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CORRECTNESS CRITERIA FOR DATABASES
USING ABSTRACT DATA TYPES

A. Benczir and Chu Ky Quang (Budapest, Hungary)

1. Introduction

The concurrency control problem for database systems is traditionally
investigated using a simple model for transactions in which users are restricted
to access the database by uninterpreted read and write operations. A con-
current execution, or schedule, of a set of transactions is called serializable
if it is equivalent to a serial schedule. ”Equivalent” means that neither the
transactions nor the database can tell the difference: every transaction gets
the same view of the data, and the final state of the database becomes the
same.

Schedulers based on such a model allow only limited concurrency because
they do not have any information on the meaning of the operations. Researchers
working nowadays on this problem are interested in transaction models using
more semantic information to increase the amount of concurrency allowed by
schedulers. The work in this arca includes widely different approaches such as
enriching the read/write model with additional operations, using models based
on abstract data types, using semantic information provided by the users, etc.
In this paper we give a model capturing the semantics of operations on abstract
data type objects through their specifications.

We start by defining the specification of the operations, which reflects the
effect of the execution of the operations on the database and for the users. A
transaction is viewed as a sequence of operations, and a schedule of a set of
transactions is an interleaving sequence of all the operations occurring in the
transactions. Serializability of a schedule is defined entirely semantically: a
schedule of a set of transactions is serializable if it has the same effect on the
database and for the users as the execution of the transactions in some serial
order. We use this serializability as the cornerstone of database correctness
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criteria. We first look at the complexity of testing serializability and show
that it 1s NP-complete. However, we show an infinite sequence of subclasses of
serializable schedules whose serializability can be tested by powerful polynomial
time algorithms. The approximate algorithms are obtained by restricting, in
various ways, the ”amount” of context of the schedule examined at a time.

The idea of using the semantics of operations to increase concurrency is
not entirely new. However, no formal presentation of these ideas has previously
been available. Many of our results are similar to those in [8], where authors
present them in a transaction model using relational database updates.

The remainder of this paper is organized as follows: In Section 2 we present
our formal model, the serializability criterion and the complexity of testing
serializability. In Section 3 we define left-commutativity and use it to show
polynomial approximations of serializability. Finally, in Section 4 we make
some conclusions and give some suggestions for further work.

2. The model

In this section we formally present our transaction model, serializability
criterion and the complexity of testing the criterion.

2.1. Basic notions

The databasc consists of a finite set of objects of abstract data types.
Every object is always in one of its possible states. We denote the objects
by letters z,y, z... A state of the database is the set of states of all the objects
in the system. A consistent state of the database is a state which satisfies the
constraints imposed on the database. The initial database state is supposed to
be a consistent state.

A database operation is expressed by a tuple [z, op, inp] with the meaning:
op is the operation on object z with input parameter inp. We suppose that
database operations are atomic in the following sense: during the execution
of an operation no other action is also performed concurrently. By that
assumption we can exploit some properties of the operations through their
specification. The specification of operations will be defined below.

A transaction is a sequence of database operations. Each transaction must
satisfy the consistency property: if it is executed alone in a consistent state, it
leaves the database in a consistent state.
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A schedule u of set of transactions {¢;,...,t,} is an interleaving sequence
of operations originated from the transactions, such that for every i the
restrictions u,, = t;, where the restriction wuy,, is the subsequence of u having
only the operations of t;. The schedule u of transactions {t1,...,t,} is serial if,
for any two different transactions t;, t;, either all the operations of ¢; precede
all operations of t;, or vice versa.

Deciding whether a concurrent execution of transactions in a database is
correct is examined from the point of view of the database and that of the users.
Hence our definition of specification of operation [z, op, inp] must reflect the
execution’s effect on the database as well as for the users.

Definition 1. Let a = [z, op, inp] be a database operation. Its
specification is the following tuple (Q, R,trq,rv,), where @ is the state set
of object , R is the set of return values of the operation, tr, and rv, are state
transition and return value mappings as follows: tr, - Q@ — @, rv, : Q — R.

The following example illustrates this concept.

Example 1. Let BA be a bank account object, whose state set is R, the
set of positive reals. On object BA we define operations di=[BA, deposit, 1]
which deposits an amount ¢ to BA, wi=[BA, withdraw, 1] which withdraws an
amount 7 from BA and b=[BA, balance, -] which examines the balance of BA.
The specifications of operations are as follows:
- 'The specification of di is (R, {0k}, tra;, rve;), where trg;(j) = j + ¢ and
rv4i(j) = ok for every j € T,
- The specification of wi is (R. {0k, no}, tryi, rvyi), where try;(j) = j — 1,
ruyi(j) = ok if j > ¢ and try(j) = J, rvwi(j) = noif j <4
- The specification of b is (R, R, try, Tvy), where try(j) = rvs(j) = j for
every j € R.

Let ay,...,a, be database operations on the same object z, where the
specification of operation a; is (Q, R;. trq,,7vs,) ( = 1,...,n). We say that
the sequence a;...a, is defined at s € @ if mappings trq,,7v,, are defined at
s and for every ¢ (1 = 2,...,n), mappings tr,y,, rv,, are defined at the state
tra,_,(...(trg,(s))...). In that case we denote trq (tra,_,...(trq,(s))...) with
tra,  a,(8)-

For the above operations ay, ..., an, let a;, ...a;, be a permutationof a;...a,.
We write a)...an, = a;, ..a;, if and only if for every state s of =, where
the sequence ay...a, is defined, a;,...a;, is also defined and the following two
conditions hold:

(l) tra,...a"(s) = t""a,l ..a,"(s);

(2) if aj = a;,, then rve,(tra, o,_,(s)) = TV, (trall,__a.k_l(s))‘
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Let u, u’ be two schedules of the same transactions. We say that schedule
u 1s reducible to schedule v’ (u a u’) if and only if for every object z of database
we have v, ~ uir.

We note that relations f and a are reflexive, transitive, but not symmetric.
If u is reducible to u’, then on all states of the database where schedule u is
defined, the schedules u and u’ are "equivalent”.

Definition 2. A schedule u is secrializable if and only if there exists a
serial schedule u; of the same transactions such that u = wu,. The class of all
serializable schedules is denoted by SER.

From the consistency property of cvery transaction, each schedule in SER
1s correct on all states of the database where it is defined.

2.2. Computational complexity of class SER

In this section we investigate the complexity of checking the serializability
of a given schedule by using the following assumption.

Assumption. For any given schedules u and u’, testing whether u is
reducible to u' is always done by a polynomial algorithm by using the specifi-
cations of the database operations.

By that assumption, testing if a schedule u of a set {ty,...,t,} of trans-
actions is serializable can be done by trying out all permutations t;,...t;  of
sequence t...t, and checking whether u a t;,...t;,. Unfortunately, there is
no significantly better testing algorithm. In order to prove this we reduce
the problem of testing serializability of a schedule in read/write model to our
problem. NP-complete property of that problem is proved by Papadimitriou
in [6].

We now introduce the notions and results related to the problem in [6].
A database consists of a finite set of variables. A two-step transaction is a
sequence of read and write operations where all read operations must precede
all writes. A history h of two-step transactions {{y,...,t,} is an interleaving
sequence of operations originated from that transactions such that for every i
the restrictions h|;, = t; hold. Two histories of the same two-step transactions
are equivalent if and only if given a set of initial valucs for the variables, and any
local computations of the transactions, the values of the variables are identical
after the execution of both histories. A history is serializable if it is cquivalent
to a serial history of the same transactions.

Let h be a history of two-step transactions {t1,...,tn} and {z,,...,z,n} be
the set of all variables appearing in h. The augmentation of history h is the
sequence h = t,.h.t;, where initial transaction ¢, writes every variable, rcading
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none, and final transaction t; reads cvery variable, writing none. We say that
[}(z) reads x from W (z) in h if the sequence h is in the form: .. W (z)aR(z)...,
where a does not consist of any W (x). The definition of a live transaction in
hois as follows:

(a) ty is live in h.

(b) If for some live transaction tj, R(z) of t; reads z from a W(z) of ¢; in
h, then ¢; is also live in h.

(c) All the live transactions in h are defined by (a) and (b) above.

Given any history h of two-step transactions {¢;,...,{,}, we are going to
define a polygraph P(h) = (T, A, I3). T is the set of live transactions in h. First,
set A contains the arcs {(f,,t) [t € T\ {t,}}U{(t,ty) |t € T\ {ty}}. Second,
whenever a R(z) of transaction {; reads variable z from W(z) of ¢; in h, we
add the arc (¢;,¢;) in A. Furthermore, if there is a W(z) of a third transaction
t,, then we add the arc pair ((¢,,t;).(¢j,tp)) in B. A polygraph is acyclic if
there is some series of choices of one arc from each arc pair that results in an
acyclic graph in the ordinary sense.

Lemma 1. Two histories h and h’ of the same two-step transactions are
equivalent if and only if they have the same set of live transactions, and a R(z)
of a live transaction reads = from a W(r) in h if and only if the R(z) also reads
z from the W(z) in h'.

Lemma 2. A history h without dead transactions is serializable if and
only iof P(h) is acyclic.

Lemma 3. Tesling whether a history h is serializable i1s NP-complete,
cven if h has no dead transactions.

We now state the result about complexity of testing serializability of a
schedule in our model.

Theorem 1. Deciding whether a schedule u of a set of transactions over
the database 1s serializable 1s a NP-complete problem.

Proof. The set of serializable schedules is defined in NP, since to show that
u 1s serializable, one only needs to construct a serial schedule u; and check by a
polynomial algorithm that u a u, (existence of that algorithm is ensured by the
above assumption). We will show next that a known NP-complete problem, the
problem of Lemma 3 above (for convenience we will call it problem 1) reduces
to our problem (called problem 2).

A tuple (DB, h,{t;,...,t,}) can be viewed as an input of problem 1,
where DB is a database consisting of variables, h 1s a history of live two-step
transactions {{;,...,tn}. We will construct a polynomial algorithm that maps
aninput (DB, h, {t1,...,t,}) of problem 1 to an input (DB’ u, {t/,t}, ..., t. t’f})

- ln,



54 A. Benczir and Chu Ky Quang

of problem 2, where DB’ is a database consisting of objects, u is a schedule of
transactions {t;,¢},...,{;,t}} such that history h is serializable in read/write
model if and only if schedule u 1s serializable in our model.

We denote the set of nonnegative integers by R. To each variable z of the
database DB we associate an object 2’ of DB’. While domain for variable z
is any set, state set of z’ is fixed by XN.

The initial transaction t/, is the sequence of operations Wz'0 = [z/, write,
0] (for every object z’). The specification of Wz'0 is tuple (R, {null}, trw.,
row o), Where trwio(s) = 0 and row o (s) = null (Vs € R).

The final transaction l’f is the sequence of operations Rz’ = [z’, read, -]
(for every object z’). The specification of Rz’ is (X, R, trgs:,rvgs), where
mappings trpg(s) = rvpe(s) = s (Vs € R). We note that the final transaction
t’j does not change the state of database DB’ and its return values are the
state of DB’.

The algorithm constructing schedule u of transactions {t;,t’l,“.,t;,t’f}
from history h of transactions {tj,...,t,} works as follows. At first, the
algorithm assigns u = t/. Next, the algorithm will see the operations of h
in the order from the beginning to the end along history h. Suppose that
the current opcration is O of transaction t;, then the current schedule u is
lengthened by the operation map(O) of transaction tj, i.e. u = w.map(0).
Operation map(Q) is defined by the following rules:

(a) If the operation O is R(z), then map(R(z)) = Rz’ = [z, read, —] with the

specification (X, R, trps/, rvrer), where mappings trpz/(s) = rvpg(s) = s

(Vs € R).

(b) If O is the k-th W(z) operation in h, then map(W(z)) = Wz'k =
= [z’, write, k] with the specification (R, {null}, trwzk, Tvwz/k), where

trwzk(s) = k and row ok (s) = null (Vs € R).

At last, the algorithm lengthens u by ¢'f, i.e. u = u.t’f. Clearly, the
computational complexity of the algorithm is a linear function of the length of
history h. We now prove that history A is serializable in the read/write model
if and only if schedule u 1s serializable in our model.

(Only if). Suppose that two histories h and k; = t;,...t; are equivalent
where t;,...t; 1s a permutation of t;...t,. Let h and h, be the augmentations
of h and h;, respectively. We will prove that u a us = t;t}...4;t}. Since the
two schedules u and u; are defined at every state of database DB’, and since
the final transaction t; is at the end of both schedules, we only need to show
that for any initial state of DB’, the two return values of each operation in u
and u; are identical. Since the return value of every Wz'k operation is " null”,
we only need to examine the Rz’ operations.
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Given an Rz’ operation in schedule u, suppose that its return value is
k. Hence, there must be Wz'k opcration preceding Rz’ in u; and there arc
no Wir'ky (ky # k) between themn. Therefore, R(z) reads z from W(z) in
history h, where map(R(z)) = Ra’ and map(W(z)) = Wz'k. Since the two-
step transactions in history h are live, by Lemma 1, the R(z) also reads z from
W(z) in h,. Thus, in schedule u; the Wz'k precedes the Rz’; and there are
no Wz'k, (ki # k) between them. We conclude that the return value of Rz’
1s also k in uy.

(If). Suppose that u = wu,, where u; is a serial schedule of transactions
ot 1t} Let P(h) = (T, A, B) be the polygraph of history k. We now
[ARS| v f g
prove that P(h)is acyclic.

Given an arc ({;,1;) € A, by the definition of P(h) an operation R(z) of ¢;
reads & from an operation W(z) of t; in h. Suppose that the W(z) is the k-th
write operation in history h. Let Rz’ = map(R(z)) and Wz'k = map(W (z))
be the operations of transactions t; and t}, respectively. Clearly, the return
value of the Rz’ is k. Since u = wu,, the return values of Rz’ in both schedules
u and u; must be equal to k. Since Wz'k is the unique operation writing k to
the object ', then t; must precede t; in the serial schedule u;.

Suppose that in P(h) for the arc (t;,t;) € A we also have an arc pair
((tp.ti),(t5.tp)) € B in consequence of a write operation W(z) of t,. We
suppose that the W(z) of t, is the k;-th write operation in history h. Let
Wa'ky = map(W(z)) be the operation of transaction t;, in schedule u. Since
k # ki, t, cannot appear between ¢; and t; in the serial schedule u;. We pick
arc (tp,t;) from the pair if ¢, precedes t; in the serial schedule u,, and pick
(tj, tp) otherwise. The lincar order of serial schedule u; will be consistent with
the arcs in A and the arcs chosen from the pairs in B. We conclude that P(h)
is acyclic. By Lemma 2 the history h 1s serializable.

One way to cope with the above complexity result is to look for restricted
notions of serializability, which are decidable in polynomial time. In the
following section, by exploiting different semantics of operations, we present
a series of such restrictions.

3. Polynomial approximations of serializability

First we introduce the left-commutability relation between sequences of
database operations and then we exploit it to show subclasses of serializable
schedules that can be recognized by polynomial algorithms.
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3.1. Left-commutability between sequences of database operations

Definition 3. Let «a, 8 be sequences of database operations, possibly on
different objects. We say that § is left-commutable with « if and only if for
every object z either at least one of the two sequences a|; and ), is empty, or
both a|; and §; are not empty and aff; =~ Ba),. Otherwise, if there is an
object z such that both «|; and f|; are not empty, but affj; =~ Ba|; is not
satisfied, we say that g left-conflicts with o.

To illustrate left-commutability, we will see the following example.

Example 2. Given the object bank account BA introduced in Example
3.1, the following table shows left-commutability between the operations de-
posit, withdraw and balance. ”Yes” indicates that the operation for the given
row is left-commutable with the operation for the column, otherwise, "no”
indicates that the operation for the given row left-conflicts with the operation

for the column.

[BA, deposit, j] [BA, withdraw, j] [BA., balance, -]
[BA, deposit, i] yes no no
[BA, withdraw, i} no no no
[BA, balance, -] no no yes

Directly from the above definition, we state the following lemmas.

Lemma 4. Let a,f(3,71,72 be sequences of operations. If B is left-
commutable with o, then for every object x, viafyi: = M PaYy<-

Proof. Let z be an object. If at least one of a|; and f§|; is empty, for
example a|; is empty, then y1aB87;: = 718a72)z = 71872)z- Since the relation
~ is reflexive, we have y1a872: = 7Bavy:.

Otherwise, both | and B|; are not empty, let s be a state of z such that
Y1aB72|; is defined at s. Since 3 is left-commutable with a and «f|; is defined
at 51 = tryy)2(s), then af; ~s1 Bajz. Thus, afyy: ~s mMmBoayy:. We
conclude v,a879): = 711Bov2)z-

Lemma 5. Given two sequences «, 3, of operations, o = a;...ap and
B = by...by such that for everyi=1,...,q and j =1,...,p, b; is left-commutable
with a;. Then f 15 lefl-commutable with .
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Proof. Given an object z, suppose that o|; = a;, aq, and B; = b;, ...b]-q,.
Since each b; is left-commutable with each a;j, by Lemma 4, we have af|; =
= ail...aip,bjl...qu, X a; ...b]-laip, ...qu, xR bjl...qurail...aip, = ﬂalr.

Assumption. We suppose that for any two sequences « and 3 of operations
testing, whether 3 is left-commutable with «, is always done by a polynomial
algorithm using specification of database operations.

Using this assumption, we now introduce subclasses of serializable sched-
ules, which can be recognized in polynomial time.

3.2. Conflict-serializable schedules

Let u be a schedule of transactions {ty,...,t,}. The conflict-serialization
graph of schedule u is G.(u) = (T, A), where T' = {t1,...,t,}, (ti,t;) € A if
and only if there is an operation a of ¢; and an operation b of t; such that b
left-conflicts with a and a precedes b in u.

Definition 4. Schedule u is conflict-serializable if and only if the graph
G(u) is acyclic.

The class of conflict-serializable schedules 1s denoted by CSER. By the
above assumption, the conflict-serialization graphs can be constructed by
polynomial algorithms. Beside that, acyclicity of graphs can also be recognized
by polynomial algorithms. ‘Therefore, conflict-serializable schedules can be
recognized by polynomial algorithms. Recall that the class of serializable
schedules is denoted by SER, correctness of conflict-serializable schedules 1s
proved by the following theorem.

Theorem 2. We have CSER C SER.

Proof. We first prove CSEER C SER. Let u be a schedule of transactions
{t1,...,1n} such that graph G.(u) = (T, A) is acyclic. Since the graph is acyclic,
we can sort the transactions in 7 in a linear order u; consistent with A. Without
loss of generality, we assume ug = t)ty...t,. We prove that u = t;t5...1,.

Let a be the first operation of ¢, we now consider its position in u, suppose
that u = u;bausy. Since a is the first operation of ¢;, b must be an operation of a
transaction t; # t;. Since the linear order u; is consistent with A, (¢;,t;) € A.
By the definition of graph G(u), a must be left-commutable with . By Lemma
4, for every object z, we have uj; = ujbauy; =~ ujabuy,. By the definition
of a, we have u = uibaus = ujabu,.

We now consider again the position of operation a in ujabu;. By the
same deduction, we can move the operation a to the left. Since relation a is
transitive, we finally have v = ujbauy = wjabu; = ... = aujbu,.
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For the second operation in u; = t;t,...t,, we consider the operation in
auibuy, similarly, we move it to the second position. Considering consecutively
from left to right every operation in u; = t,5...t,,, at last we can conclude that
u = tlt'z...tn.

Strictness of the inclusion is proved by showing a schedule u so that u €
€ SER, but u # CSER. We consider the schedule u of transactions {t;,12, 3}
on object bank account BA given in Example 1, where operations with index
1 are of transaction ;.
u =

= [BA, deposit, 100],[BA, withdraw, 50]3[BA, deposit, 10],[BA, balance, —]3

It can be seen easily that u = t5t1t3 , which means v € SER. Using left-
commutability between the operations given in Example 2, graph G.(u) has a
cycle t; — t3 — t;. Thus, we conclude v g CSER.

In some sense, conflict-serializability i1s the most restricted notion of seri-
alizability because it takes into account only conflicts between two individual
operations, without any regard for the context. At the other extreme, serial-
izability takes into account the entire context. We next exhibit intermediate-
serializability and k-serializability looking at something from the context in
various ways.

3.3. Intermediate-serializable schedules

Intuitively, intermediate-serializability takes into account conflicts de-
tectable by looking at individual operations occurring in a schedule and the
prefixes of transactions occurring in the schedule before that operation.

Let u be a schedule of transactions {ty....,tn}. The intermediate-
serialization graph of schedule u is Gy(u) = (T, B), where T = {ty,...,t,}
and (t;,t;) € B if and only if there is an operation b of t; such that u = u;bu,
and b left-conflicts with uyj,,.

Definition 5. Schedule u is intermediate-serializable if and only if the
graph G(u) is acyclic.

The class of intermediate-serializable schedules is denoted by ISER. Sim-
ilarly as the class CSER, the class ISER can be recognized by polynomial
algorithms. We now show the relationship between classes CSER, ISER and
SER.

Theorem 3. The following statements hold:
(1) ISER C SER,
(2) CSER C ISER.
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Proof. (1) ISER C SER. We first prove ISER C SER. Let u be a
schedule of transactions {¢1, ...,¢,} such that u € ISER, then graph G;(u) =
= (T, B) 1s acyclic. Hence, we can sort the transactions in 7 in a linear order
u, consistent with B. Without loss of generality, assume that u, = t,ty...t,,
and we will prove that u = tty...t, (1.e. © € SER).

If u # t1ty...t,, then there is an operation a; € t; so that the sequence
of the operations preceding it in u is a sequence of prefixes of the transactions
in an order consistent with u, : u = o;,...0;,0;,,,...0; aru, each o; is a
prefix of transaction ¢;; and 7; < ... < 7p < k < ipy1 < ... < ig. The linear
order u, consistent with B follows that for every j = p+1,...,q, (ti,,tx)
is not in B. It leads to the conclusion that a; is left-commutable with «;,
(for j = p+1,...,9). By Lemma 1 and the definition of relation a, we have
uw = (!,‘l..A(Xipakaiﬁ_l4..(1iqulA

By the same deduction for ay,...a;,akai,,, .., u;, at last we sort the
operations of that sequence in the order u;. By the transitivity of a, we conclude
u = tity...t,.

To prove ISER C SER, wc show that the schedule u € SER in the
proof of Theorem 2 is not in ISE'R: u & ISER. We rewrite the schedule u of
transactions {t;,t2,t3} as follows:

u =

[BA, deposit, 100]y[BA, withdraw, 50]3{BA, deposit, 10];[BA, balance, —]3.
Using left-commutability between operations given in Example 2, the graph
G(u) has a cycle t; — t3 — t;. Thus, we conclude u ¢ ISER.

(2) CSER C ISER. Let G.(u) = (T, A) and G;(u) = (T, B) be conflict-
serialization and intermediate-serialization graphs, respectively of a schedule u
of set 1= {ty,...,t,} of transactions. To prove CSER C ISER, we will prove
I3 C A, then we can conclude that from acyclicity of G.(u) follows acyclicity
of ((u).

Given an arc (¢;,1,) € B. there is an operation b of t; such that u = ujbus
and b left-conflicts with uy,,. By Lemma b, there must be an operation a € uyy,,
such that b left-conflicts with a. That means (¢;,¢;) € A.

The following schedule u of {¢,,¢5} shows that u € ISER, but u ¢ CSER:
u =

[BA, deposit, 100];[BA, withdraw, 50],[BA, deposit, 10],[BA, balance, —],
In (;[(U), B = {(/,g,tl)}. But in G'f,(u)‘ A= {(tl,tg), (tg,tl)}.



60 A. Benczir and Chu Ky Quang

3.4. K-serializable schedules

In order to define k-serializable schedules, we first give some new notions.
Let u be a schedule of set T' = {t,,...,t,}, Tx be a subset of T of size k (T, = T
if k > n). We denote by ur, the subsequence of u including only operations of
transactions in T;. Given the conflict-serialization graph G (u) = (T, A), we
define the graph Gr, (u) = (Vi, Ax) as follows:

- The set of nodes Vi = T U {[Tk]} \ Tk ([Tk] is regarded as a new node);
- The arc set Ay is defined as follows: for every (t;,t;) € A,
if t; ¢ Ti and t; ¢ Ty then (ti,t]') € Ayg,
if t; ¢ Ty and t; € Ty then (t;, [Tk]) € Ak,
ift; € Ty and t; & Tr then ([T%],t;) € Ax.
Apart from the ones given above, Ay does not contain any other arcs.
Definition 6. A schedule u of set 7" = {{;,...,1,} of transactions is k-

serializable if and only if there exists a subset Ty of T"such that G, (u) is acyclic
and up, is serializable.

The class of k-serializable schedules is denoted by SERy. Given a constant
k, testing whether w7, is serializable takes time O(k!), choosing subset Ti of
T of size k takes time O(n*), therefore recognizing the schedules of SE Ry can
be done in polynomial time in n.

We state the following theorem.

Theorem 4. The following statements hold:

(1) SER, = SER; = CSER.

(2) For each serializable schedule u there exists some k > 0 such that
u€ SERy.

(3) For every k, SERy C SER.

(4) For every k > 1, SER C SERy41.

Proof.

(1) These follow directly from the definitions of SE'R,, SER; and CSER.

(2) This assertion follows directly from the definition of k-serializability.

(3) To prove SERy C SER, let us take a schedule u of transactions
{ti,..,tn} in SER;. If k > n then u is serializable by the definition of k-
serializability. Otherwise, if & < n, there exists a subset T of T of size k
such that graph Gr,(u) is acyclic and u)r, is serializable. Regarding u)p, as
a transaction, using the proof of Theorem 2, we have u = wjujp,uz, where
u; and uy are serial schedules. Since relation a is transitive, schedule u is
serializable, too. In both cases u 1s in SER.

The assertion SER, C SER follows from (4).
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(4) We first prove SERy C SERk41. Let u be a k-serializable schedule
of transactions T' = {t1,...,t,}. If k +1 > n, then schedule u is (k + 1)-
serializable (because of the fact that u is k-serializable, it is also serializable).
Otherwise, k41 < n, then there exists a subset T} of T' of size k such that graph
G, (u) = (Vk, Ag) 1s acyclic and wp, is serializable. To prove u € SERi 4, we
must show a subset Ty, of T" of size k 4 1 such that Gr,,,(u) is acyclic and
U7, 4, is serializable.

We denote:

T} ={t; | t: € Vi, ([Tx], ;) € Ax} and
Tk_ = {ti | ti € Vi, (tir[Tk]) € Ak}

There are 3 possible cases for [k+ and T as follows: at least one of them is
not empty, or both are empty. We next consider these cases.

The first case: '1',;" # . For the sake of simplicity, suppose T: =
= {t1,..,tm}, where m > 1. We first prove that we can choose some node t,
in T, such that in graph G, (u) there are no paths of length > 2 from [1}] to
t,. We suppose in contradiction that for every t; € T;' in G, (u) there exists a
path of length > 2 from [T}] to ¢;. Therefore, for every node t; € TF, in Gr,(u)
there exists a path of length > 1 from some node of T} to t;. Since Gr, (u)
is acyclic, we can sort {t1,...,¢,,} in a lincar order consistent with the order of
G, (u) restricted on {{y,...,t,,}, for example ¢;,t;,...t; , where (i1%2...1,) is a
permutation of (12...m). It contradicts to the hypothesis that for ¢;, in Gp,(u)
there exists a path of length > 1 from some node of T} to ¢;,.

With chosen node tp, let Txy) = T U {tp}. Given G, (u) = (Vi, Ax), by
the property of ¢,, graph Gr,,,(u) = (Vi41, Ak4+1) can be defined from Gy, (u)
as follows.

- The set of nodes Viyr = Vi U {[Tk4+1]} \ {[Tk), 8t}
- For arc set Ag4y:

if (li,t]‘) € A, t; and ¢t; ¢ {[7)”,1,,} then (ii,t]‘) € Ak,

if (ti, [Tk]) € Ak, t: & {[Ti]. 1} then (ti, [Tks1]) € Aks1,

if (ti,tp) € Ax, t; ¢ {[’ka],tp} then (ti, [Tk—H]) € Ak+1,

if ([Tk],t;) € Ak, t; & {[Tk], tp} then ([Tis1],t;) € Akgr,

if (tp,tj) € Ay, t]‘ gt {[Tk],tp} then ([Tk+1],tj) € Ak+1.

We first prove that G, (u) is acyclic. Suppose in contradiction that,
there is a cycle in G, (u). That cycle must involve [Tk 1], if not, it is also a
cycle of Gr,(u) and the graph G, (u) is cyclic. Suppose that the part of the
cycle which involves [Ty 1] is ...ti[Tk41]tj... (i-e. (ti, [Tk+1]) and ([Tr+1],t;) are
arcs of Ax41). We now see the above cases which define the arcs.
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If (t;, [Tk]) € Ak and ([Tk],t;) € Ak, then Gp, (u) is cyclic.

- If (t;,t,) € Ax and (tp,t;) € Ag, then G, (u) is cyclic.

If (t;,[Tx]) € Ar and (tp,t;) € A, then Grp,(u) is cyclic, because
([Tk],tp) € A

- If (ti,tp) € Ag and ([Tk],t;) € Ak, then there is a path of length > 2 from
[T] to tp in G, (u), which contradicts to the choice of t,.

All the cases lead to a conflict, so we have proved Gr, ., (u) is acyclic.

We now only need to prove that wp, ., is scrializable. Regarding up, as
a transaction, ur,,, is a schedule of two transactions {ur,,t,}. By t, € ']':',
in the conflict-serialization graph G (u|r,,,) there is only one arc (ur,.1p).
Using the proof of Theorem 2, we have ur,,, = uptp, additionally, up, is
serializable, we conclude up, ., 1s also serializable.

For the second case T, # 0, we can prove similarly that u is (k + 1)-
serializable.
For the last case, T: = T, = 0, we can choose any t, & Ti. Let

Ti41 = T U {tp}, we can prove similarly that G, (u) is acyclic and wp, ,, is
serializable.

For every case we have proved that SERy C SERk4+,. To prove SER; C
C SERk41, using Examples 1 and 2, we consider the following schedule u of
set of transactions T = {t, ..., tk1}:

u = [)1 D2W| D3W2D4...Wk_1Dk+1Wk Wk+1.
For every i (i = 1,...,k + 1), transaction
t; = D;W; = [BA, deposit, a;] [BA, withdraw, b;],

where a;,b; are reals, a; > b;. For any statc of BA, return value of every
operation in u are ”"ok”, therefore, schedule u is reducible to any serial schedule
of the same transactions, we have u € SFRy4,. Since the set of arcs of the
conflict-serialization graph G.(u) of uis t; & ty & ... & tx4;, with any choice
of subset Ty of T of size k, the graph Gr,(u) 1s always cyclic. We conclude
that schedule u € SERy.

4. Conclusion

The correctness criteria in Section 3 can be used as a basis to concurrency
control methods. Particularly, the conflict-serializability criterion can be
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applied to most common methods: two-phase locking protocol and timestamp
based concurrency control. Using semantics of operations allows us to reap
the benefits of decreasing conflicts between operations. However, it increases
the complexity of concurrency control algorithms, because the conflict between
two operations, for example [z, op. inp] and [z’, op’, inp'], depends on all the
parameters. In many applications, we can decrease the complexity by using
concrete semantics of operations. For example, the conflict between operations
on bank accounts does not depend on parameter "inp” (see Example 1 and 2).

The correctness criteria presented above does not depend on database
states. However, a concurrent execution of transactions always departs from
a consistent state of the databasec, hence we can think of correctness criteria
as depending on states. Using correctness criteria depending on states, we
hope that concurrency degree of the system can increase. For example, we see
two sequences di.wj and wj.di of operations on bank account in Example 1:
di = [BA, deposit, I] and wi = [BA, withdraw, j]. Generally, the sequences
are not equivalent, but they are equivalent for states of BA greater than j.

Clearly, the increase in concurrency obtained by the different correctness
criteria is achieved at the cost of additional overhead. Whether this cost is
worthwhile in practice depends on the characteristics of transactions and data,
and it requests that we need to evaluate our approach experimentally in future
work.
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