Annales Unwv. Sci. Budapest., Sect. Comp. 17 (1998) 201-217

MECHANIZING INVARIANT PROOFS
OF JOINT ACTION SYSTEMS

P. Kellomaki (Tampere, Finnland)

Abstract. This paper describes a system for mechanically deriving invari-
ants for specifications given as joint action systems. We have implemented
a tool which converts specifications in the DisCo specification language to
the logic used by the PVS theorem prover. The tool derives instructions
for the theorem prover for carrying out most of the proofs without user
intervention. As an example, an invariant for a simple communication
protocol is derived, and some empirical results about the performance of
the system are given.

The main contributions of the paper are the formalization of DisCo
specifications in PVS, and the idea of deriving proof strategies for the

theorem prover from the original specification.

1. Introduction

This paper describes a systemn for mechanically deriving invariants for
specifications given as joint action systems. We have implemented a tool which
converts specifications in the DisCo specification language to the logic used
by the PVS [13] theorem prover. The tool also derives instructions for PVS
to carry out most of the proof without user intervention. We use a simplified
version of the protocol proposed in [14] and analyzed in [8, 9] to show how
invariant proofs are obtained with our system.

This work was carried out when the author was visiting the Department
of Computer Science, Royal Holloway and Bedford New College, University of
London with Comett funding.

202 P. Kellomaki

The main contributions of the paper are the formalization of DisCo
specifications in PVS, and the idea of deriving proof strategies for the theorem
prover from the original specification.

spec
spec”

Gompilea—‘ spec’ —C pdp PVS
strategy

animation proof

Fig.1. The DisCo specification environment

The pdp (short for Prepare DisCo Proof) tool is intended to be a part, of the
DisCo specification environment [7, 10, 15]. Figure 1 shows the components of
the environment, and the path from a specification to an invariant proof. The
user writes a specification spec in the DisCo specification language and gives
the specification to the DisCo compiler. The compiler produces an intermediate
representation spec’ of the specification, which is given to pdp. The pdp tool
then converts spec’ to spec”, which is suitable as input to the PVS theorem
prover.

The pdp tool also produces a custom proof strategy for proving each
proposed invariant of spec, given in the specification. The strategy contains
instructions for the theorem prover as to which inference steps to apply when
proving each invariant. Invariant proofs always have the same structure, and
the pdp tool uses this for automating the routine parts of proofs. When
proving an invariant, PVS reads spec’’ and the generated strategy, and executes
the steps in the strategy. Any unresolved subproofs are then completed
interactively. The pdp tool does not yet handle the full DisCo language, but
the implemented subset is large enough for writing realistic specifications.

The discussion proceeds as follows. Section 2 briefly introduces joint action
systems and their formalization in the PVS logic. Section 3 describes the
protocol and its formalization using the joint action approach. The proposed
invariant is given and its proof is outlined in Section 4. Some figures about the
size of the proof and the number of automated and manual steps are also given
in this section. Some related work is discussed in Section 5, and conclusions are

Mechaunizing invariant proofs of joint action systems 203

made in Section 6. The Appendices contain the specification as given to the
pdp tool, the generated PVS theory, and an excerpt of the strategy generated.

2. Joint action systems and DisCo

The joint action approach of Back and Kurki-Suonio [1, 2, 3] is a technique
for specifying reactive systems. A joint action system consists of a set of
obyccets, which can participate in actions to communicate and alter their local
states A joint action system starts from some initial state, and executes by
choosing an enabled action, executing it, choosing again, and so forth, giving
an interleaved model of execution. The nondeterministic scheduling of actions
facilitates modeling of concurrent systems within a sequential formalism.

The initial state and actions describe which computations are allowed, 1.e.
they specify safety properties. However, they do not make any statements
about liveness properties. In this paper, only safety properties are considered,
and consequently our formalization only deals with safety properties.

When a joint action is exccuted. none of the participants is specified
to nitiate the execution. Initiation of an action, and the exact method of
communication used are viewed as 1mplementation details. There is also no
concept of processes as such, even though the objects of a joint action system
often correspond to processes n the eventual implementation. This lets the
specifier to concentrate only on the activities that take place, without having
to decide which of the participants are active and which are passive.

The DisCo specification language is a concrete specification language based
on the joint action approach. Figure 2 gives a very simple example of a
specilication written in the language.

system S is
class (' 1s
1 integer;
end,
action inc by o: C is
when true do
01 = o1+ 1;
end;

end;

F1g.2. A DisCo specification

204 P. Kellomaki

The language allows for incremental specification, where specifications can
be refined using superposition, and new specifications can be composed out of
independently specified parts. Refining a DisCo specification by superposition
always preserves safety properties. The methodology for writing specifications
in the language encourages to start with a very simple model of the system,
and gradually to add new propertics one by one. In this paper we are interested
only in the result of the incremental specification process, so we refer the reader
to [7] for a more detailed discussion of the language.

2.1. Formalizing joint action systems in PVS

We now sketch our formalization of joint action systems. It is very similar
to [7], which gives the semantics of the DisCo language in terms of Temporal
Logic of Actions [11].

2.1.1. State and objects

We use state to map variables (attributes of objects) to their values. State
is represented as an abstract data type in PVS:

state : TYPE.

To represent objects, we use PVS records. For each class of objects, we
define a corresponding record type, whose clements are functions from state to
the type of the corresponding attribute. For example, to represent a class C of
objects whose instances consist of a single integer attribute 7, we use the PVS
type

C : TYPE = [f§i: [state->int] {].

The syntax [f...f#] introduces a record type in PVS. To refer to the valuc
of attribute i of object o in state s, we write 0.1(s).2

Most of the attributes can be directly mapped to the PVS logic. To rep-
resent references (similar to pointers in programming languages), we introduce
an extra field ref in the record types representing classes, and give an axiom

(1) ref(a) = ref(b) =>a=10%

for each type. The ref field represents the identity of an object.

2 The actual PVS syntax is i(0)(s), but we stick to the more familiar dot
notation for record field access. Ultimately, we would like to modify PVS to
use the dot notation, since the specifications written in the DisCo language use
it.

Mechanizing invariant proofs of joint action systems 205

2.1.2. Actions

Actions are represented as functions of two states. The states represent the
state before executing the action and after it has been executed, respectively.
For instance, the action inc in Figure 2 is represented in PVS as

inc(unprimed, primed: state) : bool =

exists (o : C)
o.i(primed) = o.i(unprimed) + 1
and forall (other : C)
other /= ¢ => other.i(primed) = other.i(unprimed).

The represetation of inc spells out the values of all variables in the system,

even those that are not changed by the action. In a system containing many

classes, the part telling which objects are not changed can easily be larger than
the part actually giving the changes to objects.

Existentially quantifying o means that we do not care which object is
changed, as long as one object is changed and the others remain unchanged.
This corresponds to the “participant” idea of joint action systems.

2.1.3. Proof rules
Our first proof rule is the standard invariant rule
INIT = P

(2) PA[N]= P
or

INIT is a predicate describing the allowed initial states, P is a state predicate
(a boolean function of state), and A is the disjunction of all actions of the
system. The notation [N] denotes that either action A is executed, or nothing
changes, and P’ refers to the value of predicate P after the action has been
executed. We omit the O[N] usually included in the rule to require that only
actions in N are executed, as A includes by definition all the actions in the
system.

Some invariants cannot be proved by using (2) alone, as the proof may
rely on some other invariants. Our second proof rule allows us to introduce
other invariants as assumptions in a proof:

. opP
(3) >

The generated PVS files do not yet include this rule.

206 P. Kellomaki

These proof rules are sound not only for the proposed invariants, but
for arbitrary state predicates. This means that one does not need to write a
proposed invariant in the DisCo specification (spec in Figure 1) in order to
prove it. The PVS formalization of these rules is shown in Appendix A.

3. The protocol

We now briefly describe the protocol to be modeled. A network of stations
is connected to a common bus. Each station is identified by a unique id ranging
from 0 to n — 1, where n is the number of stations in the network.

The stations circulate a token to share the bus. When a station has the
token, it transmits its ¢d and a message on the bus. The receiving stations read
the sender id and message from the bus and compute

(received id+ 1) mod n,

and the station whose id matches the result receives the token. If a station
does not have any data to send when it receives the token, it sends an empty
message.

3.1. Objects

There are clearly two classes of objects: stations and buses. Each station
contains an id, a register to hold a single message, and a reference to a bus
object. In addition, it also holds n, which is the number of stations connected
to the same bus, and a boolean flag f, whose role will be described in the next
section. Class station is defined as

(4) station & (id : integer, me : integer, bu : objid, f : bool, n : integer).

A bus consists of a message and the id of the sender of the message. We also
include a field prev, which stores the previous message on the bus, a boolean flag
f, and a ref field. The prev field will be used when formulating the invariant.
Class bus is defined by

NP . .
(5) bus = (id : integer, me : integer, prev : integer, f : bool).

The Appendices show how classes are represented in the input to pdp and in
the generated PVS file.

Mechanizing invariant proofs of joint action systems 207

3.2. Actions

To model sending and receiving of messages, we introduce actions send
and rceeive, which transfer messages between a station and a bus.

In a physical realization of the protocol, the physical propertics of the
communication medium ensure that all stations have recelved a message before
the next one 1s sent. We do not maodel these properties, so a different approach
is needed. The boolean flag f 1s used for synchronizing buses and stations.
The send action is enabled when the f flags of all stations in a network
agree with the value of the f flag of the bus. When send is executed, the
participating station inverts the valu - of its f flag, and the value of the flag
ol the participating bus is also inverted. This disables the send action. and 1t
only hecomes enabled again when the rest of the stations have inverted their
flags. The only way for the other stations to invert their f flag is to execute the
roceivi action. Thus, when all the flags agree again, all stations have received
the message on the bus.

The actions are defined as follows. We use send(s,b) to denote that the
send action has two participants. an.l the prime symbol to refer to the final
values of variables.

send(s : station, b : bus) £
3(rm : integer) :

sbhu=19

A Y(~ station):sbu=b=s.f=>b.f

A s.id = (b.id+ 1) mod s.n
(6) A b prov’ =bome

Abf ==bf

A s) ==s.f

I
A sme =m

b.me' =m

>

A baid = s.id

recetve(s : station b : bus) =
sbu=1">
As.f#bf
A s.me’ = b.me

Asf =bf

—_
=1
~

208 P. Kellomaki

4. Proving an invariant

We now set out to prove an invariant for the system. The proposed
invariant states that if the f flag of a station agrees with that of the bus,
its me attribute also agrees with that of the bus. Otherwise the me attribute
agrees with that of the prev attribute of the bus. In terms of the protocol, this
means that all stations either have received the current message, or they still
have the previous message. Formally the invariant is expressed as

iny 2 V(s : station,b : bus) :
(8) (sbu=bAs.f=0bf= sme=bme)
A (sbu=bAs.f#bf= s.me=bprev)

4.1. Outline of the proof of Uinv

Proofs in the PVS theorem prover are done using a sequent calculus. A
successful proof forms a tree, where cach node is of the form A;, A,,... F
F Cy,Cy, ... (from antecedents Ay, Ay, ... infer one of consequents Cy,Cs,. . .).
The root node is of the form

Fthm,

where thm is the theorem to be proved, and the leaf nodes are sequents that
are recognized as true. Branching of the tree corresponds to “backwards”
application of proof rules.

To prove that Uinv indeed is an invariant, we start with the sequent
(9) F Uinv.
We then introduce an instance of the invariant rule (2) as an assumption, giving

(Y(s, sp : state) :
(INIT(s) = inv(s))
(10) A (inv(s) A (receive(s, sp) V send(s, sp)) = inv(sp)))
= Uinv
-

Uinv

Mechanizing invariant proofs of joint action systems 209

Skolemizing and decomposing (10) gives us two sequents,
(11) Uinv F Uinv,
which is trivially true, and

-
(Y(s, sp : state) :
(12) (INIT(s) = inv(s))
A (inv(s) A (receive(s, sp) V send(s, sp)) = inv(sp)),

Uinv

Decomposing (12) further gives us the sequents

(13) F INIT(s!'1) = inv(s!l)
and
inv(s'l),
receive(s!'l, sp!l) V send(s'l, sp'l)
(14)
}_
inv(sp'l),

where s'l1 and sp'l are skolem constants introduced for the universally bound
variables in (12). The rest of the proof is omitted for brevity, but the proof
proceeds by expanding the definitions of receive and send, and simplifying the
sequents until they can be resolved with the prover.

4.2. Efficiency of the generated strategies

The proof of Uinv generates a proof tree consisting of 201 nodes, 20 of
which are leaf nodes. These nodes are generated automatically when PVS
follows instructions in the custom proof strategy. Of the leaf nodes, one is

inv(s) = inv(s),

which is trivially true, and 14 are of the form

...Fa=uaa,a#aaq,...

210 P. Kellomaki

which are also trivially true. Of the remaining five sequents, one is resolved
automatically by PVS:

(sbu=bref) A(s.f #b.f)(((s.bu=b.ref) A(s.f =b.f)) = (s.me = b.me))
A (((sbu=b.ref) A(s.f #b.f)) = (s.me = b.prev))
I_

((sbw) = bref) A((bF) = (5.) = ((b.me) = (b.me)))
A ((((s.bu) = bref) A((b.f) # (b.1))) = ((b.me) = (b.prev))).

The remaining four leaf nodes, the only ones that need user attention, are
resolved using the iff strategy of PVS, which converts boolean equality to
equivalence, and then applying the ground strategy of PVS.

The proof takes about ten minutes to complete on a lightly loaded
SparcStation. Converting the specification and generating a strategy for it
takes about twenty seconds.

5. Related work

We are not aware of any published work using the PVS prover for reasoning
about action systems. Langbacka and von Wright [16, 12] have formalized TLA,
the Temporal Logic of Actions [11] using the HOL [6] theorem prover, which
1s based on similar typed higher order logic. Our formalization is substantially
different fromn theirs, mostly due to the fact that we need to handle objects,
which are not part of TLA, and to different treatment of state. They also adopt
a safe approach and build the formalization as a conservative extension of the
base logic, which ensures that their formalization is consistent.

Engberg [4] has implemented a mechanical verification system for TLA
using the LP [5] verification system. In this system, the converter tool processes
the specification to a much lower level, so the state is not visible to the user
at all. For example, the relation i’ = 7 + 1 is expressed in our formalization as
i(primed) = i(unprimed) + 1, but in the LP representation generated by TLP,
i and ¢’ are simply separate constants.

Mechanizing invariant proofs of joint action systems 211

6. Conclusions and future work

From the small case studies with pdp, the idea of deriving a custom strategy
to drive the PVS prover seems to work quite well. Work is underway for tackling
more complex examples. The most time consuming part of deriving a proof
is actnally performing the proof with PVS. The generated strategies contain
large amounts of formulas to be parsed by PVS, and we suspect that a fair
amount of the running time is spent in parsing these. A more efficiently parsed
notation for formulas might help in this respect.

We have set out to prove invariant properties, as invariant proofs follow
an easily mechanizable pattern. Our intention is to explore the possibility
of providing similar support for liveness properties by identifying classes of
properties for which such support is feasible.

References

[1] Back R.J.R. and Kurki-Suonio R., Distributed cooperation with ac-
tion systems, ACM Transactions on Programming Languages and Systems,
10 (4) (1988), 513-554.

[2] Back R.J.R. and Kurki-Suonio R., Serializability in distributed
systems with handshaking, Automata, Languages and Programming, eds.
T .Lepisto and A.Salomaa, Lecture Notes in Compuler Science, Springer,
1988, 52-66.

[3] Back R.J.R. and Kurki-Suonio R., Decentralization of process nets
with a centralized control, Distributed Computing, (3) (1989), 73-87.

[4] Engberg U., Gronning P. and Lamport L., Mechanical verification
of concurrent systems with TLA, Computer Aided Verification - Fourth
International Workshop CAV’92. Montreal, Canada. June 29 - July I,
eds. G.v.Bochmann and D.K.Probat, Lecture Notes in Computer Science
663, Springer, 1992.

[5] Garland S.J. and Guttag J.V., An overview of LP, the Larch prover,
Proceedings of the Third International Conference on Rewriting Techniques
and Applications, Lecture Notes in Computer Science, Springer, 1989.

[6] Gordon M.J.C., HOL: A proof generating system for higher-order logic,
VLSI Specification, Verification and Synthesis, eds. G.Birtwistle and
P A.Subrahmanyam, Kluwer, 1988, 73-128.

212

P. Kellomaki

[7]
(8]

[9)

[10]

(14]

(15]

Jarvinen H.-M., The Design of a Specification Language for Reactive
Systems, PhD thesis, Tampere University of Technology, 1992.
Kellomaki P., Analysis of a stabilizing protocol, Licentiate of Technology
thesis, Tampere University of Technology, 1994. http://www.cs.tut.fi/ "pk
/papers.html.

Kellomaki P., Self stabilization of a protocol, Proceedings of the Nordic
Seminar on Dependable Computing Systems, Lyngby, Denmark, 24-26.
August 1994. http://www.cs.tut.fi/"pk/papers.html.

Kurki-Suonio R., Jarvinen H.-M., Sakkinen M. and Systa K.,
Object-oriented specification of reactive systems, Proceedings of the 12th
International Conference on Software Engineering, IEEE Computer Soci-
ety Press, 1990, 63-71.

Lamport L., The temporal logic of actions, ACM Trans. Prog. Lang.
Syst., 16 (3) (1994), 872-923.

Langbacka T., A HOL formalization of the temporal logic of actions,
Lecture Notes in Computer Science 859, Springer, 1994.

Owre S., Rushby J.M. and Shankar N., PVS: A prototype verifi-
cation system, 1Ith International Conference on Automated Deduction,
ed. D.Kapur, Lecture Notes in Artificial Intelligence 607, Springer, 1992,
748-752.

Sintonen L., Event driven bus architecture for bounded area networks,
Proceedings of the 16th Annual Conference of IEEE Industrial Electronics
Society, Pacific Grove, California, November 27-30, 1990, 539-541.

Systa K., A graphical tool for specification of reactive systems, Proceed-
ings of the Euromicro Workshop on Real-Time Systems, Paris, France,

1991, 12-19.

von Wright J. and Langbacka T., Using a theorem prover for reasoning
about concurrent algorithms, Computer Aided Verificalion - Fourth Inter-
national Workshop CAV’92, Montreal, Canada, June 29 - July 1, 1992,
eds. G.v.Bochmann and D.K.Probst, Lecture Notes in Computer Science
663, Springer, 1992.

A The specification as given to pdp

The specification below corresponds to spec’ in Figure 1, i.e. it is intended

to be generated automatically. The description of action receive is omitted for
brevity.

Mechanizing invariant proofs of joint action systems

213

(system proto
(class station
(parameters)
(variable id integer 0) (variable me integer 0)
(variable f boolean false) (variable n integer 0)
(variable bu objid null))
(class bus
(parameters)
(variable id integer 0) (variable me integer 0)
(variable prev integer 0) (variable f boolean false))
(global-assertion
inv
(and/ (formals (ss station)
(bb bus))
true
(and (=> (and (= (variable-ref ss bu) (object-ref bb))
(= (variable-ref ss f) (variable-ref bb £)))
(= (variable-ref ss me) (variable-ref bb me)))
(=> (and (= (variable-ref ss bu) (object-ref bb))
(/= (variable-ref ss f) (variable-ref bb f)))
(= (variable-ref ss me) (variable-ref bb prev))))))
action receive omitted
(action send
(parameters (m integer))
(participants (s station) (b bus))
(guard (and (= (variable-ref s bu) (object-ref b))
(and (and/ (formals (s station))
true
(=> (= (variable-ref s bu)
(object-ref b))
(= (variable-ref s f)
(variable-ref b £))))
(= (variable-ref s id)
(mod (+ (variable-ref b id) 1)
(variable-ref s n))))))
(body

214 P. Kellomaki

(assignment (b prev) (variable-ref b me))
(assignment (b f) (not (variable-ref b £f)))
(assignment (s f) (not (variable-ref s £f)))
(assignment (s me) (parameter-ref m))
(assignment (b me) (parameter-ref m))
(assignment (b id) (variable-ref s id))))))

B The generated PVS theory

This is the theory given to the PVS prover. It has been formatted for
rcadability, and some parts have been omitted for the sake of brevity.

proto: THEORY BEGIN
discolib : LIBRARY = "/home/kaarne-b/pk/vaikkari/pdp/pvs"
importing discolib@mod
importing discolib@disco
station: TYPE = [id: [state ->int],me: [state ->int],
f: [state ->bool], n: [state ->int],bu: [state ->objid],
ref: objidj]
station_unique_ax :
AXIOM forall (objil,obj2:station):ref(objil)=ref(obj2)
implies obji=obj2
bus: TYPE = [§ id: [state ->int],me: [state ->int],prev:
[state ->int], f: [state ->bool],ref : objid f]
bus_unique_ax :
AXIOM forall (obj1,obj2:bus):ref(obji)=ref(obj2) implies
obji=obj2

action receive omilted

proving send : Dbool
send_guard(ss:station,s:station,b:bus,m:int,other:state)
bool = (bu(s)(other) = ref(b))
and ((bu(ss)(other) = ref(b))
implies(f(ss)(other) = f(b)(other)))
and(id(s) (other) =(mod(id(b)(other) + 1,n(s)(other))))

Mechanizing invariant proofs of joint action systems 215

send(unprimed, primed : state) : bool =

(exists (s:station,b:bus,m:int) :

(forall(ss:station):send_guard(ss,s,b,m,unprimed))

and prev(b) (primed)= (me(b) (unprimed))

and f(b)(primed)= (not (f(b)(unprimed)))

and f(s)(primed)= (not (f(s)(unprimed)))

and me(s) (primed)= (m)

and me(b) (primed)= (m)

and id(b) (primed)= (id(s)(unprimed))

and ((forall(other:station):
((other)/=(s))implies(me(other) (primed)=
(me(other) (unprimed)))))

and ((forall(other:station):
((other)/=(s))implies(f(other) (primed)=
(f(other) (unprimed)))))

and ((forall(other:bus):
((other)/=(b))implies(id(other)(primed)=
(id(other) (unprimed)))))

and ((forall(other:bus):
((other)/=(b))implies(me(other) (primed)=
(me(other) (unprimed)))))

and ((forall(other:bus):
((other)/=(b))

implies (prev(other)(primed)= (prev(other)(unprimed)))))

and((forall(other:bus):
((other)/=(b)) implies (f(other)(primed)=
(f(other) (unprimed))))))

and (proving_send)

and ((forall(other:station): id(other)(primed)=

(id(other) (unprimed))))

and ((forall(other:station): n(other)(primed)=
(n(other) (unprimed))))

and((forall(other:station): bu(other)(primed)=
(bu(other) (unprimed))))

END proto

proto_assertions :THEORY BEGIN

216

P. Kellomaki

IMPORTING proto
inv_body(bb:bus,ss:station,other:state) : bool =

(((bu(ss)(other) = ref(bb)) and(f(ss)(other) = f(bb)(other)))

implies(me(ss) (other) = me(bb) (other)))
and (((bu(ss)(other) = ref(bb))
and (f(ss)(other) /= f(bb)(other)))
implies(me(ss) (other) = prev(bb)(other)))
inv(other:state) : bool =

(forall(ss:station):(forall(bb:bus):inv_body(bb,ss,other)))

INIT(other:state) : bool = inv(other)

ACTIONS(s,sp:state) : bool = receive(s,sp) or send(s,sp)

inv_is_invariant: THEOREM invariant(inv,INIT,ACTIONS)

END proto_assertions

C An excerpt from the generated strategy

(defstep proto-inv ()
(then* (lemma "invariant rule" ("P" "inv"))
(split) (skosimp*) (delete-formula "[Jinv'")
(branch (split)
((then* (expand "INIT") (ground))
(then* (flatten)
(branch (split) ((else (proto-receive-inv$)
(proto-send-inv$))))))))
"Top level strategy." "Top level strategy.")

(defstep proto-send-inv ()
(try
(expand "send")
(then*
(skolemize-action "s") (skolemize-action "b")
(skolemize-action "m"

(flatten) (expand "inv"

Mechanizing invariant proofs of joint action systems 217

(skolemize
"ss" "(forall(ss:station):(forall(bb:bus):

inv_body(bb,ss,sp!1)))")

(skolemize "bb" "(forall(bb:bus):inv_body(bb,ss,sp!1))")

(spread

(case-replace "bb = b")

((then*
(spread

(case-replace "ss = s'")

P. Kellomaki

Department of Computer Science
Tampere University of Technology
P.O.B. 553

FIN-331011 Tampere, Finland
pk@cs.tut.fi

