Annales Univ. Sci. Budapest., Sect. Comp. 17 (1998) 79-96

PARALLEL PRINCIPLES USED IN THE OpenVMS
OPERATING SYSTEM

P. Czabala (Budapest, Hungary)

Abstract. This paper gives a brief overview of the techniques and methods
of handling parallelism in the OpenVMS operating system. Our work is
based on manuals provided with the operating system, many experiments
and command procedures written for testing purposes and simple applica-
tion programs using selected system services. We will highlight what system
services and facilities are available for the end user and for the programmer.

1. Introduction

This paper is about parallelism in the OpenVMS [1] operating system. It
gives an overview of the features which provide methods for the user or the
programmer for using and handling parallel architectures.

We will talk about processes and threads, shared resources, mailboxes,
and locks, and how processes and threads can communicate and synchronize
with each other [2, 3]. We briefly explain these services and show some simple
examples on how they can be used.

This work gives a brief discussion of the subject, while highlights features
we consider interesting in theoretical sense.

1.1. General description of OpenVMS

The Virtual Memory System (VMS) operating system has a constantly
increasing popularity since the early 70’s, when Digital Equipment Corporation

Supported by the Hungarian National Science Research Grant (OTKA),
Grant Nr. T017800

80

P. Czabala

released the VAX/VMS 1.0 operating system. It provides many forms of com-
puting capabilities such as interactive, batch and real time processing; different
computing styles including timesharing, multiprocessing and distributed client-
server processing.

2. Parallel and distributed hardware

2.1. Multiprocessing

First of all, let us say some words about the underlying hardware. All the

following methods are common in that the support for them is higly integrated
into the operating system.

By OpenVMS terms the parallel computing environments can be divided

into three categories:

o Symmelric mulliprocessing, when all the processors run the same copy of

the operating system, use common memory, share the file system and
other resources. The system acts as a single computing node. The
processes can be run in parallel on different processors and the operating
system syncronizes and manages the communication between them. The
distribution of processes on the processors is automatical, it is mostly
transparent to the users and to the programs.

A VAXCluster system consists of CPUs connected together, each CPU
may have one or more processors. CPUs share computing capacity,
mass storage such as file systems and other resources. All the CPUs
run their own local copy of the operating system, they can be managed
together or independently, the whole VMSCluster can be treated as a
single unit by outside systems. Several methods exists for inter-process
communication in a clustered environment even if the processes are on
different computers. In that case the communication between processes is
also mostly transparent for the processes (and for the programmer), it is
efficient, low level while network-error-prone.

The symmetric multiprocessing model and the VAXCluster system arc
very strong parts of the OpenVMS operating system. They are integrated
to the system deeply and in a consistent, coherent way. These are ones
from what OpenVMS is famous for.

Networked configurations are built from independent computing nodes,
however they can use many of each other’s resources using common

Parallel principles used in the Open VMS operating systern 81

network communication techniques with protocols such as DECNET or
TCP/IP. With DECNET networks, the users and the application programs
can use files over the network just like they were local files. The Logical
Name Service described later can be used to simplify that task.

2.2. Processor models

The VAX family of processors are Digital’s CISC architecture models.
They all runs the OpenVMS VAX operating system, which is functionally
equivalent with the OpenVMS AXP operating system. Existing code can be
easily migrated from the VAX family to the AXP family. The OpenVMS AXP
1s the port of the OpenVMS operating system to the Alpha processor, Digital’s
industry leader performance RISC chip.

2.2.1. VAX vector processors

Digital has extended the traditional scalar architecture to have vector
processing capabilities in contrast to the scalar architecture’s memory-to-
memory model. This feature has been announced for from the 6000 series
of VAX processors to the 9000 series. For most of the operating system’s code
and most of the application programs, the handling of vector processors is
managed automatically by the operating system. However, there are several
system services for direct use of the vector processors.

Example 2.1. The VAX 9000 series computer is one of the largest member
of Digital’s VAX family [5]. It is a shared memory multiprocessor based cn a
2 GByte/s crossbar switch. With vector processing capabilities a four processor
VAX 9000 has a peak performance of 500 MFlops.

3. Terminology about processes

3.1. Processes and threads

Now turn to the software.

The OpenVMS operating system is based on core components, services,
utilities and the handling of processes. The operating system itself consists of
several processes, and the users interact with the system by creating and using
processes.

The concept of process is well known in other operating systems also. The
difference between them is that the OpenVMS system itself is based on some

82 P. Czabala

processes, Unix systems rely mainly on a kernel, while the VM /ESA operating
system uses the virtual machine concept as a guideline [6, 7).

3.1.1. Detached processes and subprocesses

By OpenVMS terms, processes can be grouped into jobs. A job consists
of a detached process and zero or more subprocesses. A detached process has
no parents, it exists independently from other processes. A detached process is
created when a user logs in from a terminal, when some network action occurs
from another hosts (in a VMSCluster environment, for example), or it can
be created on demand by operating system utilities or application programs.
As an example, the TCP/IP network handler software creates some detached
processes for listening the network device activity. These kinds of detached
processes are called daemons in Unix terminology. The difference between
Unix and OpenVMS processes can be summarized as that the Unix processes
form a tree with an init process in the root while OpenVMS processes form a
forest with the detached processes in each tree’s root.

thread 1 thread 2 thread 3 thread 4
regs regs t:egs regs
code
s s s s
t t t t
a a a a
data c c c c
k k k k

Fig.1. Threads in OpenVMS

Any process can create any number of subprocesses within the limitations
exposed by the system user authorization file. Subprocesses must terminate
before the parent process terminates. Subprocesses share most of the parent

Parallel principles used in the Open VMS operating system 83

process’ environment (such as logical name tables), more precisely, a subprocess
has a copy of the parent’s environment and it has some additional information
stored within it. Subprocesses are often used to accomplish a particular task
such as setting some logical names and compiling a program.

The subprocesses are independent processes of their own apart from that
they got a copy of the parent’s environment, and that they must terminate
before the parent. As independent processes, they all have their own memory
area independent from the parent’s.

3.1.2. Threads

A thread is a single, sequential flow of control in a program. Within a
thread, there is only one point of execution. With the aim of multithreaded
programming, 1t is possible to use interleaving parallelism within a process.
Every process has its own set of registers and stack, but the code and
program data exists only once in the memory. In every hardware model only
processes can be run parallel on real processors, threads provide only apparent
concurrency.

OpenVMS provides three kinds of services for writing multithreaded
programs, these differ in their features and portability. Two of them conforms
to the POSIX standard and the third one is Digital’s own version for OpenVMS.
In functionality all three variants are similar.

4. System services

In the following we will explain the available techniques and system services
of the OpenVMS operating system with the interest of parallel or concurrent
programming.

4.1. Event flags

Event flags can be used for posting status information between processes.
With system services, one can set or test event flags, or can be held in a wait
state while some particular event occurs. Local event flags can be used only
within a single process, while Common event flag clusters can be shared by
cooperating processes in the same group. Common event flag clusters can be
used by processes to notify and synchronize each other, so this 1s a simple
method of communication.

84 P. Czabala

4.2. Asynchronous system traps

Asynchronous System Traps (ASTs) are used when a user program wants
the system to interrupt asynchronously its execution when an event occurs
such as completing an I/O operation, passing a scheduled timer interval or
requesting the update of a section file on a disk. Delivering an AST is simply
means calling a pre-specifed routine within the user program. Most process
states? are interruptable by an AST.

For example it is a common technique to set a process in a ready-run
state, place it in a hibernated state and let an AST wake it with very little
delay when an event occurs. This method is used often in network handlers
where the process has to answer very quickly to the network events.

4.3. Logical name services

OpenVMS name service includes logical name service and distributed name
service.

Logical names provide a technique manipulating string data by placing
information in logical name tables. There are several name tables, some are
local to processes, some can be shared.

Logical names can be used to communicate information within processes
by having one process defining a value in a shared logical name table and the
others translate (read) it, or simply test the existence and/or value of a logical
name for synchronization.

The Digital Distributed Naming Service provides similar features accessi-
ble in a network environment, such as a DECNET network.

4.4. 1/0 services, mailboxes

It is out of the scope of this paper to describe the huge variety of the
different input-output services with respect to parallel processing, however
some highlights are included:

o Quotas, privileges and protection of many kind provided limiting the access
to the I/O devices by one process or a job of processes, to ensure avail-
ability of resources by other processes and the integrity of the OpenVMS
operating system.

2 E.g. LEF, Local Event Flag wait - for example a process waits for an 10
operation, when the IO completes it sets the appropiate Event Flag.

Parallel principles used in the Open VMS operating system 85

o Queuing I/O requests and synchronizing service completion. When an
application program requests an I/O operation from the system3, the
request is queued, and the process can continue execution immediately.
It can choose a method for testing that the request is completed: an
event flag can be specified to be set when the operation finished, an AST
routine can be declared to call upon completion, the routine can specify
a memory location as an address of the I/O status block to be written to
after completion, or it can even directly wait the completion of the I/0.
In the last case, a different system service, which does not return to the
caller until the operation, has been finished*.

e Mazilbozes are virtual devices that can be used for communication between
processes. One or more processes can write data into it concurrently while
others can read from it. All accesses to the mailbox are synchronized.
Processes can be set to a wait state while a message is read or written by
some other process. Channels® assigned to mailboxes can be unidirectional
or bidirectional, mailboxes can be temporary or permanent (that is it is not
destroyed when no processes use it anymore). The operating system itself
uses mailboxes to communicate with processes; mailboxes can even be set
to receive a message by the parent, when a subprocess terminates. We can
call mailboxes as limited distributed queues. Unix sockets are similar to

the VMS mailboxes.
4.5. Timer and condition-handling services

Program activities can be scheduled based on system clock time. In
particular, one can use the timer services for scheduling and AST for a given
process, scheduling a wakeup request for a hibernated process, or cancel a
wakeup request not yet processed. Process wakeups can be scheduled to occur
only once or at a regular interval.

Special procedures can be declared to give control to when exception
occurs. An exception occurs for example when a process tries to access an illegal
memory location, when some arithmetical operation fails, when the process
stack becomes invalid, an overflow occurs, etc.

3 It is always achieved by using the $QIO (queue I/O request) system service.

4 $QIOW (QIO and wait) can be used.

> These channels are managed by simple file-handling operations, such as
Open, Read, Write, Close. The Open statement or system service can specify
whether the channel is read-only, write-only or both.

86 P. Czabala

4.6. Lock management services

A resource is an entity of the system that a process can read, write or
execute. OpenVMS lock management services synchronize processes’ access to
shared resources. These services are effective only if all processes accessing a
particular resource use it. Processes can stay in a queue while the required
resource becomes available.

When a process issues a lock request, it must specify the name of the lock,
the lock mode defining how the process wants to share the resource and the
address of a lock status block. The lock request must be queued and after
completition of the request the result is written to the given address.

If no other processes placed a lock on that resource, or the already placed
locks are compatible with the one requested, then the lock will be accepted,
otherwise it will be placed in a queue. A process also can change the mode of
the lock, this is called a lock conversion.

Resources often have smaller parts, which can also be treated as resources,
and these parts also can be locked or even having subparts, which are them-
selves resources, etc. For example it is possible to lock an item in a record, or
lock the record in a file or lock the file, or open the volume containing the file.
This is granularity, for example locking an item is a fine granularity, locking a
file may be considered as coarse granularily. As an other example one can lock
a file concurrent read, while other processes may have locked some records in
it for concurrent write access.

There are six lock modes:

e Null mode means no lock at all, but it may express a process’ interest on
the resource or it may be later converted to other modes.

e Concurrent read lock grands read access to a resource while having any
other mode of locks to be placed on the resource. For example a mailbox or
an indexed file can be opened in concurrent read mode to read information
from it, lets other processes write to it.

e Concurrent write gives write access to the process in a manner similar to
the previous one. It makes possible to write ”uncontrolled” to the resource.

e Protected read is the traditional share lock: other processes can read it but
no one may place a write lock in it.

e Protected write: it is the traditional write lock. Concurrent read, but no
other access is allowed.

o Ezclusive: no other locks allowed on the resource. This is the traditional
exclusive lock.

Parallel principles used in the Open VMS operating system 87

With each resource there are three queues associated: the GRANTED
queue for already granted requests, WAITING for locks waiting to be granted
and CONVERSION for the lock requests whose conversion mode tries to change
a higher level.

If any group of locks are waiting for each other in a circular fashion, there
1s a deadlock. The OpenVMS operating system detects these conditions and
breaks them selecting a victim process, whose request is denied, and notifying
1t about the deadlock condition in its lock status block. Granted locks, however
are never revoked, only waiting locks can be selected as a victim.

For the notification of a process of completion or failure of a queued lock
request, similar techniques to the case of I/O requests are available.

Note that regardless of locks every 1/O operation is atomic in the sense
that the state of the resource is always consistent.

4.7. Distributed transaction management

Distributed Transaction Management (DECdtm) services provide a com-
plete and consistent way for using transactions in distributed system. Transac-
tion can be started, ended or aborted. Each rquest can be invoked by awaiting
its completion or by not awaiting it.

Under control of these services the application program, which determines
the atomic transactions to be performed, and the resource manager and
transaction manager processes work together.

The transaction manager serves the application programs’ requests by
sending instructions to the resource manager, which manages shared access
to a set of recoverable resources.

4.8. Process control

Processes can be created, deleted, suspended or hibernated, they can be
awakened by explicit call or by an AST or timer routine. They can exit or
forced to exit and it is possible to set up special routines being called when the
process terminates.

The cooperation and interaction of processes are controlled by process
privileges. Each process can access other processes with the same UIC (User
Indentification Code). Different privileges can be granted to processes to handle
other processes in the same user GROUP or in the WORLD (for example a
process with WORLD privilege can issue process control services for any process
in the system).

88 P. Czabala

4.8.1. Process information

Information about processes can be obtained under control of privileges
similarly to process control. The processes to be examined can be given by
their unique process indentification code (PID) or by their name within the
same group.

4.9. Memory management

OpenVMS memory management routines control the relation between
the processes virtual address space and physical memory. These operations
generally are transparent to the user process, so there are rare occasions when
a user program must directly control these operations. These include:

e Defining, extending or deleting virtual address space for a program.
e Locking or unlocking memory pages onto/from memory.

e Defining, updating or deleting global section or section files. These services
let user processes to have some of their memory mapped into a physical file
or the system paging file. Using this method, many processes can access
concurrently and rapidly the same information. In addition, if processes
use global section files, they can modify quickly the contents of the file,
having the system paging mechanism write back it to the file, at the same
time syncronising the data access of the cooperating processes.

Sharable code can also mapped into memory using image sections. A
very fast method of process communication is using page frame sections, when
physical memory is mapped into the processes’ virtual address space.

There are also available private sections for the same purpose, but they
are used exclusively by only one process.

5. Example programs in Ada

In this section we will show some examples on how to use the different
system services. The examples are written in Ada83 language.

5.1. Ada and the OpenVMS

The DEC Ada compiler is a validated implementation of the Ada 83 object-
based language. The object-oriented Ada 95 standard is not supported by the

Parallel principles used in the Open VMS operating system 89

DEC Ada compiler, however one can use the GNAT Ada 95 compiler which
also uses threads for implementing tasks.

The DEC Ada compiler implements the Ada tasks using threads. This
means that every Ada program executes in one single process. If one wants to
execute the Ada tasks on different processors in different processes or even in
different computers, the Ada95 language’s Distributed Annex could be used.
The following examples not only shows the way how system services can be
used, but they give a basic idea on how it would be possible to implement the
Ada95 distributed partition model to distribute the tasks on many processors.

In other languages like the DEC C++ special libraries are provided for
multithreaded programming and other system services.

5.2. Event flags

This procedure is for setting an event flag or wait for one. It can be used
by several processes to notify each other when a particular event occurs. It is
similar to a binary semaphore known from the literature.

This program itself is quite simple, it shows the simple and uniform way
of calling system services.

with STARLET, CONDITION_HANDLING;
use STARLET, CONDITION_HANDLING;

procedure CEF(set_operation : in BOOLEAN) is

status: COND_VALUE_TYPE;
err: exception;
begin

AscEfc(status,64,"CLUSTER"); -- assign common event flag cluster

-- we give a name and an id to the cluster, and receive the
-- return status of the system call

if not Success(status) then -- this is the standard method for
raise err; -- checking that the system call was
end if; succesful

if set_operation then
SetEf (status,64); -- set event flag
(maybe somebody listening to it)

else

90 P. Czabala

WaitFr(status,64); -- wait for event flag
end if;

if not Success(status) then

raise err;
end if;
exception
when err = Signal(status); -- print descriptive error message
- in VMS style format
end CEF;

In this program we used the STARLET predefined library package. This
packege contains direct Ada interface to most system services, while the LIB
package can be used instead for mode comfortable, more portable routines. We
used this only procedure for the set and wait operations because the code for
them differs in only one line.

5.3 Mailboxes and logical name service

Here follows an example on how to use mailboxes and logical name service.
In the program given below we create a mailbox, retrieve its name from the
job level logical name table and place it in the group name table, so the same
user or an other user in the same group can read it in different jobs. Note
that special privilege (GRPNAM) is needed to write to the group logical name
table. At the end of the program we write some text into the mailbox.

A similar program can be used to read the text from the mailbox.

with STARLET, TEXT_IO, CONDITION_HANDLING, SYSTEM;
use STARLET, TEXT_IO, CONDITION HANDLING, SYSTEM;

procedure MbxWrite is
test_mode: constant BOOLEAN := true;

status: COND_VALUE_TYPE;
chan: CHANNEL_TYPE; -- channel to communicate with the
-- mailbox

iosb:I0_STATUS BLOCK_TYPE;
-- after the I0 completed, here we can see whether it was
-- succesful.

Parallel principles used in the Open VMS operating system 91

itmlst: ITEM_LIST.TYPE(O..1);
-— this is a null item terminated list of items.
-- these items are used for logical names

buf: STRING(1..250); -~ for the logical name
ret: UNSIGNED WORD; -- length
err: exception;

mbxname:constant LOGICAL NAME TYPE:="MBX_CZABY"; -- this will
-- be the logical name of the mailbox

-- we will use instead of the real name

tabname:constant LOGICAL NAME TYPE:="LNM$JOB".
grptabname:costant LOGICAL NAME_TYPE:="LNM$GROUP"; -- the name of

— the logical name tables

-- to which we will insert

-- the logical name

-- these names are standard

-- vms name tables for

-- every job and group

s: STRING(1..1024):=(others = ' ’); -- string to transmit
1: NATURAL; -- length of the string

-- we use two different error check procedure for word and double

-- word arguments.

procedure ErrChk(status: in COND_VALUE_TYPE) is -- error check
begin
if not Success(status) then
Signal(status);
raise err;
elsif test_mode then
Signal(status);
end if;
end ErrChk;

procedure ErrChk(status: in WORD_COND_VALUE_TYPE) is
begin
ErrChk (COND_VALUE_TYPE(status));

92 P. Czabala

end ErrChk;
begin
-- Create mailbox

Crembx (STATUS = status,
CHAN = chan,
LOGNAM = mbxname);
ErrChk(status);

-- The logical name MBX_CZABY must be moved from LNM$JOB to
-- LNM$GROUP to let processes in other jobs read it

-- Read the present value

itmlst(0):=(BUF_LEN = buf’length,
ITEM_CODE = LNM_STRING,
BUF _ADDRESS = buf’address,
RET_ADDRESS = ret’address);
itmlst(1):=(BUF_LEN = O,
ITEM_CODE = O,
BUF_ADDRESS => ADDRESS_ZERO,
RET_ADDRESS = ADDRESS_ZERO);

TRNLNM(STATUS = status, -- transfer logical name: it gives
TABNAM = tabname, -- the name associated with
LOGNAM = mbxname, -- the logical name
ITMLST = itmlst);

ErrChk(status);

Put Line("Buf="&buf(1..NATURAL(ret))); -- see the name on the

-- screen, create new name in lnm$group

itmlst(0) .BUF LEN:=ret; -- this is the real length of the
-- buffer
CRELNM(STATUS = status, -- create logical name

TABNAM = grptabname,

LOGNAM = mbxname,

ITMLST = itmlst);
ErrChk(status);

Parallel principles used in the Open VMS operating system 93

-- write to channel

s:=(other = ASCIL.NUL);
s(1..5):="Hello";

QIOW(STATUS = status, -- Queue the IO request, and Wait for
-- completion.
CHAN = chan,
FUNC = IO_WRITEVBLK, -- we want to write a virtual block
I0OSB = iosb,
P1 = TO_UNSIGNED_LONGWORD(s’address),

P2 = 5; -- UNSIGNED_LONGWORD(250));
ErrChk(status); -- was the queueing succesful?
ErrChk(iosb.status); -- was the I0 itself succesful?
exception

when err — PUT_LINE("Something wrong!");
end MbxWrite;

6. Interprocess communication

In the previous chapters we have described the basic facilities and the
most important system services related to parallelism. From an another point
of view we summarize the techniques and methods. The following techniques
can be used for interprocess communication:

e [iles can share arbitrary amount of information, while this is the most
time consuming method due to physical access to the disk. However,
the simultaneous or shared access to a file can be precisely controlled by
quotas, privileges and protection as mentioned above.

e Common event flag clusters for processes executing in the same group.
They can signal each other for a particular event.

e [Logical name tables can be used for defining and translating logical names
with equivalence names (strings). A wider range of processes can access a
logical name table, stronger privileges are needed to write to the table.

94 P. Czabala

e Mailbozes can pass information, message or data between processes. Mail-
boxes also can be set up to receive information on how a particular process
has been finished.

o Global Sections can be either disk files or page file sections containing
code or data. These sections can be mapped into one or more process’
virtual memory area. System paging occurs when one process writes into
a common global section, resulting that data is written back to the disk
file or the system page.

e Lock management system services can be used to control simultaneous
access to resources. Some information can be passed to the other processes
using the same resource with lock value blocks. Processes can be notified
by blocking AST’s when other processes are waiting for a resource. In
addition, automatic deadlock detection is performed by the OpenVMS
operating system.

7. Summary and conclusion

In this paper we have shown that the OpenVMS operating system has
well designed, robust facilities in the area of parallelism. We have shown some
popular parallel hardware devices available from Digital. Using the explained
system services the application programmer can choose from several methods
when writing programs for multiprocessor or distributed environments. With
the help of some simple example programs we described and illustrated the usc
of these system services.

We can conclude that the OpenVMS operating system provides a good
framework for writing parallel applications, it has most of the traditional
properities and capabilities needed for an operating system. However it is
lacking some of the new features known from modern Unix-like operating
systems, and has quite significant (and sometimes annoying) overhead in the
system services and system calls.

The two main area where OpenVMS systems are used are database
management and general access-to-the-network support for many users with
medium or high security requirements. For systems focusing on database
management, it provides comfortable and secure, reliable solution. At systems,
where many users use it simultaneously to access different network services, it
has the advantage of high security and reliability for the system administrator
and a consistent and easy to use interface to the end user and the systems
or applications programmer. It may not be the best choice for systems where

Parallel principles used in the Open VMS operating system 95

speed is much more important than security or the high quality of system
services.

This previous statement refers mostly to the VAX architecture and the
operating system’s OpenVMS VAX version. In the near future the classical
points of view about OpenVMS systemns will certainly change. Digital’s new
marketing strategy concentrates on the Alpha processor based systems. The
new QpenVMS 7.0 and later versions contain many of those new features from
Unixes and other modern systemns regarding to for example the efficient and
state of the art network access facilities. The description of the new features
imposed, and prediction about the future operating systems may be interesting,
but are out of the scope of this paper.

References

[1] OpenVMS Software Overview, Version 6.1, Digital Equipment Corpora-
tion, Maynard, Massachusetts, 1994.

(2] Introduction to VMS System Services, Version 5.5, Digital Equipment
Corporation, Maynard, Massachusetts, 1991.

(3] OpenVMS System Services Reference Manual, Version 6.1, Digital Equip-
ment Corporation, Maynard, Massachusetts, 1994.

[4] OpenVMS Programming Concepts Manual, Version 6.1, Digital Equip-
ment Corporation, Maynard, Massachusetts, 1994.

[5] Trew A. and Wilson G:., Pas!, Present, Parallel, Springer, 1991.

[6] Csizmazia B., A UNIX operacids rendszer, draft paper, ELTE TTK, not
published.

(7] Welsh M., Linuz Installation and Getting Started V2.2.2, mdwsun-
site.unc.edu, Linux Documentation Project, 12 February 1995.

[8] Many INTERNET on-line resources such as the Lycos search engine
available at <URL:http://lycos.cs.cmu.edu/>

(9] Csombdk J., Pdrhuzamos programok irdsdt timogatd nyelvi elemek, MSc
Thesis, ELTE TTK, Budapest, 1992.

[10] Czabala P. and Koszik T., Uzenettovibbitds transzputer hdlézatokban
(Message Serving in Transputer Networks,) BSc Thesis, OTDK Thesis,
ELTE TTK, Budapest, 1992.

[11] Horovitz E., Magasszinti programnyelvek, Miszaki Konyvkiadd, Bu-
dapest, 1987.

96 P. Czabala

(12] Kozics S., Az ALGOL 60, a FORTRAN, a COBOL és a PL/I progra-
mozdsi nyelvek, ELTE TTK, Budapest, 1992.

(13] Kozics S., Az Ada programozdsi nyelv, ELTE TTK, Budapest, 1992.

[14] Milenkovic, Operating Systems: Concepts and Design, McGraw-Hill
Book Company, 1987.

[15] Barron D., Computer Operating Systems for micros, minis and main-
frames, Chapman and Hall Computing, 1984.

[16] McCrum W.A., Open System Interconnection and the Integrated Ser-
vices Digital Network, New Advances in Distributed Computer Systems,
ed. K.G. Beauchamp, D.Reidel Publishing Company, 1982, 87-96.

[17] Bustard D., Elder J. and Welsh J., Concurrent Program Structures,
Prentice Hall International, 1988.

[18] Fortier P.J., Design of Distributed Operating Systems: Concepts and
Technology, Intertext Publications Inc., McGraw-Hill Inc., 1986.

[19] Horn C., Is Object Orientation a Good Thing for Distributed Systems?
Progress in Distributed Operating Systems and Distributed Systems Man-
agement, Proc.of European Workshop, Berlin, FRG, April 1989, eds. W.
Schroder-Preikschat and W. Zimmer, Springer, 1990.

P. Czabala

Department of General Computer Science
Eotvos Lorand University

VIII. Muizeum krt. 6-8.

H-1088 Budapest, Hungary
czaby@dtalk.inf.elte.hu

