Annales Univ. Sci. Budapest., Sect. Comp. 17 (1998) 219-234

QUASI-STRUCTURED PROGRAMS

J. Kiho (Tartu, Estonia)

Abstract. In order to increase productivity of program development,
several diagramming techniques have been developed to complete con-
ventional pure-textual program representation methods. To handle real
software, it is important to have tools for processing also non-structured
programs. In this paper the concept of quasi-structured programs and the
corresponding formal notation are introduced. It is proved constructively
that any reducible flowgraph can be represented by a quasi-structured
program under the strong equivalence. On the other hand there exists
a quite natural way to represent quasi-structured programs in the form of
most comprehensible diagrams. Therefore the concept may serve as a basis
for further theoretical research as well as for developing effective tools for
quasi-structured programming and software engineering.

1. Introduction

The concept of well-structured programming techniques, having roots in
sixties and intensively developed in seventies, is still of great importance in the
field of software engineering. This approach has proved especially fruitful as
the basis for higher level design methods and tools. Decomposition of given
complex problems into clearly nested one-entry-one-exit subproblems which, in
turn, are decomposed in the same way, facilitates developing comprehensible
and reliable software. However, it should be noted that attempts to extend
this approach to lower level programming techniques have failed. The famous
call for gotoless, i.e. well-structured programming style was not too inspiring.
In fact, the proposed self-restriction to pure if-then-else, while, etc. control
structures was never fully accepted by the programmers’ community, nor by
programming languages designers. All conventional and widely used imperative
languages provide means (goto and alike) for jumping from a statement out to

220 J. Kiho

some outer level. Similar possibilities are found in many higher level (data base)
systems, too. Of course, source texts where such jumps are heavily used tend to
be unclear and less reliable (see Figure 1). Under the pressure of well-structured
programming ideology, such programs are often called ”unstructured” or even
"ugly”. For this reason, even a skilled programmer who has developed a piece
of highly effective and correct code using gotos may feel some embarrassment
about the result. On the other hand there may not exist a natural way to
express the idea (i.e. flowgraph) of his/her algorithm in the well-structured
manner. It has been proved [4] that an arbitrary flowgraph can be represented
by means of one-entry-one-exit constructs as an algorithm which, in general,
is only weakly equivalent to the original one. It means that the programmer
should use some artificial tricks, such as duplicating some parts of code etc.,
which are not inherent to his idea of solving the task.

Actually, in most cases the incomprehensibility of the ”unstructured”
program is just due to the restricted expression power of textual representation
form. It may be often overcome by choosing one of the appropriate graphical
representation methods. A lot of such techniques have been developed [5],
however, only a few enable to represent more than simply well-structured algo-
rithms and, at the same time, serve as real programming tools. One example
of the suitable diagramming techniques is the so-called sketchy programming
method developed in Tartu [2]. In Figure 1 the sketch corresponding to the
given piece of "ugly” Pascal-code is shown. Such a diagram is obviously much
more comprehensible and there is no reason to call it unstructured. It should
be mentioned that the sketch may be obtained automatically from the Pascal-
code, and also automatically reduced to an even more simple (and strongly
equivalent) sketch.

We shall use the sketchy notation also for algorithms in this paper.

Beside inherently ”unstructured” algorithms leading to ”unstructured”
programs, another essential source of such programs come from software reverse
engineering, when existing software (written in some lower level language) needs
rewriting and restructuring for the purpose of reuse.

Another possible approach, as opposed to structured programming, is to
consider non-structured (real) software as the "regular” one and well-structured
programs rather as exceptions. It involves the need for the corresponding
research and development of appropriate (apparently non-textual) tools. In
this paper the concept of quasi-structured programs is introduced. It has been
developed as a generalization of the sketchy representation form and is more
suitable for theoretical analysis. Instead of several sketch types only one type
of ”building” blocks is used - the simple sketch where also weak arrows are
allowed. Accordingly, the syntax of quasi-structured programs is extremely
simple, and the semantics can be easily formalized. On the basis of this concept

Quasi-structured programs 221

and corresponding theoretical results, several applied systems may be derived,
for instance, by defining specific control constructs as special cases of quasi-
structured blocks.

1l

repeat
= repea

begi
52 5
begin

1513? if t1 then begin S3: goto L1 end;

54 S4;
127 if t2 then goto L2;

55 S5;

end;

begin
13? if t3 then goto L2
else
begin
14?7 if t4 then begin S6; goto L3 end

end; L3 :;
end;
end; L2 ;
(j‘! if 5 then break else ST
51

until false;

S8 S8;
until false; L1 :;

Figure 1. An "ugly” Pascal-code (on the right)
and its sketchy diagram (on the left)

A quasi-structured program consists of clearly nested blocks, but there is
no restriction for jumping to any outer level block. Even more, such jumps
(i.e. multilevel ezits) are among the basic control features, together with
some conditional jumps inside the blocks. Thus, the well-structured programs
form the subclass of quasi-structured programs (where only the closest outer
blocks are exited). As for expression power, it is possible to construct a quasi-
structured program, strongly equivalent to a given reducible flowgraph, i.e

222 J. Kiho

flowgraph which does not contain loops with multiple entries [1). The main
theoretical result of this paper is the constructive proof of the fact.

2. Quasi-structured program representation

In this section we introduce a program representation method which
enables to build programs, combining program primitives into the specific
control structures. Each building construct as well as the whole program has
a clearly structured nested-block form. However, jumps to outer level blocks,
violating structuredness in the strict sense, are here present among regular
control features. Hence, the programs are called ”quasi-structured”.

Focusing on the program control structures we suppose that other program
elements (such as types, constants, variables, statements etc.) come from a
certain host language. The basic element of quasi-structured programs is a host
language expression together with an associated decision domain. The decision
domain 1s a finite sequence of host language expressions, called the choices. We
denote z?\ ¢1,ca,...,cm\ a primitive, where z is a host language expression
having the decision domain (cj, ¢z, ...,¢m), m > 0. For better understanding,
one can imagine that choices are just the labels at arrows leaving corresponding
to = box in the program flowchart.

We assume that any primitive can be evaluated. Evaluation of

z? \ ¢1,¢2,...,6m\ means making (possibly) some changes in the program
state (according to z), inspection the decision domain and returning a choice
number in {1,2,...,m}. The primitive with a single choice, 7 \ c;\ returns
always the value 1; we call it an action and denote simply z. The primitive
with no choices (if m = 0), 7\ \, cannot return any value, and is called a
stop action. Other primitives, which have the number of choices m > 1 may
return different values, so making real decisions, and are called the conditions.
A condition z? \ true, false\ is called a Boolean condition, and denoted z?,
if z is a host language Boolean expression and the choice is 1 iff z. There
exist, of course, conditions with more rich decision domains, for instance,
z?\" A"/ G/ X — W', others\, or y?\a< 10,a=11Va=13,a > 25 b= 1\.
Such conditions usually correspond to headers of case or switch statements,
and the decision making mechanism depends much on the host language. In
most cases, we omit the decision domain and explicitly (in parenthesis) give
only the number of choices at a primitive, so t?(m) denotes a condition which
has m choices in its decision domain.

Quasi-structured programs 223

A program segment is a sequence of 0 or more members. The control
member is either an arrow or a condition. The erecutive member is either an
action (or empty statement A) or a block.

The program block or simply block is a program segment surrounded by
special brackets. We shall use two forms of program representation: textual
and graphical. Let II be a program segment. Then corresponding block is
textually represented by [II] and graphically by

[n

In the last case, II is represented by a vertical sequence of its members.

A block B is nested in a block B’, if B is a member of B’ or there exists
a block B” such that B is nested in B” and B’ is nested in B’. If a block B
is nested in a block B’, then B is called also the inner block of B’, and B’ is
called the outer block of B.

Let B = [by by ... b,] be a block. By the definition, the member b;(1 < i <
< n) is either an action, or an arrow, or a condition, or a block. Quite naturally,
we say that members of B, as well as members of its nested blocks ”occur in”
(or ”belong to” or ”are in”) B; also, block B ”contains” (or "has”) b if b occurs
in B. For instance, "block B contains no arrows” means that the block is
arrow-free as well as any of its nested blocks. To emphasize that a certain
action (or arrow or condition or block) occurs in B as its member, we call it
"member action” (”member arrow”, "member condition”, "member block”).
For instance, if ”block B has no member arrow”, B may contain arrows in
some of its nested blocks anyway.

Definition 2.1. A quasi-structured program is a block which is not
included in any segment.

The levels in a quasi-structured program are defined as follows: the
program itself is at level 0 (has level number 0); if a block has level number /,
then all its members are at level | + 1. When appropriate, the level number of
a block may be explicitly shown as a superscript at a block bracket (we use it
mainly at the opening bracket): P,['II]P, denotes a quasi-structured program
including a block [II] at level I. Note that in a general form of a quasi-structured
program the matching brackets are either both hidden or both explicit. So, for
instance, in the latter example any bracket in II can have a match only in II,
while a bracket in P; may have a match either in P; or in Ps.

There are two kinds of arrows: 1¢ is called the strong arrow, or simply
arrow, while 1(¢) stands for the weak arrow. Every arrow has its endpoint level
e - a natural number. The endpoint level of any arrow at level [must be less

224 J. Kiho

than . The formal syntax of block structure may be described as follows, given
the set of predefined symbols {empty, unsigned_integer, primitive}.

block ::= [segment]

segment ::= empty | member | segment member
member ::= primitive | arrow | block

arrow ::= strong_arrow | weak _arrow
strong_arrow ::=1endpointlevel

weak _arrow :::T(endpoint_leuel)

endpoint_level ::= unsigned_integer

In general, the quasi-structured program, as well as any of its nested blocks
is supposed to be executed sequentially, member by member. This order can
be changed only by control members (i.e. arrows and conditions), describing
unconditional and conditional jumps. Their semantics will be briefly considered
later on.

Execution of a (nonempty) block always starts with the execution of its
first member. Ifit, in turn, is a block, execution of the first member of the latter
starts etc., until a primitive occurs as a next ”first member”. In particular, it
means that the first primitive to be executed in a block [Ly . ..], where L stands
for 0 or more left brackets ’[’, is certainly the element y. When started (and
not stopped by a stop action), the execution of a block B leads either (a) to
the end or (b) to the beginning of block B or any of its outer blocks. In the
case (a), i.e. if execution leads to the end of a block B we say that the block B
1s finished. Note that when started, execution of a block not necessarily leads
to the end of this block, so the block can remain unfinished. It is assumed that
an (non stop) action will be finished (when started). After finishing a member,
execution of the next member at the same level starts. After finishing the last
member of a block B, execution leads to the end of block B, i.e. B is also
finished. There are other possibilities to finish a block, due to conditions and
arrows. Program halts when 1t has been finished or a stop action in it has been
executed.

Let 7° be a member arrow of a block B in a quasi-structured program.
Ezecution of the strong arrow 1¢ finishes the outer block at level e.

Let 1(¢) be a weak member arrow of a block B at level | in a quasi-
structured program. Ezecution of the weak arrow 1(¢) leads to the beginning of
the outer block B’ of level ¢, i.e. the execution continues from the first member
of B'. In particular, 1) continues from the beginning of B.

While (strong) arrows represent unconditional forward jumps (multilevel
exits), weak arrows correspond to unconditional backward jumps (multilevel
continues to form loops).

Quasi-structured programs 225

In the graphical form, the arrow with endpoint level e is represented by a
left arrow, reaching the bracket of the outer block at level e. The weak arrow
is shown by a similar, but dotted left arrow (see Figure 2).

level 0
rSo ---level 1

level 1
[S
t?
S,

---level 2

level 2
:75'3 ---level 3

--- level 3, prolonged arrow (endpoint level: 1)

?
<5
Ss ---level 3

Se¢ ---level 2

i3

Fig.2. A quasi-structured diagram

Conditions allow to the program conditional forward jumps. Let t?(m)
be a condition in a block B = [II; t?(m) 1], where II;, II; are some segments.
Ezecution of the condition t?(m) is followed by a jump iff the choice number
it > 1 has been returned. In that case, if there are less than 7 — 1 member
arrows in the block tail segment II,, following the condition, block B is finished,
otherwise the execution continues after the i—1-st member arrow in its segment
part II,.

In particular, this semantics is valid for actions as well. An action z =
= z7(1) never causes a jump because the choice is always 1. In the special case
of a Boolean condition t?, where ¢ is a host language Boolean expression, the
following simpler rule is obtained.

Evaluation of a Boolean condition to false causes a jump: if there are no
member arrows in the tail segment of the block, the block is finished, otherwise
the execution continues after the first member arrow in the tail segment of the
block.

The meaning of conditions in quasi-structured programs is clearly specific.
It may be formulated more precisely as follows.

Let B = [II; X II5] be a block where II;, II; are some segments, X — the
currently finished block or action, 7 — the choice value returned by X (i = 0 if
X is a block). Let n be the number of member arrows in Il; in the case n > 0
we assume that that the member arrows in II; are numbered 1,2,..., n. The

226 J. Kiho

segment Il is considered consisting of two subsegments, Il = M55, where
9 is the initial part of II; until the i-th member arrow (incl.); if i = 0 then
% is empty and II§ = Iy, if ¢ > n then II5 = II; and II§ is empty. The
control activity performed after finishing X depends on the length of II;: if Il
is empty then block B is finished, otherwise the first member of II% is executed.

However, as we shall see in the next section, the quasi-structured control
methods are quite universal.

The condition t?(m) in a segment I = I1,¢?(m)Il; is called open, if there
is less than m — 1 member arrows in the segment tail part II, following the
condition. Otherwise the condition is called closed. A segment II is called
condition-closed, if it does not contain any open member condition. The
concept of condition-closedness has an important role in theoretical reasoning
about rules for automatic reducing of quasi-structured programs [3].

3. Block structure of reducible flowgraphs

The block structure of a given set X is a hierarchical partition of the set:
a block on X is a finite linearly ordered set of members, where the member is
either an element of X or a block. A block B is called a block structure of X,
or simply block of X, if each element of X occurs in the block exactly once.

Elements of X which occur in a block B we call also elements of B, and
the fact that £ € X occurs in B denote by z € B, too.

A block uniquely defines a linear order of its elements: it is the order in
which the elements occur in the block. The first element of a block B is said
to be on top of B.

To keep similarity to the program blocks from the previous section we
represent a block as a list (string) of its members, included between block
delimiters [/].

For instance, B = [z[[y]t]z] and B’ = [[zy][t]] are just two sample blocks
of X = {z,y,2,t}. As we shall see later on, blocks of program primitives
can be easily converted into corresponding program blocks by inserting some
arrows (which implement jumps to the beginning or end of some outer blocks).
Therefore it is reasonable to define accessibility in blocks as follows.

Definition 3.1. Let B be a block of X. An element y € X is accessible
from an element x € X in B (denoted: z--- > y in B), if y follows directly

Quasi-structured programs 227

(except any number of brackets '[') after the opening or closing bracket of a
block containing z, i.e. B has the form

or
(Ly...z..]...,

where L stands for null or more brackets '['.

For instance, in the example block B’ above, z is accessible from every
element, 2z 1s accessible from z and y, y and ¢ are not accessible at all.

Lemma 3.1. The first element in a block is accessible from every element

in the block.
Proof. Obvious.
Note that = --- > z iff z is the first element in a block.

Definition 3.2. Let X be a block structure of nodes in a graph (N, A) and
A’ the accessibility relation on N defined by block B. The condition A C A’ s
called the conformity condition for the block structure of the graph nodes. A
block B of nodes N is called a conformity block structure for graph (N, A)
if the conformity condition holds.

In the following, we consider also blocks of a special form.

Definition 3.3. Given a sequence of blocks By, By, ..., Bx (k > 0), the
composed block [[...[[B1]B2] .. |Bk] 1s called the topoblock and denoted by
tb(B1, Ba, ..., Bi).

Lemma 3.2. In any topoblock tb(By, Bs, ..., B,) the first element in the

block B; (1 < i < n) is accessible from every element in any previous block
Bj (1<j<y).

Proof. Obvious.

Lemma 3.3. Let G = (N,A) be an acyclic graph of blocks and
B = tb(By1, B, ..., By) a topoblock of its nodes, where (By,B2,...,By) is a
topological order of N. For every arc (B;, B;) € A, the first element in Bj is
accesstble from every element in B;.

Proof. Follows from Lemma 3.2, because if (B;, Bj) € A then i < j.

Theorem 3.1. For any acyclic graph (N, A) there exists a block of its
nodes N such that the conformity condition holds.

Proof. Let (z1,z3,...,2,) be the sequence of nodes of G in a topolog-
ical order. Then topoblock [[[...[[z1]z2] ..]zn-1]z.] satisfies the conformity
condition.

228 J. Kiho

Definition 3.4. A flowgraph is a triple G = (N, A, s), where (N, A) is a
finite directed graph, and there is a path from the start node, s € N, to every
node.

Definition 3.5. Let G = (N, A,s) be a flowgraph and let h be a node of
G. The interval with header h, denoted by I(h), is the block on nodes of G
constructed as follows:

B = [h]

~
"E

find a node « such that
z ¢ I(h) and z # s and all arcs entering z leave nodes in I(h);

z found 7
I(h) := [I(h)m]

Lemma 3.4. Interval I(h) is a topoblock of its elements, and h is on top
of 1t.

Proof. Obvious from the interval construction.

Conventionally, interval is considered simply as a subset of nodes which,
in our case, is just the set of nodes occurring in our ”block interval”. In spite
of having an additional block structure for intervals, all the results obtained for
”conventional” intervals are valid for the node sets of our ”block intervals”. In
particular, we make use of the following lemma and theorem, which are from

(1)

Lemma 3.5. Let G = (N, A,s) be a flowgraph, and let I(h) be an interval
of G. Every arc entering a node of the interval I(h) from the outside enters
the header h; that is, an interval is single-entry.

Theorem 3.2. There ezists an algorithm which for any flowgraph con-
structs a set of disjoint intervals whose union is all the nodes in the flowgraph.

In the following we consider derived flowgraphs, whose nodes are blocks
composed from the nodes of an (original) flowgraph.

Definition 3.6. Let G = (N, A,s) be a flowgraph. The sequence of
derived flowgraphs Go = (No, Ao, s0),G1 = (N1,4A1,81),... ts called the
derived sequence for the original flowgraph G if

a) Ny is the set of single-node blocks of elemenis N, i.e. [z] € No iff

z € N, and Aq is the corresponding set of arcs: ([z],[y]) € Ao iff (z,y) € A,
and so = [s];

Quasi-structured programs 229

b) for 0 <7, Ny, is the disjoint set of intervals in G;, and (X,Y) € Aiyq
if for each X #Y and for some x € X, y € Y .there is an arc (z,y) € A;

c) sip1 = I(s;).

We denote nodes of an original flowgraph by z,y, ... and nodes of derived
flowgraphs by X,Y, ..., i.e X,Y,... are blocks on the node set of the original
flowgraph.

Lemma 3.6 Let Gy = (No, Ao, 50),G1 = (N1, A1,51),... be a derived
sequence for G = (N, A, s).

a) The set of nodes N; (0 <) of any derived flowgraph defines a partition
of the set N: every element of N occurs exactly once and ezactly in one node
Of Ni.

b) s is on top of s; (0 < 19).

Proof. Inductive hypothesis: For the flowgraph G; every element of N
occurs exactly once and exactly in one node in N;, and s is on top of s;.

Basis: (i = 0). Obvious for Gj.

Inductive step: (i > 0). Assume the inductive hypothesis is true for i — 1,
and consider the case for z.

a) Let z be an arbitrary node in M and X anode in N;_1, where z uniquely
occurs (such a node X exists by the inductive assumption above). By Theorem
3.2, during the construction of the derived flowgraph G, the set of nodes of the
previous derived flowgraph G;_; is partitioned. In particular, it means that the
node X occurs exactly once and exactly in one block in N;, and, consequently,
so does the element z.

b} By construction of interval s; = I(s;—1) and s;—; is included in s; first
of all. So the first element in s;_; (which by the induction hypothesis is s)
becomes the first element in s;.

Lemma 3.7. Let Gog = (No, Ao, S0),G1 = (N1, Ay, s1),... be a derived
sequence for G = (N, A,s). For every derived flowgraph G; (0 < 1) and every
pair of ils distinct nodes X,Y € N; holds: every arc in G which leaves (a node
belonging to) X and enters (a node belonging to) Y, enters the first node of Y.

Proof. Inductive hypothesis: For the flowgraph G; and every pair of its
distinct nodes X,Y € N; holds: any arc in G which leaves X and enters Y,
enters the first node of Y.

Basis: (2 = 0). True, since in Go any node Y contains only a single node
of G, which is also the first element of Y.

Inductive step: (¢ > 0). Assume the inductive hypothesis is true for i — 1,
and consider the case for ;. Let X and Y be two distinct nodes in G;, i.e.
intervals in G;_;, and (z,y) be an arc in G which leaves X and enters Y, i.e.
z € X,y € Y. We have to prove that the node y is the first element of Y. Since

230 J. Kiho

intervals are disjoint, in G;_; there exist two distinct nodes, say X', Y’ such
that z € X',y € Y'. By the inductive hypothesis, the arc (z,y) € A enters the
first node of Y’. In other words, y is on top of Y’. Due to the arc (z,y), there
is also the arc (X’,Y’) in the derived flowgraph G;_,. For the interval Y’ it is
an arc ”from outside” and, therefore (by Lemma 3.5), Y’ is the header of the
interval Y. So, by the construction of interval, Y’ is included into the block Y
first of all, and its first node y becomes the first node in the block Y as well.

Definition 3.7. A flowgraph G is called reducible if for some k > 0 the
k-th flowgraph Gy in the derived sequence is a single node with no arc.

Theorem 3.3. For every reducible flowgraph G = (N, A, s) there exists a
conformity block structure of its node set N.

Proof. Let Gy = (No, Ao, s0), G1 = (N1, A1, 51), . .. be a derived sequence
for G = (N, A, s). First, we prove that for every derived flowgraph G; (0 < 7)
holds: if X is a node in graph G; and a pair of nodes z,y € X form an arc in
G, (z,y) € A, then z--- > y in the block X.

Inductive hypothesis: for every node X of graph G;, if a pair of nodes in
X, z,y € X, form an arc in G, (z,y) € A, then z--- > y in the block X.

Basis: (¢ = 0). Every node of Gy is a block [z] of a single node where
z € N, and z is accessible from itself as the first element of a block. Therefore,
if (z,z) € A (the only possible arc in the case), - > .

Inductive step: (i > 0). Assume the inductive hypothesis is true for G;_,,
and consider the case for G;. Let Z be a node in Gj, z,y - any two elements of
the block Z forming an arc in G (i.e. z,y € Z, (z,y) € A), and X,Y - nodes of
G;_, containing z,y correspondingly (z € X,y € Y). Consider the following
two cases:

a) X =Y. The elements z,y belong to the same node of G;_;. By the
inductive hypothesis, ¢ - - - > y in the block X. Block X is included as a whole,
1.e as a member into the interval Z, therefore z - -- > y in the block Z as well.

b) X # Y. The elements z,y belong to different nodes of G;_;. Since
(z,y) € A, there exists an arc (X,Y) in G;_;. By Lemma 3.7, y is on the top
of Y. Consider two subcases.
bl) Node Y is the header for the interval Z. Then Y is included into Z as

the first member block. Therefore y is also the first element in Z and, by

Lemmad.l,z--->yin Z.
b2) Node Y is not the header of Z. By Lemma 3.2, Z is a topoblock. Due to

the arc (X,Y) in G;_;, Y follows X in any topological order of nodes in

Gi-i,s0Z =tp(...X,...,Y...). By Lemma 3.2, z--- > y in Z, and this

completes the induction.

Quasi-structured programs 231

Finally, since G = (N, A, s) is reducible, there exists £ > 0 such that G,
in the derived sequence has only one node, Gx = ({X},0,{X}) where X is a
block of N. Applying the inductive hypothesis for : = k proves the theorem.

Usually flowgraphs are control flow models of real programs. It means
that each node in a flowgraph corresponds to a primitive action or test and
arcs define the execution order: nodes with outdegree 0 are the stop nodes, for
any other node z one of its successors is to be chosen after the execution of z.
So a flowgraph itself may also be considered as an abstract executable program.
The execution starts from the initial node, and ends after a stop node has been
executed.

We assume that nodes of such flowgraphs come from a set P of program
primitives as described in the previous section. Each element in P is a string
of the form t?(m). Of course, we can have (as much as needed) semantically
equivalent elements in P which differ only by some negligible syntactic details,
by the number of tail blanks, for instance. Thus, we need not to introduce
graphs with labeled nodes.

Definition 3.8. A flowgraph G = (N, A,s) is called a program flow-
graph if

a) NCP,;

b} the outdegree of any node x in G is equal to the number m of choices
in ¢ =t?(m);

c) each subset of arcs in A leaving the same node s linearly ordered, 1.e.
for any node £ = t7(m) the arcs leaving are numbered by 1,2,...,m.

Definition 3.9. Let P, and P, be two programs constructed from some
primitives in P. The programs Py and P, are called strongly equivalent
if the set of primitives occurring in Py is the same as the set of primitives
occurring in P, and the ezecution paths (the sequences of ezecuted primitives)
of the programs are identical for every input.

Theorem 3.4. Algorithm A constructs from a reducible flowgraph G =
= (N, A, s) a quasi-structured program X which is strongly equivalent to G (see
Figure 3).

Proof. First, A constructs a quasi-structured program. By Theorem 3.3,
step I is executable and yields a quasi-structured program X (without any
arrow 1n it). Any further changes of X - insertions some member arrows after
an element z in an inner block [z], do not change the accessibility relation
for primitives in X, nor violate the construction rules for quasi-structured
programs. Hence, A constructs a quasi-structured program X. Also, after
step I, block X contains all elements of N and only those. Since during the

232 J. Kiho

further construction no primitives are added to X or removed from it, the result
X contains all elements of N and no other primitives.

Algorithm A.
rGiven: a program flowgraph G = (N, A4, s)
Assumption: G is reducible
Result: corresponding to G quasi-structured program X
I. Find the conformity block structure X for G
— II.
xVz,z€N

---Let £ =t?(m) and (y1,¥2,.--,ym) be the list of successors for =
III.
*Vi,i€{1,2,...,m}
- - - Since X is the conformity block structure there exists { > 0 such that
---(@) X=...["..[z]..]Ly. ..

---or
---(b) X=...["Ly...[z]..]...
case(a)?
(:‘ri:zfl - - - in the case (a)
a; ;=1 - - _in the case (b)

IV. Replace [z] in X by [zenasz...om)

Fig.3. Algorithm for translating a flowgraph

Second, consider the execution of programs G and X for an arbitrary
input. In G the execution starts from the initial node s. Block X is the
single node of a derived flowgraph ({X},0,{X}), therefore, by Lemma 3.6
(b), s is on the top of X, and is to be executed as the first primitive in X.
So both programs start from the initial primitive s. Let (z1,z2,...,z%) be a
common (so far) execution path where z; = s and z(1 < k) is the currently
executed element. If z; is a stop action, executions of both programs stop
at identical execution paths. Otherwise, zx = t?(m), m > 0, and the choice
i € {1,2,...,m} has been made. In the case of G it means that the next node
to be executed (and added to the execution path) is node y; from the successors
list (y1,¥2,--.,ym) of node zx. In the case of X, the first element of a block
B = [zraja; ... am] was executed last. After that, by definition of execution
semantics for quasi-structured programs, the arrow a; is executed. If a; =1/
is a strong arrow then (case ain A) X = ...[".. .[zay@s...am]..)Ly ... and
execution of the block of level ! finishes, and following it the next member
(beginning with Ly; ...) will be executed. So the next primitive executed (and
added to the execution path) is y;. If o =10 is a weak arrow then (case
bin A) X = ...['Ly;...[za1az...am] .]... and execution continues from

Quasi-structured programs 233

the first member (beginning with Ly, ...) of the block of level /. So the next
primitive executed (and added to the execution path) is y;. Hence, the two
programs continue always at the same execution path.

4. Conclusion

It has been shown that quasi-structured programs are rather universal,
despite their extremely simple syntax and semantics. From practical point
of view, the possibilities to represent program structure naturally by suitable
graphical means are of great importance. For further theoretical research,
formal notations introduced in this paper as well as results of analysis may be
useful. Among the issues are: rules and algorithms for structural simplification,
verification, parallel control structures etc.

Several instrumental tools may be developed to support quasi-structured
approach. Many such tools are independent from host-languages and can be
integrated into corresponding multi-language software systems. Also, since
quasi-structured programs are closely related to reducible flowgraphs, a number
of problems involving flowgraphs may be redefined in terms of quasi-structured
programs. For instance, the problem of eliminating gotos from a code is re-
ducible to the task of recompiling the code via quasi-structured representation.

References

[1] Hecht M.S., Flow Analysis of Computer Programs, Elsevier North-
Holland, 1977.

[2] Kiho J., Diagramming techniques and sketchy programming, Proc. 2nd
Symposium on Programming Languages and Software Tools, Pirkkala,
Finland, 1991, 78-82.

[3] Kiho J., Self-reducing control structures in the sketchy programming envi-
ronment, Proc. Nordic Workshop on Programming Environment Research,

Lund, 1994, 333-334.

[4] Kosaraju S.R., Analysis of structured programs, J. Comput. System
Sci., 9 (3) (1974), 232-255.

(5] Tripp L.L., A bibliography on graphical program notations, ACM SIG-
SOFT Software Engineering Notes, 14 (6) (1989), 56-57.

234

J. Kiho

J. Kiho

Department of Computer Science
University of Tartu

2 J. Liivi Street

EE-2400 Tartu, Estonia
kiho@cs.ut.ee

