Annales Univ. Sci. Budapest., Sect. Comp. 17 (1998) 17-32

FUNCTIONS IN FULL PROLOG

T. Asvanyi (Budapest, Hungary)

Abstract. A functional notation for Prolog predicates, which is well
known in the Prolog community, but its implications are not fully explored,
is improved. A consistent notation, called fnProlog, is developed by the
author, giving solutions to problems unhandled before: 1. Calls to built-
in (arithmetic) and user-defined functions can be intermixed in function
expressions without limitations. 2. The notation is more Lisp-like, and
easier to read by introducing equivalents of quoting and back-quoting
mechanisms. 3. FnProlog is actually an extension of SICStus Prolog 2.1
#9. It is adapted to the module system of SICStus. 4. Function invocations
inside calls to meta-predicates work correctly. 5. Function invocations can
be used in DCG rules without limitations. 6. The notion of meta-function
and of meta-DCG rule is introduced. The implied problems are solved. 7.
Dynamic updating of functions is possible.

1. Introduction

Several systems uniting functional and logic programming have been
developed [1]. Some of them have separate logic and functional components
communicating through an interface. They have the full power of the con-
stituent languages, (for example, Lisp+Prolog), in the components [9]. The
interface is normally complicated and slow. Warren (1974, Problem 85 in [7])
suggested an optional functional notation for Prolog predicates. Phil Vasey
and others [4] improved it. These ”functions” keep the expressive power of
backtracking and incomplete data structures added to the expressive power
of pure Lisp [10]. Inside a Prolog goal, a function invocation can be in the
syntactic position of a term. It is syntactically a Prolog term with some special
prefix.

18 T. /\svényi

Function invocations use pattern matching for parameter passing. The
functions (that is predicates in functional notation) consist of function clauses,
which are expanded to normal Prolog clauses during compilation. Similarly,
the goals containing function calls are expanded to normal Prolog goals.
Therefore function calls involve no interface cost. The approach is the one
followed in Definite Clause Grammars (DCG) and Object-Oriented extensions
[2,4]: the function clauses and the other clauses containing function calls
are expanded into normal Prolog clauses using the standard hook-predicate
term_expansion/2. The body of a function clause consists of a Prolog goal
sequence. Therefore Prolog calls (from functions) need no interface. Functions
involve no runtime overhead.

Our functional notation adopts the concepts of Phil Vasey’s notation
enumerated above, but we introduce the notion of function expression, which
is a generalization of arithmetic expression. Calls to user-defined functions and
calls to built-in (arithmetic) functions can be intermixed in function expressions
without limitations. A function expression is syntactically a Prolog term with
a question mark as a prefix. (:- op(650,fy,?).) (See 2.1-2.2 and 6.)

We adopt the quoting and back-quoting notations of Lisp, so that we can
write data structures (normal Prolog terms) into the arguments of function
calls, and function calls again into the arguments of those data structures.

(See 2.2.)

As our functions are backtrackable, we introduce a special built-in function
called f£indall for collecting all the results of a function expression into a Prolog

list. (See 2.4.)

We solve the consistency problems arising from the possibility of using
function calls in the goals written into the meta-arguments of predicate calls
(see Chapter 3). We are aware of the fact that functions and DCG rules may
also have meta-arguments interacting with function calls specially. The implied
problems are discussed in 3.1 and 3.2.

We introduce some new built-in predicates for dynamic updating of
functions. These are assertf/1, assertaf/1, assertzf/1, retractf/1,
retractallf/1, ’:=’/2. The last predicate changes the value of a given
dynamic function with given arguments. The others are the counterparts of
the corresponding predicates for dynamic updating of normal Prolog predicates
(see Chapter 4).

We compare our functional notation to that of APPLOG and Prolog++
1.0 in Chapters 5 and 6. As far as we know, these two software systems have the

most sophisticated functional notation among the predecessors of our fnProlog
[1,4,6,7].

Functions in full Prolog 19

FnProlog 2.3 inherits all the concepts of SICStus Prolog 2.1 #9 [2] and
it does not change them. A SICStus Prolog module (called fnProlog) has
been written for expanding clauses and goals containing functional elements to
normal Prolog clauses and goals respectively.

2. Basic concepts

According to [8] pure Lisp can be considered as a simplification of pure
Prolog, and such Lisp programs are not even faster than their Prolog equiv-
alents, if cuts are allowed. On the other hand, Lisp functions are often more
concise (due to fewer auxiliary variables) and easier to understand (due to clear
data flow) than their Prolog equivalents.

If one wants to add functional notation to Prolog, one has to use the same
notion of data in both components of the system, if one does not want to have
run-time interface costs between them. For example, when data are passed
from Prolog to Lisp, recursive dereferencing of terms is needed, as seen e.g. in
Poplog [9]. Therefore we use Prolog terms for representing data. We do keep
the concepts of traditional Prolog in our functional notation as far as possible,
so that the Prolog programmer does not feel strange with the new ideas. We
show our basic concepts through some examples in the next paragraph.

2.1. Asymmetric relations

Let us suppose that there are facts about family relationships, for example:

father(set,adam).

mother(set,eve).

It is not clear, how to read this: is Set the father of Adam or 1s Adam the
father of Set? Functional notation is more clear:

adam.

father(set)
mother(set)

eve.

These clauses are equivalent to the previous ones, and will be expanded to
them during compilation, but the readability has been increased: relations are
often directed, and this fact can be expressed by functional notation.

It is desirable that a function could be defined by another function:

parent(X) = ?father(X).
parent(X) = 7mother(X).

20 T. Asvényi

grandparent(X) = ?parent(parent(X)).

The function expressions are prefixed by a question mark operator, (:-
op(650,fy,?).), that is, function parent/2 expresses that one’s parents are
his father and mother. (The arity of a function is the arity of its head plus
one, that 1s, its arity is the arity of the predicate it 1s expanded into.) The
question mark shows that a function expression defines a value (or values) of
the function instead of a simple Prolog term, that is:

parent(X,Y) :- father(X,Y).

parent(X,Y) :- mother(X,Y).

grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

are the Prolog clauses equivalent to the above function clauses.

Calls to user-defined and built-in functions are handled in a uniform way,
and they can be mixed freely, unlike in previous systems. (Compare 2.1 and
2.2 with 6 and [4,7].) Let us consider another example:

fib(N)

fib(1)

?fib(N-1)+£fib(N-2) :- N>1.
1. £ib(0) = 1.

this is expanded to:
£fib(N,FN) :- N>1,
N1 is N-1, fib(N1,FN1),
N2 is N-2, fib(N2,FN2),
FN is FN1+FN2.
fib(1,1). £ib(0,1).

For the exact syntax of function clauses, and for the detailed rules of their
expansion into normal Prolog clauses, see 2.3.

2.2. Activating functions

Most often we write function calls with a ’?’ prefix into the arguments of
Prolog goals, because it 1s the most convenient way to activate functions:

write fib(N) :-
writeseq(['The ’, N, ’. fibonacci number is: °,
?fib(N), .’ 1), nl.
Module fnProlog expands this clause into:
write fib(N):-
fib(N,FN),

writeseq(['The ’,N,’. fibonacci number is: °’,FN,’.’']),

Functions in full Prolog 21

nl.

If some subterms of goals are function calls, first these subterms are
evaluated to temporary variables by goals expanded from those subterms. Then
the goal is called with the temporary variables. If a function call has the arity
N, it is expanded into a Prolog call of arity N+1, where a new last argument
is added to the call. This new argument contains the appropriate temporary
variable. If a function call is an arithmetic expression, it is expanded into the
appropriate is/2 call.

We support meta-calls to functions, too. A variable with a question mark
prefix, e.g. ?Var, is interpreted as a meta-call to a function-expression and
the Prolog goal Temp eq Var is gencrated to deposit its value into Temp. The
predicate eq/2 is an auxiliary procedure to perform expansion at run-time.
If Var is actually a variable or a number, Temp eq Var is expanded to Temp
= Var. Otherwise it is expanded as Temp = ?Var would be expanded with
the actual value of Var. When this expansion has been finished, its result is
executed, for example:

write result(X) :- write(?X). is expanded to
write_result(X) :- Temp eq X, write(Temp).

Let us suppose that the call write_result(£fib(5)) is invoked. Ac-
cording to our rules, Temp eq £ib(5) would be expanded to £ib(5,TempX),
Temp=TempX. Due to some optimizations it is expanded to £ib(5,Temp). If
write_result(3*N+2) is invoked, Temp eq 3*N+2 is expanded to Temp is
3*N+2 as it is natural.

Arguments of function invocations are interpreted similarly to those in
Lisp. Numbers and variables are not touched by the expansion of the call.
Atoms and compounds are normally expanded as inner function calls. Because
these arguments of function calls are again considered function calls, the
function calls form function expressions, giving a natural generalization of
arithmetic expressions.

The goals produced from the arguments of a function invocation precede
the goal expanded from that function invocation, for example:

The goal write(?sort(randomlist(Length))) is expanded into the goal
sequence randomlist (Length,List), sort(List,Sorted), write(Sorted).
(List and Sorted are new temporary variables.)

Marking with asterisk 1s introduced so that we can write atoms and
compound terms as data into the arguments of function calls. A term marked
with an asterisk is of the form *Term. (:-op(650,fy,*).). If *Term is an
argument of a function invocation, this marked argument is expanded as Term
would be expanded in the position of an argument of a predicate call. This

22 T. Asvényi

means that *Term is simply replaced by Term in the actual argument, except
in the case when subterms of the form ?FuncCall are encountered.

For example, the goal write(?ins(X,*t(?£fib(8),void,T))) is expanded
to fib(8,Root), ins(X,t(Root,void,T),NewTree), write(NewTree).

The atom [] and the functors *.?/2 and ’, ’/2 are implicitly marked with
asterisks. This means that normal lists and round lists are considered to be
Prolog terms, even in the syntactic position of (an argument of) a function
invocation. Their elements may be function calls anyway. This rule is adopted
for convenience in the case of normal lists, and to reduce the number of coding
mistakes in the case of round lists, for example:

The goal write(?reverse((2,?cos(fib(4)-X+1)))) is expanded into
fib(4,F4), C3 is cos(F4-X+1), reverse((2,C3),R), write(R).
If we wrote an asterisk before the round list omitting the necessary blank

character, 1t would be interpreted as a function call.

A term marked with a double asterisk 1s of the form **Term. (:-
op(650,fy,**).). If asubterm of a function or predicate invocation is marked
with a double asterisk, then this subterm (**Term) is simply replaced by Term
at the actual position. This rule applies even in the case when subterms of
Term matching the form ?FuncCall are in Term (see assertf/1 in 4.)

Note that the asterisk notation corresponds to the ”back-quote”, and the
double-asterisk to the ”quote” notation in Lisp. (Quotes are atom delimiters
in Prolog and back-quotes are string delimiters in some implementations [2,5],
that 1s why we do not use the Lisp notation.)

Unlike in previous systems [4,7], one can write goal sequences containing
function calls at the Prolog prompt, for example:

?- ?sort([3,2,4,1]) = 7append([1,2],[3,4]).
2.3. Function clauses

A function clause is written in the form:

Head = Term. % Head is a Prolog atom or a compound. Term is a Prolog
term

or
Head = Term :- Body. % Body is equivalent to a normal clause body.

During compilation every function clause is expanded to a normal Prolog
clause. Therefore the arity of a function is the arity of its Head + 1:. While
expanding the Head, a new last argument (generated during the expansion of

Functions in full Prolog 23

Term) is added to it. If Term contains subterms with question mark prefixes,
they are expanded as function invocations and the goal sequence generated will
be appended to the expanded Body.

2.3.1. Examples of function expansions:

element of ([X| J) = X. % Function element_of/2
element of ([_IL]) = ?element_of(L).

element of ([X|_],X). % is expanded to this tail recursive predicate.
element of ([_|L],X) :- element_of(L,X).

append([J,L) = L. % Function append/3
append([H|T],L) = [H|?append(T,L)].

append([],L,L). % is cxpanded to this tail recursive predicate.
append([H|T],L,[HITL]) :- append(T,L,TL).

ins_sort_tree(void,X) = t(X,void,void). % This function is
expanded
ins_sort_tree(t(Root,Left,Right),X) =
t(Root,?ins_sort_tree(Left,X),Right):- X@=<Root, !.
ins_sort_tree(t(Root,Left,Right),X) =
t(Root,Left,?ins_sort_tree(Right,X)).

ins_sort_tree(void,X,t(X,void,void)). % into this tail rec. pred.
ins_sort_tree(t(Root,Left,Right),X,t(Root,LeftX,Right) :-
X @=< Root, !, ins_sort_tree(Left,X,LeftX).
ins_sort_tree(t(Root,Left,Right),X,t(Root,Left,RightX) :-
ins_sort_tree(Right,X,RightX).

2.4. Functions in Lisp and fnProlog

It is clear now that fnProlog functions may be indeterministic and they
might return nonground terms (variables or terms containing variables). These
properties are different from the properties of normal (for example Lisp)
functions. When Prolog is extended by functional notation, it seems to be
reasonable to retain the expressive power of indeterminism and incomplete
data structures.

Let us suppose that we have the following database:

parent(a)=b. parent(a)=c. parent(b)=d. parent(b)=e.

24 T. Asvényi

The functions ancestor and ancestors can be defined in an elegant way
now:
ancestor(X)= 7parent(X).

ancestor(X)= ?ancestor(parent(X)).
ancestors(X)= ?findall ancestor(X). % :-op(650,fy,findall).

findall/2is a special built-in function in fnProlog. It may have a function
expression in its single argument. It returns all the solutions of that function
expression.

The call 2ancestors(*a) returns the list of all the ancestors of ’a’ with
multiplicity.

If backtrackable functions were not allowed, one would have to define the
function ancestors/2 in Lisp style, for example (adding some cuts, it works
in fnProlog):

parents(a)=[b,c]. parents(b)=[d,e]l... % Analogous to a prop-
erty list.
parents(_)=[1. % Otherwise

ancestors(X) = ?ancestors(parents(X),[1).

ancestors([P|Ps],Ancestors) =
?ancestors(append(parents(P),Ps), [P|Ancestors]).

ancestors([],Ancestors) = Ancestors.

This definition is more complicated and cannot be used in such a flexible
way: You have to write another program to decide, if one is ancestor of another.

The concatenation of d-lists can be defined in the following form:
conc(L1-L2,L2-Z) = L1-Z.

Without incomplete data structures, one has to use destructive operations
for effective concatenation of lists [3,6,8,10].

Functions are even reversible:
prefix(L) = L1 :- 7append(L1,) = L.

This last use is not encouraged. (Functions suggest a data flow.) The
following definition is more elegant:

prefix(_)=[].
prefix([HIT]) = [H|?prefix(T)].

Functions in full Prolog 25

2.5. Functions and modules

Functions can be exported from and imported by modules, because they
are expanded to predicates. Their invocations can even be prefixed by the
module name overriding the standard visibility rules, just like in the case of
predicates [2]. Maintaining that functions, modules and meta-predicates work
together in a consistent way, was the most difficult task while developing the
concepts and the implementation of fnProlog, but the programming difficulties
solved are out of the scope of this article.

3. Mcta-predicates

When the module system of SICStus Prolog 1s used, some special kinds of
arguments (files, predicates, clauses and goal sequences) of predicate calls are
to be handled specially during compilation. Therefore so-called meta-predicate
declarations are needed. For example:

all of(P) :- P, fail.

all of ().
and

for_all(P,Q) :- \+ (P, \+Q).
are meta-predicates, because their arguments are supposed to be goals. There-
fore they need meta-declaration as it is specified in [2]:

:- meta_predicate all_of(1), for_all(1,2).
(In a meta-declaration a colon or an integer indicates that the corresponding
argument is to be handled specially.)

When one uses fnProlog, a new problem is raised by meta-predicates. Let
us suppose, that an argument of a mecta-predicate invocation is a goal, for
example:

all of(process(?element_of(L))) would be expanded to

element_of(L,X), all of(process(X)), according to our rules, instead
of

all of((element_of(L,X), process(X))), which is desirable.

To solve this problem, we distinguish arguments of predicates expecting
goal sequences (we will call them meta-arguments), arguments expecting other
kinds of special parameters (predicates, clauses or files), and "normal” argu-
ments. Meta-arguments are denoted by integers between 1 and 100 (practically

26 T. Asvényi

by their sequence number), and other kinds of special parameters by colons or
integers out of the range 1-100. When a meta-argument of a meta-predicate call
is encountered while expanding the call (for example, during compilation), the
function calls inside it are not expanded textually before the calling of the meta-
predicate. They are expanded inside the goal sequence of the meta-argument.
For example, the following implicit declaration for the built-in £indall/3 is
given:
:- meta_predicate findall(?,2,7).

siblings(A,Siblings) :- % This clause is expanded into
findall(X,?parent(A)= ?parent(X),Siblings).

siblings(A,Siblings) :- % this one, as it is expected.
findall(X, (parent(A,Z),parent(X,Z)),Siblings).

As far as we know, fnProlog is the first functional notation handling
the functions together with built-in and usecr-defined meta-predicates in this
consistent way.

3.1. Meta-functions

Let us have a look at predicate siblings/2 above. It would be more
natural to formalize 1t as a function:

siblings(A) = ?findall(X, ?7parent(A) = ?parent(X)).

This example shows that functions may have meta-arguments, for example the
second argument of the function call to £indall/3 here. (It also shows that
even traditional predicates are sometimes called using the syntax of function
invocations, if it is sensible.)

A meta-function is one to be expanded into a meta-predicate. When we
write calls to meta-functions into function expressions, their meta-arguments
are expanded as goal sequences, because these arguments normally contain
goals.

Meta-functions are introduced so that functions parameterized by goals
containing other function invocations work in the natural way. That is function

siblings/2 above will be expanded into the expanded version of predicate
siblings/2 above.

We write meta-predicate declarations even for meta-functions, because
functions are just notational variants of predicates:

:- meta_predicate seconds(1,-).
seconds(Call) = ?Milliseconds/1000 :-

Functions in full Prolog 27

statistics(runtime,), Call,

statistics(runtime,[,Milliseconds]).
3.2. Meta-DCG rules

A meta-DCG rule is one to be expanded to a meta-predicate clause. For
example:

1~ meta_predicate dcg(1,-,7?,?), notion(1,-,7,7).
dcg(Cond,N) --> Cond, notion(Cond,N).

The problem that function invocations inside Cond are to be expanded inside
the goal sequence of the corresponding argument of dcg/4 is solved in fnProlog.

4. Destructive operations and side effects

Compared to Prolog, side effects and destructive operations can be im-
plemented effectively in Lisp. Their performance is similar to that of the
equivalent operations in procedural languages. For example, the cost of setq
is comparable to the cost of pointer assignment.

In Prolog (even if using functional notation) these effects are achieved
mainly through the assert/retract facility, because it corresponds to the
relation-based approach and non-backtrackable assignment statement is 1m-
plemented with copying the whole data structure. (The data structures built
incrementally may be corrupted by backtracking.)

In the current version of fnProlog, one may assert and retract dynamic
function clauses. One may update the values of dynamic functions with non-
backtrackable assignment statement. After all, assignment depends on the
assert/retract facility:

e assertf/1 expands its argument to a clause not containing functional
notation, and asserts the resulting clause. Its argument can be a clause,
a function clause or a DCG rule. assertaf/1 and assertzf/1 work
similarly, but they call asserta/1 and assertz/1 after the expansion,
respectively. The argument of assertf/1 may need a double-asterisk
prefix, so that subterms of the form ?FuncCall are expanded correctly.
For example:

, assertf(** (append([H|T],L)=[H|?append(T,L)])),

28 T. Asvényi

e retractf(f(T1, ... ,Tn)) retracts the first clause of (the dynamic)
predicate £f/(n+1), whose head matches £(T1, ... ,Tn,_). It is in-
deterministic like retract/1. It does not depend on the body of the
clause, unlike retract/1, because the body of the clause has probably
been expanded by assertf/1 or during compilation.

e retractallf(£(T1, ... ,Tn)) retracts all of the clauses of (the
dynamic) predicate £/(n+1), whose head matches £(T1, ... ,Tn,_).

e f(T1, ... ,Tn) := Termexpands Termand evaluates the resulted goals
(for example, to Result), calls retractall(£(T1, ... ,Tn,_)), and
asserts the function clause: £(T1, ... ,Tn) = Result. It is intended
to be used mainly from the Prolog prompt, so that one can change some
parameters of a program conveniently. For example the following query
runs successfully:

?- ¢c:=fib(5), d:=3, a(2):= ?2d+(7?c),
?7c=fib(5), ?d=3, 7a(2)=11.

(Note that the predicates in this chapter do not have meta-arguments.
Therefore those of Ti, T2,..., Tn containing function calls are expanded
according to the basic rules.)

Dynamic updating of functions is a new feature of fnProlog compared
to other functional extensions [1,4,6,7]. It is parallel to dynamic updating of
predicates.

5. Comparing fnProlog to Applog

Applog is an earlier attempt to extend Prolog with a (Lisp-like) functional
component, which has a ”practically invisible” interface [1]. This extension
written in C-Prolog adopts the term and variable notion of Prolog. It uses
pattern matching for parameter passing. It contains almost all the important
pure functional concepts of Lisp. Calls to built-in and user-defined functions
can be mixed freely in function expressions, handling them in a uniform way.
In spite of the fact, that its function definitions are syntactically Prolog facts,
they are very similar to Lisp [10] definitions:

def (append,lambda([L1,L2], % Unfortunately, this definition of ap-

if(eq(L1,[1), L2, % pending lists is not tail recursive.
(See 2.3.1)
cons(car(L1),append(cdr(L1),L2))))).

Functions in full Prolog 29

Applog includes the backtracking possibility even in the functional com-
ponent: indeterministic calls to Prolog relations or goals are possible, and
backtracking is activated, if some subsequent function evaluation fails. In such
way 1t Incorporates the expressive power of backtracking into a Lisp-like pro-
gramming tool. Programining of side cffects depends on the assert/retract
possibility of the underlying Prolog system. Functions can be invoked only
through the predicate eval/2 (activating an interpreter), for example:

eval(append(L1,L2),L1L2).

(A function call cannot be written into an argument of a Prolog goal,
except of this special case.)

The function definitions are interpreted in C-Prolog. It means that there
are no problems with meta-predicates. This fact, however, implies three new
problems:

e The functions defined work considerably slower than the equivalent Prolog
programs.

e The back-quoting possibility is missing, because it is ineffective to scan big
data structures for subterms representing function calls. (Therefore there
is no notation for subterms representing function calls.)

e Even if the actual parameter of a function call is textually a variable, when
this call is executed it is tried to be interpreted as a function call. If we
intend to match a compound or an atom to this actual parameter, it must
be quoted, breaking the tradition of Lisp.

6. Comparing fnProlog to Lpa Prolog++ 1.0

Lpa Prolog++ 1.0 [4] is a powerful object-oriented extension of Prolog.
Functions can be defined and used only inside objects (or instances of objects).
Therefore functions cannot be used independently from objects. Otherwise, its
notion of function is very similar to that of fnProlog, as it has been described
in the Introduction of this paper. Let us have a look at the following example:

open_object mix.
has([X|_1) = X. % Equivalent to the fnProlog definition
has([_IL]) = self::has(L). % of element_of/2 in 2.3.1.

write list(L) :- for all(write(self::has(L)), nl).
% for_all/2is defined in 3.

30 T. Asvényi

writelist(L) :- forall(write(self::has(L)), nl).
% forall/2 is built-in.

% £ib(N) is self::fib(N-1)+self::fib(N-2) :- N>1.
% N-1 and N-2 above are not evaluated !

fib(N) is self::fib(N1)+self::fib(N2) :-
N>1, N1 is N-1, N2 is N-2.
fib(1) is 1. fib(0) is 1.

close_object mix.

The appropriate object name and the double colon operator are the
necessary prefixes to function calls. Therefore every single function invocation
is marked instead of marking the function expressions and using some back-
quoting mechanism, when necessary. There 1s no possibility to evaluate
arithmetic expressions in the actual parameters of function calls. Therefore
function £fib/2 is to be written in the form given above. As the example
shows, this notation is not as flexible as the notations introducing function
expressions.

There is no notation for quoting. Therc are no meta-functions nor meta-
DCG rules. There is no support for dynamic updating of functions, except that
attributes (which can be considered functions with no parameters and no body).
can be changed by assignment statement (depending on the assert/retract
facility).

Function calls in the meta-arguments of built-in meta-predicates arc han-
dled correctly. For example, the call ?- mix<-writelist([1,2,3]). writes
out correctly 1, 2 and 3 on subsequent lines. (forall/2 is a built-in meta-
predicate "equivalent to” for_all/2 defined in 3.)

On the other hand, there is no way to declare user-defined meta-predicates.
Therefore the call: ?7- mix<-write_list([1,2,3]). outputs only the first
element of the list. Similarly, the call ?-mix<-writelist([]). succeeds, but
the call 7- mix<-write_list([]). fails.

The problems with arithmetic expressions and quoting are to be solved in

the new release of Prolog++, according to the author’s correspondence with
LPA.

Functions in full Prolog 31

7. Conclusions

Knowing the solution of Problem 85 in [7], one may think that the task
of introducing an optional functional notation for Prolog predicates is trivial.
Analysed carefully, this notation turns out to have interaction with many other
concepts of Prolog. Facing them, a new functional notation has been developed
and implemented.

Instead of prefixing each single function call with its own question mark,
whole function expressions are marked and quoting or back-quoting is used,
where necessary. In this way we avoid the proliferation of question marks in the
function expressions and the notion of function expression is a generalization
of the arithmetic one, following the tradition of Lisp.

Functions work together with modules and DCG rules as it is expected.

It is recognized that function calls inside the meta-arguments of meta-
predicate invocations are to be expanded inside the corresponding arguments
in the case of user-defined meta-predicates as well as in the case of built-ins.
Meta-functions and meta-DCG rules are introduced, too, to make sure that the
function calls are expanded locally to the mecta-arguments of the function and
DCG rule invocations.

The dynamic updating of clauses containing functional elements becomes
necessary. Therefore it is supported by some new predicates corresponding to
their classical counterparts.

FnProlog is implemented entirely in SICStus Prolog 2.1 #9, which is one of
the most popular LP systems. It can be easily adapted to other platforms, too,
because SICStus follows the standards introduced by Edinburgh and Quintus
Prolog.

Similarly to the DCG notation, fnProlog does not want to gain new
application areas for Prolog. Predicates expressing directed or asymmetric
relations can be coded often elegantly using this improved, carefully examined
notation, increasing the clearness and the self-documenting feature of Prolog
programs.

Acknowledgements. I am indebted

e to David H. D. Warren and to the authors of Lpa Prolog++ 1.0 [4],
because my concepts on functional notation for Prolog are based on their
ideas,

e to Anna Bagyinszki-Orosz and Péter Szeredi for their critical comments,

e to Ldszlé Varga and Janos Demetrovics for support in purchasing the
necessary software systems,

32

T. Asvanyi

(1]
(2]

[6]
[7]
(8]

[9)

(10]

to my wife for her patience.

References

DeGroot D. and Lindstrom G., Logic Programmaing: Functions,
Relations and Fquations, Prentice Hall, 1986.

Carlsson M., Widén J. et al., SICStus Prolog 2.1 §9 User’s Manual +
Library Manual, Swedish Institute of Computer Science, POB 1263, S-164
28 Kista, Sweden, 1994.

Sterling L. and Shapiro E., The Art of Prolog (second edition), The
MIT Press, London, England, 1994.

Vasey P., Spencer C., Westwood D. and Westwood A., Lpa
Prolog++ 1.0 Programmaing Reference Manual, Logic Programming As-
sociates Ltd., Studio 4, The Royal Victoria Patriotic Building, Trinity
Road, London SW18 3SX, England, 1994.

Westwood D., Lpa Prolog 2.6 Programming Guide, Logic Programming
Associates Ltd., Studio 4, The Royal Victoria Patriotic Building, Trinity
Road, London SW18 3SX, England, 1994.

Amble T., Logic Programming and Knowledge Engineering, Addison-
Wesley, 1987.

Coelho H., Cotta J.C. and Pereira L.M., How to Solve It with Prolog,
Laboratéria Nacional de Engenharia Civil, Lisboa, 1980.

Warren D.H.D., Pereira L.M. and Pereira F., Prolog - The language
and its implementation compared with Lisp, Proc. ACM Symp. on Al and
Programming Languages, Rochester. N.Y., 1977., SIGPLAN Notices, 12
(8) (1977), 109-115.

PopLog User Guide, Integral Solutions L.td., University of Sussex, England,
1994.

Steele G.L., Common Lisp: The Language, 2nd edition [CLtL2], Digital
Press, 1990.

T. Asvéanyi

Department of General Computer Science
Eotvos Lorand University

VIII. Mizeum krt. 6-8.

H-1088 Budapest, Hungary
asvanyl@ludens.elte. hu

