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THE FORMAL SPECIFICATION OF A PROBLEM
SOLVED BY A PARALLEL PROGRAM -
A RELATIONAL MODEL

Z. Horvath (Budapest, Hungary)

Abstract. We introduce the basic concepts of a relational model of parallel
programming. We define the concepts of a problem, an abstract program
and a solution. Our approach is functional, the primary concepts of the
model are problem and refinement of a problem. Problems are given an own
semantical meaning. The refinement of problems may be interpreted as a
relation over the domain of problems. The abstract program is regarded as
a relation generated by a set of nondeterministic conditional assignments
similar to the concept of abstract program in UNITY. We introduce the
behaviour relation of a parallel program which is easy to compare to
the relation which is the interpretation of a problem. The abstraction
level defined by the semantical mapping from abstract programs to their
behaviour relations is identical with the abstraction level defined by the
semantics of abstract problems.

1. Introduction

We introduce the basic concepts of a relational model of parallelism [15,
16, 18]. Our model is an extension of a powerful and well-developed relational
mode! of programming which formalizes the notion of state space, problem,
sequential program, solution, weakest precondition, specification, programming
theorern, type, program transformation etc. [9, 10, 14, 29].

We take the specification of the problem as the starting point for program
design. We develop a model of programming which supports the top-down
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refinement of specifications. The proof of the correctness of the solution is
developed parallel to the refinement of the problem. We formalize the main
concepts of UNITY [3] in an alternative way. We use a relatively simple
mathematical machinery [29]. The result is an expressive model, which is
related to branching time temporal logics [6].

The preliminary form of the prograraming model elaborated in this paper
was used in [16, 11]. The paper [12 (in this volume) is based on the introduced
model, too.

1.1. Preliminary notions

In the following we use the terminology used also in [9, 10, 14, 29, 16].

Denote A* the set of all finite and A the set of all infinite sequences of
elements of an finite or numerable set A. A™* ::= A® U A*.

The concatenation of sequences a € A*, f € A*™ is con(e,f) ==
< a;,...,a|a|,ﬂ1 LD

The reduced sequence red(a) corresponding to @ € A**, is obtained by
replacing each finite stationary subsequence within a by one of its elements.

Let 7 : A* — A be a function which associates with each finite sequence
its last element, 7(a) 1= a4

An arbitrary subset of a direct product of sets is called a relation. Further
we deal with relations which are subsets of the direct product of two sets (binary
relations).

Let R C A x B, where A and B are arbitrary sets. The domain of the
relation R is defined by Dg :={a € A| 3b€ B : (a,b) € R}.

The image of a € A with respect tc the relation R is R(a) ::= {b € B |
(a,b) € R}.

A relation R is called a partial funciion, if for all a € A the set R(a) has
at most one element. If Va € A : |R(a)| = 1 then R is a function.

Let RC Ax B, HC B. The set R™!(H) is called the pre-image of H
with respect to relation R, if R"}(H) = {a € A|a € Dr A R(a) C H}.

We can define the composition of two relations as follows: P C A x B,
QCBxC,QoP:={(a,c)EAXxC|IEB: (a,b)e P A (b,c) € Q}.

Let R C A x L be a relation, where A is an arbritrary set and L is the set
of the logical values. Then R is called a logical relation.

The truth set of the relation R is [R] ::= R™!({ true }). The logical
functions 1, |: A — L are defined by their truth sets. [T] = A,[|] = 0.

The set (P(A)) denotes the powerset of the set A.

We use the words predicate and condition as synonyms for logical function.
[f] abbreviates the theorem ([f] = A) [5] The operations U,N, A\ correspond
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to the function A,V,—. = corresponds to C, P — @ is an abbreviation of
-PVvQ.

Let Ay, ..., A, be arbitrary finite or numerable sets. The set A ::= A; x
x Ay x -+ x Ap 1s called the state space.

The projections (functions) v; : A — A; (for all i € {1,...,n}) of the state
space A} x Ay X --- X A, are called variables.

2. The specification of a problem

The notion of the state space makes it possible to define the semantical
meaning of a problem independently of any program.

We generalize the specification method which specifies the problem by the
help of pre- and postconditions which are formulated as a composition of logical
functions or relations. The generalized concept of a problem is applicable for
cases in which termination is not required, but the behaviour of the specified
(closed) system is restricted by safety and progress properties. The solution
of a problem may be a sequential program, a parallel one, or even a program
built up from both sequential and parallel components. The primary goal of the
generalization of the problem is to extend the relational model for the case of
nontermination 2.

Our purpose is to set up a model in which the problem can be formulated
independently of its solution, it can be compared with other problems solved by
different programs. Any program running over the state space of the problem
can be checked whether it is a solution of the problem or not3.

2.1. Specification properties

The problem is defined as a set of specification relations. Every specifica-
tion relation is defined over the powerset of the state space. Let P,Q,R,U :
A +— L be logical functions. We define o, +—,—€ P(P(A) x P(A)), and
FP,INIT,inv, TERM C P(A).

We introduce the following infix notations:

2 We show how to generalize the concept of a problem for open systems in
section 2.3.

3 This view is basically different from the point of view of temporal logic
where the interpretation of the specification i1s connected to a model of which
time structure is defined by a program.
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PeQ:=([P],[Q]) €v, P— Q:=([P],[Q]) €—, P — Q:=([P],[Q]) €—,
FP = R:=[R] € FP, Q — FP:=[Q] € TERM, @ € INIT::=[Q] € INIT,
invP::=[P] € inv.

The P>@, P — @, etc. formulas are called specification properties or short
properties. The o, +—, < inv, TERM relations define transition properties, the
FP,INIT relations define boundary properties. The transition relations > and
inv express so called safety properties, while the relations —, < TERM express
progress properties.

The meaning of specification properties are given by the definition of a
solution (def. 4.1). For the sake of better understanding we give an informal
explanation in advance.

A program satisfies the safety property Po@), if there is no direct transition
from P A -Q to =P A —~Q only through @ if any. P is said to be stable if Pv |.
A program satisfies the progress properties P — @ or P — @ if the program
starting from P inevitably reaches a state, in which @ holds. P — @ defines
further restriction for the direction of the progress. The fixed point property
FP = R defines a necessary condition for the case when the program is in one
of its fixed points. It is sufficient if the program satisfies these requirements
over the reachable states only [27].

A @ € INIT property defines a sufficient condition for the initial states of
the program. @ — FP expresses that the program starting from @ inevitably
reaches one of its fixed points. Problems are easy to decompose to subproblems
by the appropriate choice of the INIT ard FP relations [11, 12].

If P holds “Initially” and S preserves the truth of P, then P is an
invariant, denoted by invP.

2.2. A specification of closed systems

Definition 2.1. Let A be a state space and let B be a finite or countable
set. Two relations expressing boundary properties and five relations expressing
transition properties are associated to every point of set B. The relation F C

C Bx (ie[)f__a]P('P(A) X 'P(A))ie[:(__ﬂp(r’(A))) is called a problem defined over

the state space A. B is called the parameter space of the problem.

Let b € B denote an arbitrary element of the domain of the problem. Let
h denote an element of F'(b). The components of h are denoted by bp,+—p, <—p
and by INIT4, FPy,invy, TERM, respectively. If [F(b)] = 1 then we use b
instead of h in the indices for the sake of simplicity.

A parameter space [10] is similar to a state space, it is a direct product of
type value sets. Usually the state space and the parameter space have common
components. Although there is no transition caused by the execution of the
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program in the parameter space, we call the projections of the parameter space
to its components variables as like as in the case of the projections of the
state space *. To distinguish between the two kinds of variables we extend the
variables of the parameter space by a’, for example: v’.

The introduction of parameter space makes it possible to formalize prob-

lems allowing alternative behaviours as their solutions 5.

On the other hand the appropriate choice of the parameter space reduces
the number of verification steps. The relations.>p, <, FPj, etc. are usually
finite sets (often with one single element). If the parameter space B is infinite,
then we define infinite number of relations. These relations are different from
one another in the value of their parameter only. This means it is sufficient to
perform the verification calculus in few parameterized cases.

Remark 2.1. The 2.1 definition of a problem is generalization of the
concept of a problem given in [7, 10, 29]. If Vb € B : |F(b) = 1| and {Qs} =
TERM,;, {Qs} = INIT, and {R;} = FPys, then the problem specified according
to the definition 2.1 can be rewrilten in the form required by the theorem of
specification [10] and vice versa.

Remark 2.2. The problem as relation is not depending on the syntactical
form of the specification properties. Even different set of properties may express
the same abstract problem (Def. 2.4).

2.3. A specification of open systems

In this section we show a way how to extend the model for open systems.

Definition 2.2. Let A be a state space and let B be a finite or countable
set. Three relations expressing boundary properties and ten relations expressing
transition properties are associated to every point of set B. The relation F' C

C Bx (ier.gP(P(A) x P(A)) ¢y 7P (P(A))) is called a task defined over the

state space A. B is called the parameter space of the task.

The components of an arbitrary h € F(b) are denoted by bp,+—p,
oy oE —E < E TERM},FPy, invs, INIT,, TERMF FPF, invE respectively.

% The variables of the state space are called local variables, while the
variables corresponding to the variables of the parameter space are called global
or rigid variables in first order temporal logic languages.

5 If the problem is deterministic, then the problem can be formulated
without the introduction of a parameter space, i.e. we can substitute the
parameter space by a new one having a single element only and form the
specification relations as the union of the specification relations associated to
the elements of the original parameter space.
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The components having an £ superscript are assumed properties of the full
(closed) system [3] including the specified open process and its environment,
1.e. the superscripted specification properties define implicit requirements for
the environment [4]. A process (a modul of an abstract program) solves its task
if it solves the problem assuming that the behaviour of the full system satisfies
the superscripted specification properties. The elaboration of the model based
on the definition 2.2 of task is out of the scope of this paper [17].

2.4. A refinement of problems

We interpret a refinement of problems as a binary relation defined
over the domain of problems, i.e. over the set B x (..~ . xP(P(A)x

1€[1..3]
xP(A)) x4 P(P(A))) (2.1 def.).

Our view of stepwise refinement is different from the models of [1, 22, 24].
We will not speak about stepwise refinement of programs, but about of stepwise
refinement of problems. We do not use programs as specification tools usually.

Since the refinement relation is connected to a given state space and to
a given parameter space ¢, the stepwise refinement of problems includes state
space and/or parameter space (coordinate system) transformation steps [8, 5].
For example, we introduce new variables often, i.e. we extend the state space
by new components. The extension of a problem to the new state space 1s
defined as in [9, 29], i.e. the extended problem does not imply any restrictions
for the new variables. However, a refinement of the extended problem may
include further or stricter specification properties which properties restrict the
behaviour of a possible solution in respect of the new components, too.

The refinement relation with respect to a fixed state and parameter space
is induced by the solution relation mapping from the set of abstract parallel
programs to the set of problems. An ordered pair of an abstract program and
of a problem is an element of the soluticn relation, if and only if the program
solves the problem.

Let us denote by S4 the set of abstract parallel programs defined over A.
Definition 2.3. Let Fy, F, be problems defined over the state space A. If

VS € Sa: S solves Fo = S solves Fy, then the problem F5 is a refinement of
the problem F.

The refinement relation is a preorder, i.e. it is a reflexive, transitive relation
and its kernel is an equivalence relation [13].

6 Deterministic problems defined over a common state space, butl over
different parameter spaces, are easy to compare from the point of view of the
refinement relation (see footnote 5).
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Remark 2.3. The concept of a refinement relation is based on the concepts
of an abstract program and on the concept of a solution as on parameters only.”.

To decide whether a problem is a refinement of an other one is hard in
general [6]. On the other hand a formal verification of the refinement steps
1s possible during stepwise refinement of problems if the refinement steps are
chosen carefully.

Definition 2.4. The problem F| 1is equivalent with the problem F5, if the
problem Fy 1s a refinement of the problem Fy and the problem Fy is a refinement
of the problem F}.

The equivalence classes generated by the equivalence relation of problems
arc called abstract problems.

3. The definition of a parallel program

The specification of a problem and its solution, the abstract program
1s independent of architecture, scheduling and programming languages. The
abstract program is regarded as a relation generated by a set of nonde-
terministic (simultaneous) conditional assignments similar to the concept of
abstract program in UNITY [3]. The conditions of the assignments encode the
necessary synchronization restrictions explicitly. Some assignments are selected
nondeterministically and performed in each step of the execution of the abstract
program. Every statement 1s executed infinitely often, i.e. an unconditionally
fair scheduling is postulated. If more than one processor selects statements for
execution, then the executions of different processors are fairly interleaved. A
fixed point is said to be reached in a state, if none of the statements changes
that state [3].

” For concrete definitions of an abstract parallel program and of a solution

see definitions 3.9 and 4.1.
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3.1 Conditional assignments

We can imagine a statement (a sequential program) as a relation, which
assoclates a sequence of points of the state space to some points of the state
space, i.e. a statement is a subset of the direct product A x A** [29].

A relation s C A x A** is called a statement over the state space A, if
D, =A,Va€ A:Va € R(a) : a =red(a),Va € A:Va € s(a) : a; = a.

The effect relation of a statement s is a relation p(s) C A x A defined as
follows:

Dy(sy = {a € 4 | s(a) C 47},
VYa € Dpsy: p(s)(a) :={b€ A | 3a € s(a): T(a) =10}

A statement over the state space A is called empty and termed SKIP, if
Vae A: SKIP(a) = {(a)}.

Let A= Ay x...x Ap, F = (Fy,...,F,), where F; C Ax A;. The statement
s C Ax A** is a general assignment defined by F, if s::={(a, red(a,b)) | a,b €

€EAANa € ie[r;l,n]DF- Abe F(a)} U {(a,(aaa....))|a € ANa ¢ ie[rp,n]DF-}'

A special kind of statement, the conditional assignment is the basic
building element of abstract parallel programs. First we will define the extension
of a relation with respect to a condition

Definition 3.1 Le B be a subspace of A andlet RCAX B. w: A L.
Rlz::=(RN([7] x B)) U {(a,pre(a))|a € [v] \ Dr}, where

prg(a) denotes the projection of a € A into the subspace B;

R|y is called the extension of R with respect to .

As an important special case we may extend relations defined over a state
space for the truth set of the condition T, i.e. we extend the domain of the
relation for the whole state space. A == A; x ... x A,, F C Ax A, F =
= (F1,...,Fy), where F; C A x A;. Let [m;]::=Dp,. The relation F;|; is the
extension of F; for the truth set of condition T, i.e. Fj|;(a)::=F;(a), if a € [m;]
and Fj|;(a)::=a;, otherwise. F||;:=(Filt,..., Falt)-

Definition 3.2. Let be given an assignment s;, for which ((Ds; = A)A
A(Va € A : p(s;)(a) = F||1(a))). This kind of (stmultaneous, nondeterministic)
assignment is called conditional if Va € A : |p(s;)(a)] < w. We denote the

conditional assignment s; the following way: (ie[lll n](vi € Fj,(v1,..,vn), of
Wji))'
By virtue of its definition the effect relation of a conditional assignment

is total, i.e. its domain is equal with the whole state space. This means that
a conditional assignment terminates always. If the program is in the state a
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and —7;.(a) holds, then the value of the variable v; is not changed by the
assignment s;.

We define the semantical meaning of a variable to be on the left hand side
or on the right hand side of an assignment.

Definition 3.3. The relation R is independent of the variable v; : A —
— Aji, if and only if Va,b € Dg : (Vk € ([1,i = 1U[i+1,n]) :ax = bg) =
R(a) = R(b). If the effect relation of a general assignment is not independent
of the variable v, then v occurs on the right hand side of the assignment.

Definition 3.4 The variable is on the left hand side of the conditional
assignment s, if v # vop(s), 1.e. Ja € Dy, : v(a) # v(p(s)(a)).

We omit the component (v; := Fj(v1,..,vn), if mi(v1,...,v,)) from the
description of the conditional assignment, if v; does not occur on the left hand
side of it. Similarly, we omit the variable v; from the notation of the relation
Fj,;, if Fj, is independent of v;.

3.2. A semantics of abstract parallel program

Let S be an ordered pair of a conditional assignment and of a nonempty,
finite set of conditional assignments, such that S = (so,{s; | j € J}), where
J={l.m},m>1.

The program is defined as a binary relation which associates equivalence
classes of correctly labelled state transition trees to the points of the state
space. The labelled state transition trees are generated by the ordered pair of
the effect relation of initial assignment so and of the disjoint union of the effect
relations of {s, ..., 5m} elements of the abstract program.

First we define the concept of a labelled transition tree generated by an
ordered pair of total relations.

A labelled transition tree is a system (r,N,V,L,S) where r is the root, N
is the set of the vertices, V C N x N is the set of the edges, L : N — A and
SV +— J are the vertex and edge labelling functions, Vo € N : (z,7) ¢ V,
there is a unique path leading from r to any z € N,z # r.

Two labelled transition trees are called isomorph if there exists a bijec-
tion between their vertices which bijection preserves the root vertex and the
labelling of the edges and vertices.

Definition 3.5. The labelled transition trees G1 = (r1, N1, V1, L1, S1) and
Gy = (19, Na, Vi, La, Sa) are isomorph, if there exists a bijection f : Ny — N,
for which: Yz € Ny : f(Vi(z)) = Va(f(z)) A Li(z) = L2(f(2)), V(z,y) € Vi :
(f(z), f(y)) € V2 and Si(z,y) = S2(f(2), f(y))-
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By virtue of its definition the isomorphism defined by 3.5 is an equivalence
relation over the labelled transitions trees.

Definition 3.6. Let Ry, R C Ax A be total relations, 1.e, D = Dg, = A.
The labelled transition tree GR(a) = (r, Nq, Va4, Lo, Sa) ts said to be generated
by the ordered pair (Ro, R) of relations at the point a, if

e L,(r)=a,
e Vz € No\ {r}: La(Va(z)) = R(Lq(2)),
° La(Va(T')) = RO(LG(T)) = 1’%0((1).

Let us choose the state space A as the set of labels for vertices and J C Ay
as the set of labels for edges.

Definition 3.7.Let us denote by A*** the equivalence classes of labelled
transition irees generaied over the state space A and index set J by ordered
pairs of relations.

Let us represent the equivalence class by one of its elements.

Let S = (so, {51, ---Sm}) denote an ordered pair of a conditional assignment
so and a finite nonempty set of conditional assignments. Let J = {1, ..,m}. Let
us denote by U P(S) the disjoint union of the effect relations p(s;).

Definition 3.8.The labelling of the tree generated by the ordered pair of
relations (p(so), U P(s)) s correct, if all edges starting from r are labelled by 0
and for all edges having the label 7 and pointing from a vertex labelled by b to
a vertez labelled by ¢ hold that (b,c) € p(s;).

Definition 3.9.The relation UPG(S) C A x A*** s called an abstract
parallel program, if it associales equivalence classes of labelled transition trees
to the element b € A, which trees are generated at b by the ordered pairs of
relations (p(so), U P(s)) and have a correct labelling.

The abstract parallel program U PG(S) generated by S = (so, {s1,..-5m})
1s abbreviated by S in the following. The conditional assignment s is called the
initialization in S and s; : j € [1..m] is said to be an element of the program

S.

Remark 3.1.Programs which are equivalent from the point of view of cor-
rectness bul implementing different algorithms correspond to different abstract
parallel programs, i.e. their semantical representation is different.

Definition 3.10.Any path of a representative of the equivalence class
UPG(a) is called an ezecution path of the abstract parallel program starting
in the state a.

The introduced semantics is an interleaving semantics of parallel pro-
grams. An implementation which allows true parallel asynchronous execution
of conditional assignments is not modelled. The concurrent execution of the
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conditional assignments should satisfy the requirement of serializibility [20].
Every execution path of the abstract parallel program represents a possible
sequential execution sequence of the assignments. A true parallel semantics

would destroy even the restricted compositionality of the programming model
[2. 4]

3.3. A behaviour relation of abstract parallel programs

The program properties with respect of an abstract parallel program are
characterized as relations over the powerset of the state space.

3.3.1. A generalization of the weakest precondition

The program properties are defined in terms of the weakest precondition
of the element statements [5, 29] of the abstract program. We use the dual
concept of strongest postcondition, too [21].

The logical function wp(s, R) is called the weakest precondition of the
postcondition R in respect to the statement s. We define [wp(s, R)]::={a €
€ Dy(s)lp(s)(a) C [R]}. The logical function sp(s, Q) is called the strongest

postcondition of @ in respect to s. [sp(s, @)]::=p(s)([Q]).
Let us denote by S an abstract parallel program over the state space A,

where S = (so, {51, .--Sm}). We generalize the concept of weakest precondition
for abstract parallel programs [15].

Definition 3.11. wp(S, R)::=Vs € S : wp(s, R).
3.3.2. Invariants and reachable states

Let us denote by invs(Q) the set of logical functions whose truth are
preserved by the elements of S if the program is started from a state satisfying

Q.S

Definition 3.12. invg C P(A) x P(P(A)). invs(Q) C P(A).
invg(Q)::={[P] | sp(s0,Q) = P and P = wp(S,P)}. Let us denote by
INV5(Q) the conjunction of the elements of the set invs(Q)°.

The truth set of INVg(Q) is the set of reachable states starting the program
from the truth set of [Q] [27].

& invs(Q) is the set of strong invariants [27].

¥ INV(Q) is the strongest invariant [21, 27].
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3.3.3. Safety properties

Let us denote by os the set of ordered pairs (P, Q) of logical functions for
which holds that P is stable while =@ during the execution of S.

Definition 3.13. o5 C P(A) x P(A).
es:={([P],[Q1) | (P A—~Q = wp(S,(PVQ))} '

3.3.4. Progress properties

Let us denote by +—g the set of ordered pairs (P, Q) of logical functions
for which holds that P is stable while =@ during the execution of S and there
is a conditional assignment s; which ensures the transition from P to Q.

Definition 3.14. —sC P(A) x P(A).
s o={([P1,[QD I(P.Q) €vs ATj € T : (PA-Q = wp(s;, @)} !

Definition 3.15 Let be <—sC P(A) x P(A) the transitive disjunclive
closure of g [25], i.e. the smallest binary relation over A satisfying the
conditions 12

o —5Cg.

o if (P,Q) €E—s and (Q, R) €—s, then (P, R) €—5.

o Let W denote an countable set. IfYm : (m € W :: (P(m),Q) €—s , then
((3m:me W ::p(m)),Q) €—s.

Remark 3.2.The relational extensions of UNITY [25] redefine the con-
cepts of unless, ensures and leads-to in a form which correspond to the program
properties and do not correspond to the specification properties.

Remark 3.3.There are allernaiive definitions of <—g elaborated in [15,
19] which are based on the fized point properties of monotone functionals [26].

Theorem 3.1.If and only if ({b}, [P]) €—s then on all execution pathes
leading from b and salisfying the aziom of the unconditionally fair scheduling
there is a node at a finite unbounded distance from b of which label 1s an element
of the truth set of P, 1.e., the program inevitable reaches the truth set of P
started from b.

The proof can be constructed based on results of [25]. The size limit given
for this paper does not allow us to include the proof here, the proof is given in

17).

10 The definition of >5 corresponds to the concept of UNITY’s unless [3].

11 The definition of —g corresponds to the concept of UNITY’s ensures, if
the axiom of the unconditionally fair scheduling is postulated [3].

2 The definition of —g corresponds to the concept of UNITYs leads-to [3].
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We can prove the following theorems corresponding to the properties used
in the definition of leads-to in UNITY [3]. The proof of progress properties is
supported by the introduction of so called variant functions (7, 3].

Theorem 3.2. Let be P,Q : Av+— L, t: Avr— Z such that (PN -Q) =
t>0. IfVYmeN = (PA-QAt=m) s ((PAt<m)VQ), then P —;5 Q.

The proof is based on structural induction and given in [17].
3.3.5. Fixed point properties

A fixed point is said to be reached in a state of the state space A, if none
of the statements changes the state.

Let us denote by ;. , the logical function, which characterizes the set of
states over which the relation Fj, is deterministic, i.e. m;;,(a) < (|Fj;(a)| = 1).

Definition 3.16.

A

izpointg:i=( . .
fizpoints (]EJ,zE[l..n]

("7('“ \Y (Wjid ANv; = Fji(vl, .. .,‘Un))))

See paper [12] for examples calculating fizpointg. The definition of
fizpoints generalizes the fixpoint calculation method introduced in [3] for the
case of nondeterministic assignments.

Lemma 3.1. fizpointg is the set of fized points of the program S over
the state space A.

The lemma follows directly from the definition 3.16.
Definition 3.17. Let us denote by FPs the set {[R]|fizponts = R}.

3.3.6. Termination properties

Definition 3.18 Let us denote by TERMg the set {[Q]](Q, fizpointg) €
€—s}.

3.3.7. An other semantics of abstract parallel programs

We may define the semantical meaning of a parallel program by the system
of the set of its strongest invariants, its safety, progress, fixed point and
termination properties. Unfortunately this kind of semantics is not generally
compositional for the program construction rule union [3, 17], compositionality
1s violated in the case of the program property <5 and TERM3.

Definition 3.19 Let S be a program over the state space A. The system
of relations (bs,—s,—s,FPgs,invs, TERMg) is called the behaviour relation
of the parallel program S.
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4. The formal definition of a solution

We introduce a relation called solution. The domain of solution is the
set of problems, the range of it is the set of programs. If (F,S) is an element
of the solution relation, then F' is said to be solved by program S. Since the
structure of the behaviour relation of abstract parallel program is similar to the
problem, the concept of solution is expressed in term of the behaviour relation
(3.19 def.).

This way we get a simple UNITY like verification calculus ultimately based
on the concept of the weakest precondition. The calculus proves the correctness
of an abstract parallel program with respect to the problem in O(m) steps,
where m is the number of conditional assignments of S. Finally, we state some
useful lemmas to simplify the calculus in practice and to justify the correctness
of the definition of solution.

Definition 4.1. The abstract parallel program S C A x A*** s a solution

of the problem F C B x (,¢( 5P(P(A) x P(A))ielf_ﬂP(P(A))), if Vb€ B :
Jh € F(b), such that the program S satisfies all the specification properties
gwen n the invy, by, —p, —p, FP,, TERM, components of h assuming that

the program starts from a state satisfying all the elements of INIT),.

Let us define what to mean about the program satisfying a specification
property with respect to inity initial properties.

Definition 4.2. The program S satisfies the specification property
(invy P), if and only if there ezists an invariant properly K such that the

program statisfies (invy P) with respect to K, i.e. K € invs(QelI/\}IT,. Q) and
TP A
PAK €invs(gepnr, @)-

Remark 4.1. As we mentioned in Section 3.3.2 the points of the stale
space, not in the truth set of an invariant property, are unreachable states, i.e.
the truth set of an invariant property may be regarded as a characterization of
a subset of unreachable states. It is sufficient for us, if the program satisfies all
properties over the truth set of an invariant property [27]. This means thal a
program s said to satisfy a specification property, even if the program fails to
satisfy 1t over a subset of the unreachable states [3, 23, 27, 17].

Definition 4.3. The program S satisfies the specification property Po
>rQ, f and only if there exists an invariant property K such that the program
statlisfies Pop Q with respect to K, i.e. K € invS(QeII/\\IIT,. Q) and (PAK,QAN
IX’) € bgs.
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Definition 4.4. The program S satisfies the specification properly P
Q, if and only if there ezists an invariant K such that the program statisfies

P +>p, Q with respect to K, i.e. K € invS(QeI/r:IIT,, Q) and (PAK,QAK) €—s.

Remark 4.2. The validity of the Definition 4.4 is depending on the truth
of the aziom of unconditionally fair scheduling [3].

Definition 4.5. The program S satisfies the specification property P —
Q, if and only if there exists an invariant K such that K € invS(QeI/r\\IIT,. Q)
and (PAK,Q) €—s.

Definition 4.6. The program S satlisfies the specification property
P < FPy, if and only if there ezists an invariant properly K such that
K € invs( gefnrr, @) and (sp(so, P) A K) € TERMg.

Definition 4.7. The program S satisfies the specification property
(FP, = R), if there ezxists an invariant K such that K € invg(
and fizpontg AN K = R.

A
QEINIT, Q)

4.1. Lemmas to simplify the verification calculus

Lemma 4.1. S satisfies (invy, P), if and only if there exists an invariant
property K € invS(QeI/I\\IIT,. Q), such that
sp(s0, (geinir, @) = PAK and P AK = wp(S, P AK).

The lemma follows directly from the definitions 3.12 and 4.2.

Lemma 4.2. S satisfies P>, Q if and only if there ezists an invariant
property K € invS(QEl/l\\IIT,. Q), such that (PA-QAK = wp(S,(PVQ)AK)).

The lemma follows directly from the definitions 3.13 and 4.3.

Lemma 4.3. S satisfies (Q —n P) if and only if there ezists an invariant
property K € invS(QeI/I\\IIT,. Q), such that S satisfies Q >y P with respect to K
and 35 € J: (PA-QAK = wp(s;,Q A K)).

The lemma follows directly from the definitions 3.14 and 4.4.

Lemma 4.4. S satisfies P —, Q , if it can be deduced in finite steps by
the application of the following reasoning rules [3]:

o If S satisfies (P —p Q), then S satisfies (P — Q).

o Transitivity: if S satisfies (P —p Q) and S satisfies (Q —p R), then S
satisfies (P —p R).

o Disjunctivity: Let W denote a countable set. IfVm : S satisfies (m € W ::
P(m) < Q), then S satisfies (Im : m € W :: p(m)) —4 Q).
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The proof of the lemma is given in [17].

Lemma 4.5. The program S satisfies P — FP, (P € TERM,), if S
satisfies sp(so, P) —n fizpontg.

The lemma follows directly from the definitions 3.18, 4.6 and 3.16.

Lemma 4.6. Lett : A — Z be a variant function and P,Q logical
functions such that P A—-Q = (t > 0). If Vm € N the program S satisfies
the property (P A ~Q A (t = m)) —, (PA(t <m))V Q) then S satisfies the
property P —p Q.

The lemma is a consequence of the Lemma 4.5 and the Theorem 3.2. The
proof is given in [17].

Consequence 4.1. Let be K € invS(QeI/l\\IIT;. Q),t: A— Z such that
(K A= fizpointg) =t > 0. IfVt' € N : (K A- fizpontgAt =t') 5 (KAt <
< t)V fizpontg, then S satisfies Q € TERM, for any Q logical function.

Lemma 4.7. S satisfies (FP, = R) with respect to K, if K €
invs(Qel/l\\IIT,. Q) and fizpontg A K = R.

The lemma follows directly from the definitions 4.7 and 3.16.
5. Discussion

The introduced model is a coherent extension of the relational model
of programming used in education at the Eotvos University. Problems are
interpreted as relations providing an expressive tool to formalize alternative
requirements for the behaviour of programs. Programs are relations capturing
the operational aspects of the solution. Behavioural relation corresponds to the
effect relation of sequential programs capturing the main functional properties
of a program. Special program constructions for example as union, superposi-
tion [3] and sequence of programs are easy to adopt [17]. The generalization
of the type concept [29], the extension of the model for open systems and
answering the question of compositionality of progress properties are subject
for further research.
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