Annales Univ. Sci. Budapest., Sect. Comp. 17 (1998) 137-154

KANNEL -
A LANGUAGE FOR TUNING PROTOCOLS

K. Grano (Jyvaskyla, Finland)
J. Harju (Lappeenranta, Finland)
T. Jarvinen (Jyvaskyla, Finland)

T. Larikka (Lappeenranta, Finland)

J. Paakki (Helsinki, Finland)

Abstract. Modern communication protocols are rather complex and
large software products. To manage the inherent complexity of protocol
engineering a number of application-orientated methods and software tools
have been developed for this discipline. This paper presents Kannel, a
language for protocol engineering. Also an application to ISDN protocol
LAPD using Kannel is presented.

1. Introduction

The key aspect in building distributed applications or computer networks
is to specify and implement communication protocols between the involved
objects. Protocol engineering is a term often used for the general discipline of
developing communication software. The foundation of protocol engineering is
the use of methods and tools that have a rigoruos, formal basis.

The communication software products resulting from the modern multi-
layer protocol specifications are large and complex. They contain different
types of tasks, some of which appear to be easy to generate automatically,
while some are better suited for hand-coding. In protocol engineering an
abstract specification is used to derive an executable program in the target
environment. This higher level specification should be strictly formal to avoid
ambiguities and to allow computerized processing. Due to the distributed,
open environment the specifications must be so unambiguous and complete that

138 K. Grano et al.

two implementations, perhaps produced by different vendors, can communicate
with each other without extensive preliminary tests.

Recent active research on application-orientated languages promotes the
1dea that application arcas with specialized nature, such as protocol enginecr-
ing, should be supported with dedicated tools founded on high-level concepts
that match with the central characteristics of the applications. This view is
in sharp contrast with the simplistic approach of engineering every application
using general-purpose languages, such as (.

The Kannel language provides explicit support for the specialized area of
protocol engineering. It aims at covering the whole discipline in a uniform
manner thus eliminating the need for using several different languages and
several unrelated tools to implement the protocol. The most notable features
of Kannel are hierarchical finite state machines, distribution, interfaced layering
and facilities for encoding/decoding the data contents of protocol data units.
In the following sections we give a short description of the Kannel language
and apply it to specify a complex protocol (LAPD). Then we compare Kannel
with languages having similar target arca and draw a number of conclusions.

2. General overview of Kannel

The core of protocol engineering 1s the use of formal specification languages.
These languages must be abstract enough to hide those implementation details
that are environment specific. There are four well-known formal specification
languages: SDL [2] which is based on the extended state transition model,
Estelle [5] which also is based on the state transition model, LOTOS [4] which
is based on the CCS process algebra, and ASN.1 [14] which is used to describe
the format of data units.

While there has been extensive research and development efforts on
protocol design, the proposed languages usually have only a restricted focus of
application. For instance, Estelle and SDL can be used for defining the internal
control behavior of a protocol entity (as an extended finite state machine) with
only a very abstract notion of data, and ASN.1 is intended solely for describing
the conveyed data units without specifying any operational characteristics of
the protocols. LOTOS in turn is too abstract for being implemented efficiently
with current technology.

The Kannel language is an evolving attempt to overcome the shortcomings
mentioned above. In protocol engineering the usual approach has been to

separate the design of a protocol from its implementation issues and to consider
functional logic and concrete data units as orthogonal issues. We believe that

Kannel - A language for tuning protocols 139

a unified scheme which would provide tools for all phases in protocol design
is a desirable goal. To reach this goal Kannel integrates full-fledged protocol
engineering facilities with general software engineering principles:

object-orientation: Kannel supports the class and object concepts of
object-orientated languages. There are two fundamental object categories in
Kannel: value objects are always represented by value, while reference objects
are represented by reference. This division 1s a compromise between efficiency
and orthogonality - representing all objects via references would be inefficient,
but it still is desirable to have the primitive types such as integer part of the
class system. In addition, objects may be local or distributed; this distinction
affects the way the object can be communicated with. Local objects are flexible
to use, but do not fulfill strong distribution semantics. Kannel has adopted its
notion of classes most notably from the Sather language [13], in particular the
facility of incremental superclassing and the explicit separation of (multiple)
inheritance from code reuse, as proposed in [1].

visuality: The visual components of Kannel support the design of be-
havioural components of a protocol. It can be argued that visual notation can
greatly enhance the understandability of complex constructs [11]. This seems
to be especially true for state machines.

distribution: In Kannel the service interfaces provided by a distributed
class are separated from their implementation into a channel. This decision has
the following advantages: the unidircctional nature of messages is supported
better. By giving different wviews into the service related messages going in
different directions may be syntactically attached together (see below). This
leads to a more concise representation of the mutual relationship between a
client and its server. In addition, when channel is made an explicit language
construct, we may better grasp the notion of transfer syntaz. Lastly, the view
concept provides static security and more readable specifications.

communication: In Kannel a transfer syntax is a class definable by the
protocol writer. Each transfer syntax specifies a method of encoding/decoding
all values of both basic and compound types. Functions for encoding and
decoding data types are automatically created and applied when needed. The
idea of transfer syntax in Kannel is similar to that in ASN.1. However, the
implementation of this idea is more high-level and advanced as a language.

concurrency: Kannel supports concurrency in terms of active objects.
At most one thread of execution is active within each active object at a time.
This approach, although excluding c.g. concurrent read access, provides a
simple and safe solution to mutual exclusion problems. Also, the concept of
protocol layers are supported in terms of active objects.

140 K. Grano et al.

functional logic: Kannel adopts the statechart formalism [10] with some
modifications as the means to describe the concurrent semantics of an active
object. A statechart specifies the exact set of messages the object will respond
to in a given state and thus maintains its integrity - this can be viewed as
stating as a precondition those messages that are valid for a given state. The
communication model is asynchronous so as to offer greater efficiency and
flexibility in communication operations.

Y A

running

ok

; i ACK/Dind; stop . :

Dreq/DATA.stan

timeout/Report

Fig.1. A statechart

As an example of Kannel let us introduce a simple statechart. Statecharts
are a visual formalism for specifying the structure and behavior of reactive sys-
tems, such as protocols. They differ from conventional finite state machines in
the following respects: hierarchical structure - a state may be decomposed into
a set of refined constituent states and provide abstraction by forming ”black
boxes”; XOR-decomposition - a group of transitions from constituent states
may be combined to a single transition in a superstate; AND-decomposition
- the exponential blow-up in the number of states in large state machines is
solved by dividing the states into concurrent state machines that act in parallel.
This is sometimes referred to as orthogonality.

An example of the statechart formalism is given in Fig. 1 which describes
a simple transfer protocol with acknowledged packets. The protocol starts in
the idle state and proceeds to state running upon receiving the Init message
(also causing emittance of the message CON). As Fig. 1 shows state running is
structured, consisting of two internal states. The choice between these states is
shown by the default arrow inside state running. In this case the default state
1s ok which itself appears to be structured, this time using AND decomposition
(note the gray background) into two orthogonal substates A and B. The
orthogonality implies that A and B act together upon receiving a message.!
Returning to the example, the entered compound pair is (rdy, rep). In this

! In the general case two orthogonal states with n and m substates require
n * m states when expressed as a conventional state machine.

Kannel - A language for tuning protocols 141

state the chart accepts the message Dreq requesting data transfer. (Technically,
the message timeout may also be accepted in state (rdy, rep), although in this
context it is unlikely since it cannot arrive before the message start has been
sent to the timer entity.) Transfers are acknowledged (message ACK) and
the acknowledgements are guarded with a timer (messages start, stop and
timeout). Note how the transition for the ABORT message is associated with
all states within ok: this provides a concise way to group together transitions
shared by several substates. The corresponding textual Kannel code looks as
follows:?

process S
ports p:...; q:...; Ii... 18
action state (idle, running) is
state idle arcs
Init — > { p.send(CON); running } end
state running(ok, fault) is
and state ok(A, B) is
state A(rdy, wack) is
state rdy arcs
Dreq — > {p.send(DATA);
r.send(start);
wack
}
end;
state wack arcs
ACK — > {q.send(Dind);
r.send(stop);
rdy
}
end
end;
state B(rep) is
state rep arcs
timeout — > q.send(Report) end
end

2 While providing a number of visual facilities, Kannel also has a purely
textual syntax.

142 K. Grano et al.

arcs
ABORT — > fault
end;
state fault end
end
end

Statecharts in Kannel provide for other expressive features as well, such as
incrementality with new states and transitions. For reasons of space we omit
these advances as well as a more complete description of the Kannel language.
The current form of Kannel is reported in [9].

3. LAPD application in Kannel

The LAPD protocol [6] defines the data link layer protocol used in the
ISDN protocol suite. It was chosen as an example protocol to be specified
in Kannel for several reasons: firstly, the compact representation of LAPD
frames requires a mapping from the high-level protocol data structures into
a sequence of bits, that is a transfer syntax. Secondly, flexible properties of
LAPD such as support for several logical links between the terminal equipment
and the network call for the dynamic trcatment of LAPD connections. This
1s accomplished with the routing method mechanism of Kannel. Thirdly, the
logical structure of LAPD is relatively independent of a particular physical layer
implementation and is thus a potential reusable component. Kannel supports
refinement of communication channels which is the key mechanism for protocol
reuse.

Due to space constraints the following example omits the actual LAPD
statechart which, although structured, is quite formidable in size. Instead we
highlight the Kannel mechanisms for the above aspects of LAPD.

3.1. General framework

A Kannel specification is closed in the sense that it specifies all the
communicating entitics - if one of these entities is external, it is reflected in
the specification by omitting its internal details. This contrasts conventional
protocol techniques which emphasize a single-entity (usually a stack) view of
the communication framework. This is reflected in Fig. 2 which depicts the

Kannel - A language for tuning protocols 143

ISDN layer 2 setup.3 The peer entities a and b communicate via the abstract
LAPD_APDUs channel and provide service to their respective users via the
LAPD_SERVICE channel. The special nature of the peer channel is exposed
in the textual Kannel equivalent of Fig. 2.

upl up2

L2 :Layer_2
up : LAPD_SERVICE up : LAPD_SERVICE

peer peer
a: Peer b : Peer
LAPD_APDUs

Fig.2. Top level LAPD specification

process Layer 2
ports

upl,

up2: LAPD_SERVICE(in user; out provider)
is

process Peer...end Peer; - details omitted
assoc a,b; Peer is

a.up and upl;

b.up and up2;

a.peer and separate b.peer

end Layer 2

The assoc mechanism relates the ports of different communicating pro-
cesses together and also provides special information about the exact nature of
the relationship, this leads to strict typing between the distributed components.
By specifying that the association is separate we indicate that the processes
cannot communicate via shared memory, instead some other mechanism must
be employed (see Section 3.4).

The ports convey messages that are regarded as instances of their respec-
tive types which in turn are normal Kannel classes. The messages are grouped
into unidirectional views that are the building blocks of a channel such as
LAPD_SERVICE. In the port declaration the role of the process is fixed, thus
we state that ports upl and up2 will receive messages in view user and send

3 As we are not specifying the user side of layer 2 the upl and up2 ports in
Fig. 2 are unconnected. However, deriving an implementation requires that
also these ports be connected.

144 K. Grano et al.

messages in view provider of the LAPD _SERVICE channel. Syntactically the
channel definition looks the following:

channel LAPD SERVICE is
view user is
estreq: dynamic DL_EstablishRequest;
udtreq: DL_UnitDataRequest - etc.
end user;
view provider is
estind: DL_EstablishIndication;
udtind: DL_UnitDatalndication - etc.
end provider

end LAPD SERVICE
3.2. Transfer syntax

For messages conveyed via a local (as opposed to separate) association
their internal representation is not an issue. This is not the case for separate
associations. For example the b peer above might be a product of a different
vendor. Simply using the exact bit representation for peer messages as specified
in [6], however, is unsatisfactory since it tends to lower the abstraction level of
the specification. In Kannel a special transfer syntax class can be employed to
map abstract messages such as info into a protocol-conforming bit sequence.
This notion is probably even more relevant in the higher protocol layers. The
special transfer syntax used is specified in the transfer clause of a channel
definition:

channel LAPD APDUs is
transfer LAPD syntax;
info: Information;

sabme: SABME - etc.
end LAPD_APDUs

class Information key 1 is
addr: address; - (SAPI, TEI) information
poll: boolean; - P/F bit
data: Packet; — user data
send_packet,
recv_packet: integer — sequence numbers

end Information

Kannel - A language for tuning protocols 145

The LAPD_syntax class processes all messages that travel through a
separate association of LAPD_APDUs. For example, when an info message is
sent, the encoding process prepares the outgoing frame by inserting the address
information, poll bit, user data (from layer 3) and the packet sequence numbers
into correct positions in the frame and finally wraps it with the delimiter octets
(01111110 binary). It also takes care of such low-level tasks as zero-bit insertion
and FCS calculation. In the receiving end the LAPD syntax decoder maps the
incoming bit stream into corresponding abstract LAPD peer messages.

The process of data transfer for an Information message, such as info
in LAPD_APDUs, is sketched below. Class Information is associated with
the tag (key) 1 which identifies the specific messages for encoding/decoding.
The LAPD syntax class makes use of a buffer buf to store the raw binary
representation of a message. A message is encoded using the procedure encode
and decoded using the function receive. There are a number of predefined
buffering operations available, e.g. putbits for filling the buffer upon sending
and getbits for accessing the buffer upon receiving a message.

The transfer syntax class has access to the internal representation of
message objects and also to dynamic type information. However it is cleanly
separated from the rest of the specification. We also expect that support for
generic transfer syntaxes will be part of the Kannel protocol support library.
In the example Transfer_syntax is a library class providing general standard
encoding and decoding services to LAPD_syntax. This is indicated in Kannel
by specifying LAPD_syntax to be a subtype (subclass) of Transfer_syntax, as
expressed with the ”<” symbol.

class LAPD syntax < Transfer syntax is
buf: Packet;
k: integer;
- etc.
address_field is — encoding of address PDU
- etc.

end address_field;

encode(object) is
k:=arg.keyseq.first; — fetch PDU key
if k=0 then
— etc.
elsif k=1 then - info: Information
address_field; - arg.addr
buf.putbits(1,0b0);

146 K. Grano et al.

buf.putbits(7,arg.send_packet);
buf.putbits(1,arg.poll);
buf.putbits(7,arg.recv_packet);
buf.putbits(arg.length-6,arg.getbits(7,arg.length)); - arg.data
elsif k=2 then ... - etc.
end

end endcode;

receive(p:channel): object is
if buf getbits(25,25)=0b0 then - info: Information
— decode the packet
elsif ... - etc.; other possible PDUs
end
end receive;

end LAPD_syntax
3.3. Dynamic processes

The ability of LAPD to support several simultaneous links calls for dy-
namic processes. This for the process declarations has been static, but the Link
process depicted in Fig. 3 is different in that it must be dynamically created
(note dashed borders). The responsibility for creating new Link instances s
in the routing methods (RM for short) associated with the ports in the Pecr
process. The RM acts as packet redirector and creator for its direct child
process, should they be dynamic. The textual equivalent of Fig. 3 looks
following:

process Peer

ports
up: LAPD_SERVICE(in user; out provider):
peer: LAPD_APDUs

is
dynamic process Link ... end Link;

process Management ... end Management;

mgmt_route(MGMT): Link is

end mgmt_route;
up_route(LAPD_SERVICE): Link is

Kannel - A language for tuning protocols 147

end up_route;
peer_route(LAPD_APDUs): Link is

end peer_route;
const CMAX::=8
assoc m: Management; |: vector [Link, CMAX] is
m.mgmt and 1().mgmt in mgmt_route;
up and I().up in up_route;
peer and l().peer in peer_route
end Peer

Note first the keyword dynamic in front of the process declaration for Link:
it specifies that Link instances must be dynamically created. In the association
clause we specify that a maximum of CMA X links may be simultaneously active
and that the Link instances are held in a generic vector class whose indices are
used as local connection endpoint suffixes (CES) in connection management.

Fig.3. LAPD peer structure

The RMs are also given in the assoc clause. Their actual body is omitted
for brevity; basically, each method checks for the special primitive(s) that
require the creation of a new Link (such as the estreq primitive in the up_route)
and maintain a mapping of (TEI*, CES) values which enable the routing of
packets to those Link instances already active.

There are restrictions to the use of dynamicity. Informally speaking,
the use of dynamic processes is limited to local entities, that is a dynamic
process may not have direct or indirect separate associations in its assoc clause.
However this is not a severe limitation for protocol systems which Kannel is
targeted at.

4 Terminal Endpoint Identifier that identifies the connection.

148 K. Grano et al.

The Link process consists of three subprocesses - two timers and the actual
LAPD protocol machine - that form the leaf level of the specification (not
shown).

3.4. Channel refinement

So far we have described the generic LAPD aspects: the service interface
and the peer interface. But since the peer association is separate, we must
somehow refine it to achieve a concrete implementation. In Kannel this
refinement is separate from the ”abstract” specification which helps in keeping
it on a high level (without proper care the peer channel is easily neglected
altogether resulting in a monolithic, low-level implementation which cannot be
systematically reused).

Kannel has special mechanisms that allow the controlled refinement of
a separate peer association into a process. These mechanisms are process
subtyping, implementation inheritance and statechart refinement.

upl up2

L2 : Refined_Layer_2
up : LAPD_SERVICE

o]

peer : PHY'S_SERVICE peer : PHY'S_SERVI

up : LAPD_SERVICE

L1:Layer_]

Fig.4. LAPD peer channel refinement

The visual form of the LAPD refinement is shown in Figure 4. It can be
regarded as a more concrete implementation of Figure 2. (The graphical tool
ked supports flexible transition between these two levels of abstraction.) Note
that the old LAPD_APDUs channel has disappeared into the PHYS SERVICE
channel. The textual representation of the refinement gives more detail:

process Layer_1 is external "layeri.k";
process Refined_Layer 2 < Layer 2 is
include Layer_2(Peer — > Old_Peer);
process Peer is
include Old_Peer(Link — > Old_Link);
dynamic process Link is

include Old _Link;

Kannel - A language for tuning protocols 149

refined
ports
peer: PHYS SERVICE(in provider, out user);
action ...
end
end Link
end Peer
assoc L1: Layer_1 is
Ll.upl and a.peer;
L1.up2 and b.peer
end Refined Layer 2

The process Layer_I describes a particular layer 1 implementation that the
LAPD is being adapted to. Its implementation resides in a separate compilation
unit as indicated by the is external f mechanism. Note that the external
interface of the new Refined_Layer 2 is identical to that of Layer 2 which means
it will accept exactly the same set of messages. This is specified by making
Refined_Layer_2 a subtype of Layer_2. Being a subtype it is potentially useful
in RMs: one could imagine e.g. specifying the lower protocol (say, P) layer as
dynamic and instantiating it with any subtype of P during execution.

Subtyping in Kannel is separated from reuse, and thus we need the
include mechanism to textually include the Layer 2 definitions into the
refinement. During inclusion some included components are renamed in order
to allow them to be used later. For example Peer is renamed as Old_Peer to
allow it to be used in the redefinition of Peer. This renaming must be done for
all paths leading to a leaf protocol that must be refined. Note that those parts
not related to the peer channel being refined can be directly reused without
any modification; this applies e.g. to the Management process (see Fig. 3).

The refinement of peer channel inherently changes the type of the pro-
cess(es) associated with it. In LAPD, for example, the protocol data units
such as sabme and info are carried within layer 1 service primitive user data.
Thus the new type of the peer channel for processes Link and Peer will be
PHYS_SERVICE. Unfortunately this also implies some changes are necessary
in the protocol statechart®; in Kannel these changes are given in the refined
clause in the redeclaration of any affected leaf process (in the case of LAPD,
the Link process).

5 Usually only the peeer channel communication must be refined with
changes like peer.send(sabme(..)) becoming peer.send(phys_datareq(..,

sabme(..),..)).

150 K. Grano et al.

A similar pattern of channel refinement may be repeated for Layer 1 as
well. Finally, however, layering reaches the bottom level (e.g. the physical
layer of the OSI reference model), where the concrete communication takes
place. If the communicating parties reside in the same address space there
is actually no nced for bitwise data transformations. Usually, however, the
parties are physically separated into different machines. This holds for our
LAPD example as well; recall that the peer channel was specified as separate
(see Fig. 2). In such case the lowest protocol layer has to take care of the
transmission over some physical medium. Kannel provides predefined low-level
facilities for a physical communication. The low-level operations are largely
machine-dependent and attach the externally relevant separate channels into
some hard-wired facilities, such as Unix sockets. We omit the details in this

paper.

4. Related work

Kannel provides a language-centered environment for protocol engineering.
Thus, while the emphasis in the development of Kannel is on the language side,
we do not underestimate the significance of the tocl environment in practical
protocol development. So far, we have concentreted on implementing an editor
for graphical Kannel and a back-end translator for textual Kannel. but there
are plans to integrate a number of useful support tools into the environment.

Kannel can be characterized as an object-orientated protocol engincering
language. From this point of view the ncarest relative of Kannel is SDI.-
92 (OSDL) [8, 12]. The main principal difference between the languages is
that SDL-92 is an object-oriented compatible extension of an existing language
(SDL), while Kannel has been designed with no explicit language as a model in
the background. SDL-92 has introduced object-oriented facilities for protocol
specification directly on the top of central features of SDL which, besides being
a controversial approach of language design in general, inherits some of the
obvious practical problems from SDL to SDL-92 as well. Most notably, the
data types of SDL-92 are still founded on the algebraic specification language
ACT ONE [7] with no special support for defining the encoding and decoding
routines on (abstract) messages. Also the graphical state machine notation
of SDL-92 is somewhat unconventional and clumsy. Kannel is more advanced
in these aspects by providing dedicated ASN.1-like support for data transfer
operations, and by basing the state machines on the hierarchic statechart
formalism. Further development of SDL(-92) is currently addressing the former
problem by integrating ASN.1 directly into the language.

Kannel - A language for tuning protocols 151

With respect to object-orientated facilitiecs, both Kannel and SDIL-92
emphasize specialization and refinement as the key for reuse of protocol
clements, mostly state machines and the involved channel machinery. In Kannel
this 1s achieved mainly by implementation (code) inheritance and disciplined
transformations, whereas SDL-92 employs virtual transitions and procedures
and flexibly generic protocol units. It can be argued that the Kannel approach
may be more cxplicit and thus closer to implementation issues, while the more
general SDL-92 approach stresses design and specification aspects. One notable
difference between the two languages is that SDL-92, being based on basic SDL
with the ACT ONE flavor, does not provide ”ordinary” data-orientated classes
and objects at all, whereas these are the cornerstones of the type system in
Kannel. Hence, it can be argued that Kannel is more object-orientated than
SDL-92 with respect to conventional object-orientated programming. On the
other hand, SDL(-92) is more graphical than Kannel due to having a visual
representation even for algorithmic behavior (”procedures”). It has often been
argued that 1t is not sensible to visually represent low-level operational details
and that 1s why we have deliberately left them out from Kannel.

MONDEL [3] is another object-oriented language for specifying communi-
cation protocols. The idea behind MONDEL is roughly the same as that behind
Kannel: to integrate protocol conventions and description techniques into a
single object-orientated methodology and language. MONDEL is compatible
with several standard OSI notations, most notably with ASN.1. The main
difference to Kannel is that MONDEL as a formal language is mainly directed
to validation and verification, whereas Kannel is more implementation oriented.
Thus the most natural operational environment of MONDEL 1s simulation
mstead of a full-fledged execution.

The Kannel environnient under development shares the same central tools
as a number of protocol enginecring cnvironments based on SDL, Estelle or
LOTOS. One notable difference is that the conventional environments are
usually not seamlessly based on a single language, but include at least an ASN.1
tool (or similar) as an external entity. One systematically designed multi-
language and multi-tool environment is described in [15]. The environment
has a layered architecture consisting of a low-level kernel, general support
shells and the necessary application tools. Being founded on a standard kernel
and a consistent internal protocol information the architecture provides an
extensible environment and flexible interworking for all the tools. Typically the
tools are based on different protocol languages and, therefore, the approach to
integration is quite different from the Kannel approach where language is the
unifying factor.

152 K. Grano et al.

5. Conclusions

Protocol engineering is a versatile discipline with a number of important
aspects to take care of. We have presented Kannel, an application-oriented
language designed especially for engineering and implementing communication
protocols. While the principle behind the most conventional languages in the
area has been providing explicit support for solving some narrow problems
within protocol engineering, Kannel aims to cover the whole discipline in a
uniform manner under a single language and environment. The most notable
features of Kannel are object-oriented development and reuse of protocol
elements, a visual syntax especially for Harel’s statecharts, strong distribution
and a mechanism for data transfer.

The main components of the Kannel environment, a graphical editor and
a compiler to C++ are currently under implementation. A third Kannel tool
currently under development is a graphical class browser. The first prototype
of the system will be available by the end of 1995. The environment will
be gradually complemented with support tools that are useful in protocol
engineering, e.g. a simulator and a translator between Kannel and ASN.1.

Acknowledgements. The Kannel project is financed by the Technology
Development Centre of Finland (TEKES) and by an industrial steering group.
The industrial steering group has also greatly affected the design of the
language. The working environment has been provided by Nokia Research
Center.

References

(1] America P., Issues in the design of a parallel object-orientated language,
Formal Aspects of Computing, 1 (1989), 366-411.

[2] Belina F. and Hogrefe D., The CCITT specification and description
language SDL, Computer Networks and ISDN Systems, 16 (1989), 311-
341.

(3] v.Bochmann G., Poirier S. and Mondain-Monval P., Object-
orientated design for distributed systems: The OSI directory example,
Computer Networks and ISDN Systems, 27 (1995), 571-590.

(4] Bolognesi T. and Brinksma E., Introduction to the ISO specification
language LOTOS, Computer Networks and ISDN Systems, 14 (1987), 25-
59.

Kannel - A language for tuning protocols 153

(5]

[6]

(10]

(11]

(12]

[13]

(14

[15]

Budkowski S. and Dembinski P., An introduction to ESTELLE: A
specification language for distributed systems, Computer Networks and
ISDN Systems, 14 (1987), 3-23.

Digital Subscriber Signalling System No. 1 (DSS 1), Data Link Layer,
Recommendations Q.920-Q.921, CCITT, 1992.

Ehrig H. and Mahr B., Fundamentals of algebraic specification 1.,
Springer, 1985.

Faergemand O. and Olsen A., Introduction to SDL-92, Computer
Networks and ISDN Systems, 26 (1994), 1143-1167.

Gran6 K., Harju J., Paakki J. and Jarvinen T., Proposal for a
protocol engineering language, Technical Reports TR-6, Department of
Computer Science and Information Systems, University of Jyvaskyla, 1994.
Harel D., Statecharts: A visual approach to complex systems, Science of
Computer Programming, 8 (1987), 231-274.

Harel D., On visual formalisms, Communications of the ACM, 31 (1988),
514-530.

Mogller-Pedersen B., Rationale on object-oriented SDL, Object-oriented
environments: The Mjplner approach, eds. J.L.Knudsen, M.Lofgren,
O.Lehrmann-Madsen and B.Magnusson, Prentice-Hall, 1994, 136-152.
Omohundro S., The Sather 1.0 Specification, unpublished, available
electronically as file manual-1.0v5.ps.Z in directory /pub/sather via
anonymous ftp to ftp.icsi.berkeley.edu.

Steedman D., ASN.1 - Tutorial & Reference, Technology Appraisals
Ltd., 1990.

Schneider J.M., Mackert L.F., Z6érntlein G., Velthuys R.J. and
Bar U., An integrated environment for developing communication proto-
cols, Computer Networks and ISDN Systems, 25 (1992), 43-61.

K. Grano J. Harju

Department of Computer Science Department of

and Information Systems Information Technology
University of Jyvaskyla University of Technology

P.O.B. 35 P.0.B. 20

FIN-40351 Jyvaskyla, Finland FIN-53850 Lappeenranta, Finland
grano@research.nokia.com harju@lut.fi

154

K. Grano et al.

T. Jarvinen

Department of Computer Science
and Information Systems
University of Jyvaskyla

P.O.B. 35

FIN-40351 Jyvaskyla, Finland
jarvinet@research.nokia.com

J. Paakki

Department of Computer Science
University of Helsinki

P.O.B. 26

FIN-00014 Helsinki, Finland
paakki@cs.helsinki.fi

T. Larikka

Department of

Information Technology
University of Technology

P.O.B. 20

FIN-53850 Lappeenranta, Finland
larikka@lut.fi

