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PARALLEL ELEMENTWISE PROCESSING —
A NOVEL VERSION

A. Féthi, Z. Horvith and T. Kozsik
(Budapest, Hungary)

Abstract. In this paper a parallel algorithm for computing the values
of elementwise processable functions will be presented. The main task is
to prepare a dense total disjoint decomposition of the input. A relational
model of sequential programs and its extension to parallel programs will
be used to formalize this algorithm. By this way a programming theorem
is produced. We investigate the computational and communication costs
when implemented on a distributed system.

1. Introduction

Elementwise processable functions form a class of many often-used oper-
ations such as merging ordered sequences, computing the union of sets and
updating a database. Elementwise processability means that the output can
be obtained by processing each single data item from the input one after the
other [1, 6]. A formal definition will be introduced in Section 2. In general the
domain and the image of such functions consist of ordered sequences (possibly
represented by sequantial or direct files) or sets. Throughout this paper we
assume that the domain is some ordered sequences while the image is some
sets. (See [6] and Section 2 for details on sequences.)

To describe our algorithm we use a relational model of sequential programs
[3, 4, 5] and its extension to parallel ones [2]. This latter model is closely related
to UNITY introduced in [8], but is completed with some important features
of the former. The two models formalize the notions of state space, problem,
program, solution, specification, refinement, etc.
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These models are based on the top-down refinement of specifications. As
the starting point of the program design we produce a formal specification
to the problem. The proof of the correctness of the solution is developped
parallel to the step-by-step refinement of this specification. In the end an
abstract program is obtained. We say that the specification and the solution
1s a programming theorem.

Section 2 enumerates some notations, introduces some basic definitions and
the formal specification to the problem. A sequential solution can be found in
Section 3, while Section 4 discusses the possibilities of parallelism. In Section
5 we present a parallel algorithm which is the main goal of this paper. We
give a formal description of this algorithm in Section 6. Finally we draw the
conclusions in Section 7.

2. Formal approach

In the following we employ the terminology used also in [1, 2, 4, 6]. The
names of types and components of the state space are given in capital letters.
Variables are usually named after their types, but they are in small letters. The
’variables’ of the parameter space are denoted by the corresponding variable
with a’ sign, such as z’. We use P, @), R as the name of predicates.

Let us denote the abstract data type sequence by seq(T"), where T is the
base type of the sequence. The methods of seq(T), viz. lob(s), hib(s), lov(s),
hiv(s), dom(s), lorem(s), hirem(s), loext(s,t) and hiezt(s,t) are defined in
[6]. In addition we will use the following notations:

range(s): the interval [lob(s)..hib(s)]

s(i): the element of s which is indexed by i (the (i — lob(s))-th element of
5)

s(i..j): a subsequence of s

s o z: concatenation of the two sequences

The <> denotes the empty sequence, < a, b > the one with two elements,
a and b. As it can be seen above, we write s(7) when refering to one element
of the sequence s. For indexing vectors (which is another abstract data type
presented in [6]) we use square brackets (e.g. v[i]). The notation z; means
the ith component of a direct product . With a direct product we are usually
willing to note variables stored on different processors in a distributed system.
In contrary we apply the notation f; in Section 5 for the sake of brevity.
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2.1. Elementwise processability

In the following we present a generalized definition of total disjoint decom-
position and a type transformed version of elementwise processable functions
and elementwise processing (cf. [6]). Let H denote a set with a complete
ordering '<’ among its elements, S = seq(H) and P = P(H). Let X = S* (a
direct product with k components), Y = P!, where k,[ € N.

Definition 2.1. Total disjoint decomposition: Let z € X. We
call 2V, () z(") a total disjoint decomposition of x, abbreviated by
edd(z, (z(M), ... (M) off for all different blocks (i # j € [1..r]) and for all
components u,v € [1..k] it holds, that

(1) Vs € range(z()) : Vt € range(z()) : 2()(s) # z{)(t),

(2) 3Jie Perm(1,2,...,7):Yu€ [l.k]: z, = 2{1) 0zl o ozl

Remark 2.1. Rule (1) can be replaced by the following: 3 Hy,Hs, ..., H,
pairwise disjoint decomposition of H, such that Vi € [1..r] : Yu € [1..k] : zn(f) €
€ seq(H;).

Definition 2.2. Elementwise processable function: We call an F :
X — Y function elementwise processable iff

for all z,2(") 2() € X, such that cdd(z, (z(V),z(?)) and for alli € [1..1]:

(3) F(z™), U F(z®); = F(z);,
(4) F(zW), nF(z®); = 0.
It is obvious that a similar assertion is true for every (z(!),... z(")) total

disjoint decomposition of z. Now we can formalize the specification of the
problem. Let F be the elementwise processable function, the value of which is
to be computed.

Specification 2.1. Let A be the state space, B the parameter space and
the Q predicates as follows:

A=XxYy B=X Q@)=(z=1)

T Y !

(5) Q(z') € INIT,
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(6) Q(z') € TERM,.

(7 FPp = (y = F(z')).

3. A sequential solution

To produce a solution we first refine specification 2.1 by weakening the
fixed-point condition (7) and introducing an invariant. We utilize the main
feature of F, viz. that it is elementwise processable. We devide z’ into two
parts: the items of 2’ not yet processed are collected in z while the ones already
processed are denoted by z’ —z. We keep it invariant, that z and 2’ — z form a
total disjoint decomposition of z’. The program can make progress by simply
processing an item from z until it becomes empty.

Specification 3.1.

(8) Q(z') € INIT,

9) Q(z') € TERM,.

(10) invgs : edd(z’, (z,2' — z))
(11) invg : (y = F(z' - z))
(12) FPu= (z=<>,... <>)

It 1s easy to prove that this specification is a refinement of Specification
2.1. We only have to show that (7) is a consequence of (10), (11) and (12).
(In fact all we need are (11) and (12).) Knowing that the invariants hold
in any fixed-point of the program the conclusion can be drawn that F P, =
(y=F(z' — («>,...,<>))), thus FP. = (y = F(z')). Now let us see the
following abstract program:
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Program 3.1. Sequential elementwise processing

so: y, ch:=(0,...,0), false

{ Ue, ch:=min{lov(z;) |i=1l.kAz; K> }, true
if 2 # (K>, <>)A~ch

T (y,ch = (U F(sl(z, )iy, false ||

k
|| (z; := lorem(z;), if z; #&> A lov(z;) =e)

i=1
), if ch
}

where Vi = 1.k :

sl(z, e)(i) = <Le>, ifz; #&> Nlov(z;) = e
’ R S otherwise

Again, it is not difficult to verify that this program solves the latter
k

specification. To prove (9) we can use the pair v = () dom(z;), khi(ch)) with
i=1

lexicographic ordering as a variant function. (khi(b) equals to 1 if b = true,
otherwise it is 0.) For (10) and (11) we have to compute the strongest
postcondition of the initial statement so and the weakest preconditions of the
other two statements. Finally we can calculate the fixed-point of the program
and show that (12) is a consequence of it.

4. The ways of parallelism

Before searching parallel solutions first we have to fix how many processors
we have and how big the input is. To simplify the computation of costs we
assume that the dimension of X is equal to the dimension of Y and to the
number of processors: k = [ = p. We describe the size of the input with two
numbers:

(13) N = };k: dom(z;)
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(19) M =| U {ai(3)ls € range(z))

We call N the ’'bag-size’, and M the ’set-size’ of the input. Since z; is a strictly
monotonic sequence, it is clear that M < N < k+ M. We can also assume that
k < M (in general k 1s about 2 — 64 while M can even be some million).

The sequential program described in the previous section needed O(M)
steps to reach the fixed-point. But we must not forget that the first statement
needed O(k) time to be executed as it contained a minimum-search. With
k processors one can compute the minimum of k& numbers in O(log(k)) steps
([7]), hence executing this statement parallelwise seems to be a good way to
reduce computational costs. However, we take the computation of F(sl(z,e))
the dominant cost, so we reject this solution. We are willing to find a solution
in which all the processors have to take approximetely M/k dominant steps
and they work parallelwise. On the other hand we do not want to ignore the
other costs either: we will let the prograinmer decide to what extent he wants
to regard them.

Our plan is to provide each processor with a block from a balanced total
disjoint decomposition and let them all work. Therefore we should divide
T into k parts, each part having a ’set-size’ of M/k. Notice that deciding
whether a total disjoint decomposition is balanced or not, needs an elementwise
processing, viz. computing the union of the z;-s so that we can determine the
value of M. Our job is catch-22. How can we produce a balanced total disjoint
decomposition for our effective elementwise processing algorithm if it is an
elementwise processable function to create it?

We can avoid this trap by making a compromise. One way to do this
1s to use N, the ’bag-size’ to cut z: each block having the ’'bag-size’ of N/k.
Unfortunately this way we may get blocks with huge difference in ’set-size’. In
worst case we may have a block with k times larger ’set-size’ than the others. To
solve this problem we give up one more assumption, notably that the number
of blocks equals to the number of processors. The smaller blocks we have the
more balanced the occupation of the processors i1s. On the other hand, the
more blocks we have the more administrative costs arise, not to mention the
increasing communication costs in a distributed system. It is the job of the
programmer to estimate the constants behind the O signs and find a balance.
In the following section we discuss this idea more preciously.
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5. A parallel solution

First we sum up the assumptions. We have k processors in a distributed
system. On the i-th processor we have the sequence z;. The total ’bag-size’ of =
1s N, the total ’set-size’ 1s M. We have to receive the value of an F' elementwise
processable function, that is y; on the ¢-th processor. (p =k =1l<K M < N <
kxM).

Our strategy is as follows: we devide the input into blocks, orthogonally to
the sequences. These blocks form a total disjoint decomposition of z, therefore
each block can be processed independently from the others. The distribution of
the blocks among the processors is dynamic. At the beginning every processor
1s given a block which it can process with the sequential program discussed in
Section 3. When ready it is provided with another block, until we run out of
blocks. In the end we have to compute y from the partial results appeared on
the k processors.

It seems to be rather difficult to figure out how many processing steps a
processor has to take. But it turns out that it is quite simple to determine
how much it differs from the optimum. We deviate from the optimum at the
moment when we run out of blocks. From that moment on we have processors
without a job, while the others are still working. Fortunately this does not last
long, as all the working processors have only to complete the block they are
working on and then terminate. That is why it takes no more than M/k + B
steps to take for the k processors to compute the value of F', where B is the
'bag-size’ of the largest block. (In fact even ’set-size’ could be used.) This
proves the following lemma:

Lemma 5.1. Qur algorithm takes no more than M /k+ B processing sleps
with k processors, where B is the ’bag-size’ of the largest block.

It is worth to choose B as small as possible, but we must not forget about
the other costs which increase with the number of the blocks: the number of
cuts, the number of communication steps, etc. Since the number of blocks
depends on b, the ’bag-size’ of the smallest block (viz. not more than N/b), we
should ensure that the difference between B and b is as small as possible. In
subsection 5.1 we present an algorithm which ensures that b6 > B/8.

5.1. Preparing the total disjoint decomposition

During the algorithm we have two sets for storing the blocks bigger than
B in one of them and the blocks smaller than B in the other. For representing
these sets we will use sequences (the reason can be found in Section 6). Initially
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we have only one block, containing the whole z. At the beginning every
processor sends the necessary information about its sequence to one of the
processors, let us say to the first one. This processor computes N, determines
the value of B, puts the first block into the first set of blocks and initializes the
second set as an empty one. While the first set is not empty we take a block
greater than B and cut it into two. We put the resulting two blocks in the first
set or in the other one depending on the size.

In subsection 5.1.1 we investigate where a block should be cut (how to find
the so called cut-value) so that the resulting two blocks do not differ too much
in size. After determining the cut-value the first processor sends it to all the
processors. Each processor cuts his own part of the above-mentioned block by
processing a binary search on z;. Finally they send the required information
about the two originating blocks to the first processor.

5.1.1. Where to cut a block

Let us suppose we have a block with ’bag-size’ n (n > B). We show how
to find an h € H so that cutting the block into two according to h, the smaller
originating block has ’bag-size’ at least n/8. We assume to know the following
information about the block:

d; (i = l..k): the size of the ith part of the block, that is the length of the
appropriate subsequence in z;.

fi (i = 1..k): the median value of the ith part of the block, that is z;((s +
e)/2) where s is the starting, e is the ending index of the appropriate
subsequence.

First let us sort the f; values. This way we obtain an i(j) (j = 1..k)
permutation of the 1,2,..., k numbers, such that f;;) < fij4+1). Now we are

r—1 K
looking for r € [1..k] for which |( }_ di(jy) — ( 2 di(j))| is minimal. We are
j=1 j=r+1

going to choose fi(,y as h, the cut-value: we hope, fi(;) will not be far from the
median of the block.

Algorithm 5.1. Let 1 < p < q <k, and let us keep it invariant, that

(15) 9= (El di(j)) + digp)/2,
j=

(16) h= ( d,-(j:.> + di(q)/2.
J=g9+1

Initially we can provide this invariant by setting p=1, ¢ = k and g = d;(1)/2,
h = dix)/2. While p # q increase p by one (and increase g), if g < h and
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decrease q (and increase h), if h < g. When p and q become equal, we have r,
namelyr =p = q.

Theorem 5.1. The algorithm 5.1 is optimal in the sense that |g — h| is
minimal among all possible cuts of d;(;)-s.

Proof. Let us suppose that the cut specified by the pair (u, v) is optimal,
that is |u — v| is minimal. Let us suppose that u # g (and, of course, v # h).
Since u+v =n = g+ h, either u < g or v < h holds. Let us suppose e.g. that
v < h (and u > g). In this case v contains a shorter postfix of the d;(;)-s. Our
algorithm decreased ¢ in each step by at most one, hence there was a period of
time, when the variable h had the value v. Later on there was a moment when
h would become greater then v. Let us denote the values of our variables at
that moment by p’, ¢/, ¢’ and h’ (b’ = v). At this step the algorithm chose ¢’
for decrementation — this means, that g’ > h’. It is also clear, that g’ contains
a shorter prefix of the d;(;)-s than g, that is why ¢’ < g. Collating these two
relations we get ¢ — h’ > 0. Of course h’ < h, hence h — h’ > 0, too. Now let
us compare |g — h| and |u — v|.

o lg—hl=1lg—h+h" =h|=]|(g—h)+ (R = h)[<|lg—h'|+[h -] =
lg = R'|+|h—h'|=(g9—h)+ (h—P"), and
o [u—v| = |utv—v—v| = |g+h—v—v| = |g+h—h'=h'| = [(g—h')+(h—R")| =

llg—h' |+ [h =kl =lg=h[+|h—=h|=(9—-h')+ (h—H)

Hence we got |g — h| < |u — v|, that is |g — k| is minimal. The other case,
namely when u < g can be proven similarly.

Theorem 5.2. |g — h| < n/2 holds at the end of algorithm 5.1.

Proof. We present an algorithm producing a cut for which the difference of
the two parts is not more than n/2. Since algorithm 5.1 produced an optimum
on the difference of the sizes of the two resulting parts, Theorem 5.3 completes
this proof.

j=q+1
Initiallyp=1and g =k. Ifg < h and g+d;p) < h+n/2, then let us increase
p by one (and increase g). Similarly, if h < g and h + djq) < g+ n/2, then
let us decrease q and increase h. Let us continue this until p = q. The last
di(j), viz. di(py should be divided between g and h, thus preserving the invariant
lg — h| <n/2.

If 1t happens to occur during this algorithm that we cannot increase the
smaller part keeping the invariant true (e.g. g < h, but g + dyp) > h+n/2),
then we do as follows. We add all the remaining d;(;)-s to h, so that q becomes
equal to p. We divide d;(p) by 2 and add one half to g and the other to h. Since
di(py > n/2 (because of the previous g < h and g+ d;(p) > h+n/2 conditions),

p—1 k
Algorithm 5.2. Let 1 <p<q<k, g= ) dijy, and h = ) dij).
j=1
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the half of it is at least n/4. Therefore at the end of the algorithm both g and
h is at least n/4, thus their difference is at most n/2.

Theorem 5.3. |g — h| < n/2 holds at the end of algorithm 5.2.
Proof. |g — h| < n/2 is invariant (cf. the description of algorithm 5.2).

Theorem 5.4. At algorithm 5.1 the lower estimation n/2 for |g — h| s
strict.

Proof. We show an input for which the optimal cut produces a difference
n/2 in the size of the two originating parts. Let dy1) = di2) = n/2, dy3) =
= ... =di4) = 0. For this input the optimal cut is either r = 1 or 7 = 2. In
both cases the difference |g — h| is exactly n/2.

5.1.2. About the sizes of the blocks

Now we show that the ’bag-size’ of the smallest block is at least b = B/8,
while the ’bag-size’ of the largest block is at most B, where B is a constant
chosen in advance. The second part of our assertion is evident since the applied
algorithm cuts all the blocks with size greater than B into two. On the other
hand it is enough to show, that the smaller originating block has the size of at
least n/8. Since n, the size of the original block is at least B, we never receive
a block with size under B/8.

Theorem 5.5. When cutting a block, the size of the smaller originating
block is at least n/8 (where n is the size of the original block).

Proof. We will use the notations of algorithm 5.1. Since fi;y < fij+1),
the lower originating block contains fi-_1), ..., fi1), and the higher one
fitr+1), - - - ficky- The lower block contains not only f;(j), but the lower half of
the d;(;y element of the appropriate subsequence of z;(;y (for all j = 1.7 — 1),
since these elements are not greater than f;;y. Similar assertion holds for

the higher block (for all j = r + 1..k). In addition both the lower block
and the upper one contain d;;)/2 elements from z;;). Therefore the lower

block contains at least Z_: di(j)/2 = g/2 elements, and the higher one at least

k
2 di(;)/2) = h/2 elements. Since |g — h| < n/2, both g and h is at least n/4,
=

hence both originating blocks are containing at least n/8 elements.
5.2. Costs
We have pointed out that our algorithm takes M /k+ B processing steps on

k processors. The reason is that the period of time, when we have processors
without a job is at most the time a processor needs to process one block.
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Since our largest block has the ’bag-size’ of at most B, the ’set-size’ cannot be
bigger than the ’bag-size’ and the time needed to process a block is directly
proportional to the ’set- size’ of the block, we have that the difference from the
optimum cost is at most B.

Now we sum up the other costs. To prepare the total disjoint decomposi-
tion we have to cut into two all the blocks greater than B. To do this we need
no more cuts than the number of the blocks, which is not more than N/b. In
addition to this we need k messages to collect the necessary information about
z on the first processor and k + 1 steps to compute N and B.

We have to quantify the costs of one cut. First we have to sort the f;-
s. This takes k * log(k) steps on one processor. (It can be done in O(log(k)*
xlog(k)) steps on k processors, but considering that k is rather small, we should
better complete the sort on one processor.) To find r we apply algorithm 5.1,
which requires O(k) steps. We send a message to each processor with data for
the binary search, this means k messages. The binary searches complete in
O(log(M)) steps on the k processors. After that we again need k messages to
transfer the description of the arising blocks to the first processor. Altogether
2 x k messages and O(k * log(k) + log(M)) steps are required.

After constructing the total disjoint decomposition we can start processing
the blocks. To process a block a processor has to require it from the first
processor. After obtaining the beginning and ending indices of the parts of
the block it can ask the missing subsequences from the other £ — 1 processors.
Summing up all these, we need 2 x k messages to process a block. Finally we
have to prepare y from the partial results stored on the k processors. Each part
of y; should be transfered to the processor ¢ and there they should be united.
This requires k * k messages (k messages to each processor).

Now we can give a summary of the costs:

communication costs: 4 * (N/b) * k + k? messages

processing steps: B + M/k

other steps: (N/b) x O(k * log(k) + log(M))

In the last row we can see k * log(k) + log(M). If O(M) is greater than
O(k*), then log(M) is the dominant, otherwise k x log(k).

In general the dominant costs are the processing steps, that is why B =
= M/k? is a good choice. Anyway, we leave it to the programmer to decide to
what extent he takes into account the other costs and to determine the value
of B. For example if we do not distinguish processing steps from the others, we
can find the following. Since one processing step requires k elementary steps
(it covers a minimum search), the overall number of steps needed is less than
O(M + B*k+ M xk3/B). We would like to have M as the dominant component
in this sum. Let us suppose we choose B as M/k. In this case M should be at
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least O(k*) which is quite probable. If we would like to ensure that the costs
are M + O(M/k), we need an input with size at least O(k").

6. Derivation of the parallel program

Our solution is a sequence of three programs. The first one prepares
the total disjoint decomposition, the second one completes the elementwise
processing and the third one collects the partial results. We specify these three
programs one after the other, so that the precondition of one is a consequence
of the postcondition of the previous, and altogether they form a refinement of
specification 2.1. Verification is usually left to the reader.

First of all we describe the types and predicates used in our specifications.
e IND is the indextype of the z;-s (possibly IND = N)
e BLOCK = (s:IND,d: N, f: H), descriptor of a blockpart
e BV = wvector [1..k] of BLOCK, descriptor of a whole block
e BV S = seq(BV), the description of a total disjoint decomposition

e BVSP = BV S*, for storing the actually processed block (as a sequence
of one length) on each processor

e YV = (wector [1..1] of P(H) )*, for collecting the partial results in
(remember that k =)

e opt : N —— N, used to determine the optimal value of the size of the
largest block, viz. B

e CDD: X x BVS — L,
CDD(z,b) = cdd(z, ((z:(b(5)[e]-5.-b(j)[e] .5 + b(5)[i]-d = 1)) erange(s))i=1)
e DENSE : BVS x N — L,

DENSE(b, B) = (¥j € range(t) : B/8 < 3 b(j)lil.d < B)

Remark 6.1. For ezample CDD(z, < ((lov(z;),dom(z;), f:)E)) >),
since cdd(z,(z)) holds. (Notice that considering CDD the values of the f;-s
are indifferent.)

6.1. Total disjoint decomposition

Specification 6.1.

A=X XBVSxN xN B=X Q') =(z =1z")
z bb N B z/
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Q) €INIT. Q') €TERMy  inver: Q&)

k
FP. = (N =Y dom(z;) A B=opt(N) A CDD(z',b) A DENSE(b, B) )
i=1
We are looking for a solution which is a sequence of two programs. The
first one computes N and B, and initializes the block administration. We
introduce a new component in the state space, bb : BV'S. In this component
we store the blocks that are bigger than B. The first program puts one element
into bb: the one that corresponds to z.

6.1.1. Initializing part

Specipication 6.2.
A=Xx BVSx N x N B=X Qz)=(z=2")
z bb N B z/
Q(z') € INIT, Q(z') e TERM, invg : Q(z')

k
(17)  FP. = (N =) dom(z}) A B=opt(N) A CDD(z',bb) )
i=1

We refine this specification by introducing j : A and blk : BV, and by
exchanging the fixedpoint condition to a new one and an invariant (cf. Remark
6.1).

J
invg :(j €[0.k] A N =) dom(z}) A Vielj:
i=1

(18) blk[i) = ( lov(z;), dom(z;), zi((lov(zi)+ dom(z;) —1)/2)))
(19) FPo=(j=k A B=opt(N) A CDD(z',bb) A bb=< blk>)
Program 6.1
so:j, N :=10,0
{
TN, j, blk[j+ 1) =
N + dom(zj41), j+1,
( lov(zj41), dom(zjt1), zj41( (lov(zj41) +dom(z;41) = 1) /2) ),
if 1<k

OB, bb := opt(N), <blk>, if j=k
}



118 A. Féthi, Z. Horvath and T. Kozsik

The assertions, that the original fixedpoint condition (17) is a consequence
of the introduced invariant (18) and fixedpoint condition (19) and that the
program solves the refined specification are obvious.

6.1.2. Consuming bb

Specification 6.3.

A=X x BVSx BVUSx N x N B=XxBVSx N xN
T b bb N B z/ bb’ N' B

Q(z',bb',N' B’y =(z=2' AN N=N AN B =BA

k
N = Zdom(x:-) A B =opt(N))

i=1

R(z',bb', N', B') = (bb = bb' A CDD(z',bb))

(20) Q(z',bb',N', B'Y A R(z',bb', N', B') € INITy: ypr N' B
(21) Q(z',bb', N', B') A R(z', b8, N', B') € TERM;» 40 N+ 5
(22) inv: Q(z',b',N', B)

(23) FPyi sy nv 50 = (CDD(z',b) A DENSE(b, B))

We introduce the predicate HALFV ALUE and refine this specification
as follows:

HALFVALUE(z,b) =(Vj € range(b) : Vi€ 1.k :
b()-f = zi(b(5)[i]-s + b(5)[2].4/2))

Specification 6.4.

(24) inv: CDD(z',bo bb)

(25) inv : DENSE(b, B)

(26) inv: HALFVALUE(z,bbob)
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(27) FP = (bb=<>)

This specification can be solved by a loop: we choose (24-26) as loop
invariant, (bb #<&>>) as loop condition and dom(bb) as variant function.

Program 6.2.

while dom(bb) # 0 loop
h := CutValue(lov(bb))
ub, lb := Cut(z, lov(bb), h)
bb, b := Update(bb, b, ub, b)
where ub,lb : BV and for bv : BV the {h := CutValue(bv)} is the sequence

of {i := Sorting(bv)} (which computes ¢, a permutation of {1..k}), and {h :=
:= Middle(bv, 1)} (which can be found in subsection 5.1.1). Furthermore,

Update(bb, b, ub, 1b) =

hiezt(hiezt(lorem(bb), ub),lb), b if bagsize(ub) > B A
bagsize(lb) > B

= ¢ hiext(lorem(bb), ub), hiext(b,1b) if bagsize(ub) > B A
bagsize(lb) < B

etc.
Specification 6.5. Now we specify {ub, lb:= Cut(bv,h)}:
A=X x BV x BV x BV x H B=XxBV xH
z ub b bv h ! b K
Q' bV, h)y=(z=2' Abu=b" Ah =h')
Q(z' bV, k') € INIT Q(z',bv',h') € TERM inv:Q(z',bv', h)
FP= (HALFVALUE(z', < lb.ub>) A Vi€l k:
Ib[i).s = bv'[i].s A 1b[z].s + Ib[i].d = ub[z].s A
1b[¢).d + ubz].d = bv'[i).d A
Vj € tb[i].5.bi].5 + bfi).d— 1: z/(j) <h A
Vj € ubli].s..ubli].s + ub[i].d —1: zi(j) > h)

This can be solved parallel on k processors by independently executing the
following program:
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Program 6.3.

k
_gl v; := BinSearch(z;(bv[i].s..bv[i].s + bv[i].d — 1), k)

k
U tefi], ubli] =

( bv[i].s, vi —bo[i].s + 1, zi(bv[i].s + vi)/2)),
(vi +1, bv[i].s + bv[i].d — vi, z;((vi + bv[i].s + bv[i].d)/2))

}

Specification and solution of the remaining subprograms can be completed by
regarding Section 5.1.1. We also leave it to the Reader to prove that the
presented programs solve the appropriate specifications.

6.2. Elementwise processing

Specification 6.6.

A=XxBVSxYV B=Xx BVS
z b yv z’ o

Q' V)= (z=12") R(z',b") = (b= ACDD(z',b"))

(28) Q(z',b') AR(z' b') € INIT,:
(29) Q(z',b') A R(z',b') € TERM,1 4
(30) inv: Q(z',b)

k
(31) FPpy = (Vi=1.k: | yvli] = F(z'))
Jj=1
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Let us define the functions Leftout : X x BVS +—— X and R: X x N'x
xIND x BV S —— S this way:

Leftout(z,b)=( o  R(z,i,5,b) )k,

j€range(z,)
R(z.1,5,b) =

B { <>, if 3t € range(b) : b(t)[i].s < j < b(t)[1].s + b(t)[i].d
T K zi(j) >, otherwise

Now we introduce bv : BV SP with the following:

k
(32)  inv: (V)= 1.k :|J yulil = F(Leftout(z', (.~§1 bu;) o b));)

i=1
(33) inv : CDD(z’, (-ik’l bv;) o b)

(34) FPpy = Vi€l .k:bvy =b=<&>)
We can choose the following pair as variant function:
k
(35) v = (dom(b), Y dom(bv;))
i=1
Let us suppose, we have a sequential program named EP (Elementwise
Processing), which satisfies:
{ Vi € 1.k : blk[i].s, blk[1].s + blk[:].dom — 1 € range(z;) }
v := EP(u,z,blk)

{Vj=1.k: v[j) = u[j]U F( (z:(blk[i].5..blk[i].s + blk[i].d — 1))5_, ); }

A program that solves the specification above can be obtained by a little
modification of program 3.1. Now we can assemble program 6.4:
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Program 6.4.

k
So - H bvi)yvi =, L3>
=1

1=

k
{ .gl bv;, b := hiext(bv;,lov(b)), lorem(b) if bu; =< Ab #AK>

k
'gl yvi, bv; := EP(yvi, z,lov(bv;)), lorem(bv;), if bv; &>

6.3. Collecting the partial results

Specification 6.7.

A=Y xYV B=YV Q(yv') = (yv = y')

/!

Yy yv Yyv
(36) Q(yv') € INIT,,:
(37) Q(yv') € TERMy,:
k
(38) FPyr= (Vj€lk: y = U yvilj])

Let us introduce the following invariant and fixedpoint condition. (39-40)
is a refinement of (38).

Specification 6.8.

(39) inv (€10 DUy =0 yilli)
(40) FPyp = (Yi,jel k: yulj] = 0)
Program 6.5.
k
S0 jgl Yi = 0
k

{U Y5 yvi[j] = ijyvi[j], 0 }
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7. Summary

We have intended to create a programming theorem for the problem of
evaluating an elementwise processable function. We have searched for a parallel
solution. We have given a formal specification to the problem, using a relational
model of programming. We have invented an algorithm which provided that &
processors could work on the input concurrently, each processing some parts of
it. These parts form a total disjoint decomposition of the input: constructing
this partitioning is the main task of our algorithm.

We have pointed out that with a dense total disjoint decomposition we need
only M/k + B processing steps, where M is the size of the input (proportional
to the number of steps that the sequential program has to take), k is the
number of processors and B is the size of the largest block. (Notice, that
the optimum would be M/k.) During the algorithm we send no more than
32 % k% + M/B + k? messages in a distributed system and the other costs are
below O(M xk?xlog(k)/B). We leave it to the programmer to choose the value
of B. However, if M = O(k"), then B = M/k? is a good choice.

We have demonstrated how to derive an abstract program that solves
the formal specification. During the program derivation we have restricted
ourselves to the parallel subprograms and to presenting how they can be
integrated in sequential programs and vice versa. Finally we would like to
draw it to the Readers attention, that combining the tools of the sequential
model and that of the parallel one can facilitate the derivation of a complex
program.
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