Annales Univ. Sci. Budapest., Sect. Comp. 17 (1998) 125-135

A THEORETICAL APPROACH TO
PROGRAM INVERSION

A.Féthi and J.Nyéky-Gaizler (Budapest, Hungary)

Abstract. The aim of this paper is to demonstrate how the mathematical
model of programming presented in [2,3,9] can be applied. The problem of
program inversion, a well-known and widely used program transformation,
described informally by M.Jackson as a solution to the problem of structure
clashes, is adapted here to this model. Using the notion of elementwise
processing, the concepts of elementwise producer and elementwise consumer
programs are introduced. With the help of these it is proved how one can
eliminate the intermediate sequential files needed in the original solution of
the problem while creating an ”inverted” program as a result.

1. Introduction

At the present time the importance of reliability of the programs became
underlined by the improving quality of hardware and by the increasing number
of different fields where computer science takes place. Formal methods were
defined where techniques are available to prove that a system satisfies a given
specification [1,2,3,4,5,8,9]. The solution of a programming task is almost
always based on abstraction. The depth of this abstraction depends on the
level of generality of the concept, created by the programmer for modeling the
problem.

The methods, similar to the approach of F. Vivarés [8], which propose
practical strategies to help in building a system, are relatively rare. Our model
serves this purpose, this means we are interested in giving a formal method for
designing and constructing correct programs.

Supported by the Hungarian National Science Research Grant (OTKA),
Grant Nr. 2045.

126 A. Féthi and J. Nyéky-Gaizler

In the present paper our abstract approach is presented by proving
the theorem of program inversion, a well-known and widely used program
transformation, described only informally by M.Jackson as possible solution
to ”structure clashes” [6].

2. Preliminary definitions and notions

The basic definitions and concepts of our mathematical model of program-
ming is given in [9]. For the sake of brevity we do not repeat definitions given
in [9] (printed in this volume). The definitions of binary relation, domain and
range of a relation, (Dr, RR), strict composition of relations (Q ® P), function,
reduced sequence(red(a)) are given in [9]. The notions and definitions of the
mathematical model used, i.e. state space (A), variable (v; : A — A;), problem,
program, program function (p(S)), solution, weakest precondition, program
constructions (sequence, alternative construction, loop), type specification,
type, type constructions (direct product, union, iteration), some functions
defined on sequence types (e.g. dom, lov, hiext, lorem), and the notion of
elementwise processable functions are also defined in [9].

Some supplements which will be needed during the solution of the problem
described above:

a) The program function p(S) of the program S is said to be independent
from the state space component A;, if

Va,b € Dys) : (Vk e ([1,i—1JU[i+ 1,n]) : ax = bx) — p(S)(a) = p(S)(b)

b) R is called the closure of the relation R C A x A, if
def

Dy = {a€ A| ALr(ao,.-..--) : ap = a},

R(a) o {a’ € A|I3LR(ao,...,aq) : a=ao A a’ =ay A ay ¢ Dr},
where Lg(ao, ..., a,) is a length q point-chain of the relation R C A x A,
if Vi € [1,q] : a; € R(ai—1). The a4 is called the end-point of the point-
chain, if ay ¢ Dg.

Lgr(aog,......) is an infinite point-chain of the relation R C A x A, if
Vi€ N :a; € R(ai-1).

c) Let R C A x A be a relation and 7 be a logical statement over A.

The relation R|. o (RN([7] x A)) U {(a,a)|[r]\Dr} is the restriction

of the relation R to = .

A theoretical approach to program inversion 127

d) R|, is the closure of the relation R with respect to the condition .

e) The theorem describing the program function of loops: p(DO(7; Sp)) =

= p(So)|r is proved in [2].

f) In this paper the simplest form of elementwise processing will only
be used, this is the so called ”first version”, where the function f : X —
— Y, X,Y C 27 is single-valued and depends only on one variable:

A=XxY, z:X,y:Y,
B=X, z':X,

Qs = (z =1'),

Ry = (y = f(z"))

It can be proved, that the program S is the solution of this specifiation:
S = (y:=0; DO((f(z) # 0) : (e : mem(z); y := yUf({e}); z := z—{e})),
with the invariant Py = (y U f(z) = f(z') Ay N f(z) = 0).

g) Using the notion of the weakest precondition, the appropriate opera-
tions which achieve the functions defined on type-constructions in [9], can be
specified. The specifications of the operations needed later are:

Let us suppose that 7 = seq(7o).
Let A=T x Nand m: N, t:T.
i) wp(m := t.dom, R) = Rm™—dom(t)
Let A=T x Toand to: 7o, t: 7.
i) wp(to := t.lov, R) = dom(t) # 0 A Rto—lov(V)
iii) wp(t : hiext(ty), R) = Rt—hiezt(tto)
Let A=T and t: 7.
iv) wp(t : lorem, R) = dom(t) # 0 A Rt—lerem(t)
h) Supposing A = U x V, the problem F C A x A describes the evaluation

of a function f : U — V at some v’ € Uif F = {((¢«/,v), (u, f(u'))) | Vu,u’ €
eU,YVveV}.

128 A. Féthi and J. Nyéky-Gaizler

3. The Jackson method

Jackson’s method [6,7] allows to build programs from the logical structure
of their inputs and outputs. The steps are:

- Describe precisely the structure of program inputs and outputs by means
of Jackson’s trees.

- Merge both structures in order to obtain the structure of the program
(this is the so called structure text).

- Build the list of elementary functions allowing to compute all values of
elementary outputs.

- Assign a list of operations to every leaf of the structure text.

- Add the boolean expressions used for selection and iteration and translate
the structure text into the target language.

In our model this means that:

- Determine the state space of the problem, realize the internal structure
of data types (to which type constructions they belong), and refine them
then step-by-step until the level of elementary data types. The obvious
correspondance between Jackson’s trees and type constructions defined above
can be given by:

1) A leaf representing an atomic data corresponds to an elementary data
type.

i1) The selection constructor corresponds to the union of data types.

iii) The sequence constructor corresponds to the direct product of data
types.

iv) The iteration constructor corresponds to the iteration of a data type.
- Check at each level whether an elementwise processable function, which

results the values of elementary outputs can be determined, and if this is the
case, then define it.

- Create the solving program using the correspondance between type
constructions and program constructions:

1) The direct product of data types will be handled with a composition of
functions, this yields a sequence of programs.

ii) The case of union of data types will be handled with functions defined
by alternative construction, i.e. an alternative construction of programs
will solve it.

A theoretical approach to program inversion 129

1i1) Handling an iteration of a data type yields a loop construction with a
loop condition depending on the length of the iteration.

- Code the result into the target language.
It is easy to justify that these correspondances hold.

4. The theorem of program inversion

The Jackson method however is only applicable if an elementwise process-
ing function, which describes the connection between the input and output
data structures, can be defined. Problems arise only if we cannot determine
an elementwise processable function which results in the values of elementary
outputs. This is the case of ”structure clashes”. Jackson distinguishes the cases
of "boundary clash” and ”ordering clash”.

The solution to these problems is given with a sequence of programs, using
intermediate file(s), produced by the first program and consumed by the second
one. The program using intermediate file(s) is in some cases - the precise
conditions will be investigated now - convertable to a program, which produces
an element of the intermediate file, and then instead of writing it into the file,
consumes 1t immediately while producing the result of the problem.

The problem can be formulated in general as follows:

Notations: Let U, V, E, T be arbitrary type valuesets, X = seq(E), Y =

= seq(T) sequences created from E and T respectively.

Suppose, there is given a function f : U — V| which is a composition:
f = fiofO f3, where fi 1 U - X, fy : X - Y ,f3:Y — V and the
task is to find a program, which solves the problem FF C A x A given with the
specification:
A=UxV uv:U, v:V.

B=U 4« :U.
Qur = (u=1),
Ry = (v = f(u)).
Suppose that there exist programs S;, So, S3 which solve fi, fa, f3 re-
spectively, then the program S ::= (S;; S2; S3) will solve f accordingly

to the derivation rule of the sequential construction [9], while the original
state space A = U x V will temporarily be increased by new components:

130 A. Féthi and J. Nyéky-Gaizler

A =Z=UxVxXxY. If Xand Y are sequences, then this means, that this
program generates intermediate sequences. Now a sufficient condition for the
elimination of X and Y will be formulated. If this condition holds, the solving
program S can be transformed to an other program S’, which solves the original
problem F without creating the intermediate sequences X and Y.

Definition 4.1. (elementwise producer program) The program S; C
C Ay x AT*,
Sl = (S“; Z)O(ﬂ'l : 512))

will be called an elementwise producer program if
1) S; is a solution to the problem defined by the specification:

Ai=UxX u:U, z:X.

B=U 4 :U.
Qu = (u=1"),
Ry = (z = fi(v)).

2) Sy; 1= (SYy; £ :=<>), where S, is a program over A = U and it is

independent from the component X of the state space.

3) Si2 = (S'; z : hiezt(e)) where e € E and S}, is a program over

A = U x E and it is independent from the component X of the state

space.

Denote by n the number of elements in the resulted sequence, which will
primarily be determined - as it follows from the derivation rule of the loop [9]
- by the loop condition ;.

In this case the problem solved by S, can essentially be described as
p(S1) = g11 © g7y, where g11, 912 A1 — A1, gn = p(Su1) and g12 =
= p(sl2),1rl .

Remark: Elementwise processable functions can also be solved by elemen-
twise producer programs.

Suppose, that f; is an elementwise processable function for se-
quences. This means, that it can be evaluated with the program S, C
C Ay x A3*,

Sy = (y:=<>; DO((f2(z) #<>): Sa2)), where

Say 1= (e :=lov(z); t := fo({e}); y : hiext(t); z : lorem),

A theoretical approach to program inversion 131

according to the specification:

Ag:XxY z:X, y:Y.
B=X - X.
Q:'—(I—r'),

Ry = (y = f.(z')).

In this case the problem solved by S, can essentially be described as
p(S2) = g21 © ¢35, where g21, 922 : A2 — Az, g1 is the problem solved
by (y :=<>), this means g3; = (y =<>), and g22 = p(S22)|(s,(c)<>)-

Definition 4.2. (elementwise consumer program) The program
S3 g_: A3 X As*,

3 == (Sa1; DO((y #<>) : S32); Sa3)

will be called an elementwise consumer program if
1) S35 is a solution to the problem defined by the specification:

A3=Y xV y:Y, v:V.

B=Y ¢:Y.
=(=1v)

Ry = (v = f3(y')).

2) S3; and S33 are independent from the component Y of the state space,

3) Sap 1= (t := lov(y); S%,; v : lorem) where S}, is a program over T x V

and 1t is independent from the component Y of the state space.

In this case the problem solved by S3 can essentially be described as
P(S3) = g31 © g5, O g33, where g31, 932, 933 : A3 — Az, ga1 = p(Sa1),
932 = p(S32)|(y#<>), and gzz = p(Sa3).

Remark. Elementwise processable functions can also be solved by ele-
mentwise consumer programs, but the programs solving the problems of linear
or maximum searching, the counting or the summation etc. are also
elementwise consumer programs.

Now with the help of these definitions and notations the theorem can be
formulated in the following way:

Theorem 4.1. Let f : U — V be a function, for which f = fi® fo0 f3,
where fi : U — X, fo : X - Y, f3 : Y — V, f, be an elementwise

processable function (thus it can be solved by the elementwise processable

132 A. Féthi and J. Nyéky-Gaizler

program Sy), and f; and f3 be functions, which can be solved by the elementwise
producer program S; and elementwise consumer program Sz, respectively. If
this holds, then - using the above notations - f can be solved with the program:
S’ :=(S%;; Sa1; DO(m : (Siy; t := f2({e}); S42); Sa3).

Proof. Since the program S ::= (S;; S2; S3) solves the problem described
with the function f, we have to prove, that if the conditions hold, the program
S’ also solves it.

The function solved by S can essentially be described as
f=9109720 921 C g3 © 931 O g32 © g33.

Investigating these functions we get the following:
g11 = fu © fi;, where

fi1 : U — U is the function evaluated by S{,, and it is independent
from X,

fli = (z=<>);
g12 = fi2 © fi5, where

fiz : U — U x E is the function evaluated by S/,, and it can be
described as

fiz = (fi21, fi22) where fiz, : U = U, fizg : U — E;
f{Q X xE =X, f{g = hie‘rt(r,e);
Thus the resulting sequence is:

z =< fina(fu1(¥)), fiza(fra1(f11(w)), - - frao(fio1 (F11(w))) >.

g1 = (y =<>),
g22 = f221 © f2 O fa22 © fa23, where
faz1 1 X = E; faz1 = lovg;
fo : E— T is the elementwise processable function;
fa22 1 Y x T =Y, fazy = hiext(y),
fazz : X = X fazz = loremg;
Therefore for each element of the resulting sequence y holds: y; = fa(z;).

gs1 = f31, f31 : V — V is the function evaluated by Sg3;;
932 = f321 O f35 © fa322;
fa2z1 Y = T fao1 = lovy ;
fia : V.x T — V; fi, is the function evaluated by Sj,;
fazz 1 Y =Y fazn = loremy;
933 = fa3, fsz : V — V is the function solved by Sji3.

A theoretical approach to program inversion 133

The transformation performed by (Ss1; DO((y #<>) : Ss2)) can be
described with the recursive function: Go = f31, Git1 = f42(vi41, Gi).

Using these notations, the problem solved by S’ can be described as
ff=mof0(fi20f20 f33)" O fas.

Since the composition of functions working on different subspaces of a state
space 1s always commutative, taking into account the appropriate domains
and ranges of the above functions, we might conclude, that it is allowed to
commute the functions g7, with g2, g1 with g3, and with g7, in the sequence
of compositions in f. Thus we get

f=910097,00921095,09310 95, Ogas =

f = 91109210931 © 972 O 93, © 932 © g33.

Using the above transformations, we get that for each ::

9120 922 © g5 = (912 © g22 © g32)".

Consequently:

f=91109210931 O (9120 922 g32)" © g33-

Using the refinements of the functions:

= (mofl)o=<>)Cfn0(f120 f12) ©(f2210 f20 f22: © f223)®
O(f321 © f33 © f322))" © fs3.

Substituting the definitions of the functions appropriately, it is easy to see,
that one can distunguish between functions working with X or Y, and those,
which have no connection with these state space components.

f = Mmooz =<>)0(y =<>)0 fa1 O (fi2 © hiezt(z,e) © lov; © f20
Ohiext(y)y © lorem; © lovy © f3, © loremy)™ © fa3

Considering the following properties of the functions defined on sequences:
lov(hiezt(<>,e)) = e, and lorem(hiext(<>,e)) =<>, we get, that the = and
y components, which are set to empty at the beginning, are also empty after
each iteration-step, this means

f=0fa10(fizofa® f3)" O fazs = f=f"
Thus the theorem is proved.

Remark. It often occurs, that one of the functions fi, fo, f3 is the
identity.

134 A. Féthi and J. Nyéky-Gaizler

5. Conclusions

As asummary, we can say, that Jackson’s programming method can be well
formalized in the frame of our mathematical model. In the case of structure
clashes, namely if the problem described with the correspondance between
the structures of the input and output data cannot be handled with the help
of an elementwise processable function, the solution is, with the aid of the
composition of elementwise producer, elementwise processable and elementwise
consumer programs, often possible.

This process can also be viewed as an appropriate transformation of the
state space. Suppose, that the original problem had to be solved on the state
space A = U x V, but actually the elementwise processing can be interpreted
on the state space A’ = X x Y. The essential property of an elementwise
processable function is, that for evaluation of one element of the result, it uses
only one element of the original iteration, this means, if X = seq(E), Y =
= seq(T), it can be viewed as a function E — T. In this case, if we are
able to transform the original U elementwise to X (with the help of a function
U — E), and then, after the elementwise processing, to transform its result Y
elementwise to V (with the help of a function V. x T — V), we can easily solve
the original, seemingly difficult problem.

We would like to emphasize, that the role of the "kernel” of the elementwise
producer program, of the S),, is a kind of abstract “read”: the processable
elements are produced with the help of the original state space component U
one after the other. Similarly transforms Sz the sequence Y to the resulting
V.

The formal description of the state space transformations oversteps the

intentions of the present paper, which introduced the way how Jackson’s
method can be adapted to our mathematical model.

The introduced concepts of elementwise producing and elementwise con-
suming might be generalized using appropriate state space transformations to
the general case of the elementwise processable functions, and similarly the
sequence of solving programs can be ”inverted”. This is the topic of another

paper.

A theoretical approach to program inversion 135

References

[1] Dijkstra E.W., A Discipline of Programming, Prentice-Hall Inc., Engle-
wood Cliffs, New York, 1976.

(2] F6thi A., Bevezetés a programozdshoz (Introduction into Programming),

ELTE TTK, Budapest, 1983.

[3] Féthi A., A Mathematical Approach to Programming, Annales Univ.
Sci. Bud. Sect. Comp., 9 (1988), 105-114.

[4] Gries D.,The Science of Programming, Springer, Berlin, 1981.

[5] Hoare C.A., Proof of correctness of data representations, Acta Informat-
ica, 1 (1972), 271-281.

(6] Jackson M.A., Principles of Programming Design, Academic Press, New
York, 1975.

[7] Jackson M.A., Structure-oriented programming, Program Transforma-
tion and Programming Environment, ed. P.Pepper, Springer, Berlin, 1984,
169-180.

[8] Vivares F., Modelling Jackson’s programming method, Science of Com-
puter Programming, 20 (1993), 173-204.

[9) Workgroup on Relational Models of Programming (Féthi A. et.
al.), Some Concepts of a Relational Model of Programming, The Fourth
Symposium on Programming Languages and Software Tools, Visegrdd,
Hungary, June 8-14, 1995, 434-446.

A. Féthi and J. Nyéky-Gaizler
Department of General Computer Science
Eotvos Lorand University

VIII. Mizeum krt. 6-8.

H-1088 Budapest, Hungary
fa@Ingsc2@elte.hu, nyeky@ludens.elte.hu

