinction between attributes and relationships. An object
definition language (ODL) is given to create types and objetcs. They also
propose an object query language (OQL) for querying collections with an
SQL-like syntax. Although the proposed model fits into the object oriented
paradigm, from database management point of view it has several critical points
(see [6]), e.g. there are no database update operations, views are not supported,
invocation of methods in queries are not controlled, etc. We think that a good
implementation is quite far because of the technical problems.

The ODMG model can be considered as a generalization of the nested
relational model. In our view the nested model is considered as an intermediate
step towards object oriented databases. We believe that some of the problems,
e.g. lack of updates, might be overcome by investigating how the solution for
the nested model could be generalized. Our future work will be focussed on
such investigations.

References

[1] The object database standard: ODMG-93, ed. R.G.G. Cattell, Morgan
Kaufmann Publisher, San Francisco, 1994.

(2] Codd E.F., A relational model of data for large shared data banks,
Commun. ACM, 13 (6) (1970), 377-387.

[3] Colby L.S., A recursive algebra for nested relations, Inf. Systems, 15 (5)
(1990), 567-582.

[4] Garnett L. and Tansel A.U., Equivalence of the relational algebra and
calculus for nested relations, Computers Math. Applic., 23 (10) (1992),
3-25.

[5] Gyssens M., Paredaens J. and van Gucht D., A uniform approach
towards handling atomic and structured information in the nested rela-
tional database model, J. ACM, 36 (4) (1989), 790-825.

[6] Kim W., Observations on the ODMG-93 proposal for and object-orientat-
ed database language, SIGMOD RECORD, 23 (1) (1994).

252 Gy. Kovacs, Cs. Hajas and 1. Quilio

[7] Levene M. and Loizou G., Semantics for null extended nested relations,
ACM Trans. Datab. Syst., 18 (3), (1993), 414-459.

[8] Pistor P. and Andersen F., Designing a generalized NF2 model with
an SQL-type language interface, Proc. 12th VLDB, Kyoto, Japan, 1986,
278-285.

[9] Paredaens J., de Bra P., Gyssens M. and van Gucht D., The
structure of the relational database model, Springer, 1989.

[10] Roth M.A., Korth H.F. and Batory D.S., SQL/NF: A query lan-
guage for ~1NF relational databases, Inf. Systems, 12 (1) (1987), 99-114.

[11] Roth M.A., Korth H.F. and Silberschatz A., Null values in nested
relational databases, Acta Inf., 26 (1989), 615-642.

(12] Schek H.J. and Scholl M.H., The relational model with relational-
valued attributes, Inf. Systems, 11 (2), (1986), 137-147.

[13 JUlman J.D., Principles of database and knowledge-base systems, Vol 1.,
Computer Science Press, Rockville, Md., 1988.

Gy. Kovacs Cs. Hajas

Laboratory of Informatics Inst. of Mathematics and Informatics
Computer and Automation Institute Kossuth Lajos University

Hungarian Academy of Sciences H-4010 Debrecen, Pf. 12.
Lagymanyosi u. 11. hajas@math klte.hu

H-1111 Budapest, Hungary
kgy@ilab.sztaki.hu

I. Quilio

PRISM Laboratory

University of Versailles

45, avenue des Etats-Unis
78035 Versailles Cedex, France
Isabelle.Quilio@prism.uvsq.fr

