Annales Univ. Sci. Budapest., Sect. Comp. 17 (1998) 3-16

IDT: INTEGRATED SYSTEM FOR DEBUGGING
AND TESTING PROLOG PROGRAMS

Z. Alexin, T. Gyimé6thy and G. Kdkai
(Szeged, Hungary)

Abstract. In this paper the IDT (Interactive Diagnosis and Testing)
system 1s presented which extends Shapiro’s Interactive Diagnosis Algo-
rithms with Category Partition Testing method. Shapiro’s original system
demands a lot of user interaction during the debugging; the user has to
answer a large number of queries. The results of the debugging are the
buggy clause and one of the following three types of errors: termination with
incorrect output, termination with missing output and nontermination.
The goal of the IDT system is to reduce the number of user interactions
by introducing a test-database based on a Category Partition Testing
specification of the target program. The CPM specification defines a
classification over the input domain of the target program. Subsequently,
each class is represented by one of its representative elements.

The close relationship between the diagnosis algorithm and the in-
ductive learning of logic programs provides the possibility to use the IDT
system in the learning of logic programs as well.

1. Introduction

In this paper we present the IDT system which combines Shapiro’s
Interactive Diagnosis Algorithm [5] with CPM (Category Partition Method)
[3]. This system can be used in the testing, debugging and learning of Prolog
programs.

This work is supported by the ESPRIT project BRA 6020 and by OTKA
grant nr. 501.

4 Z. Alexin, T. Gyimé6thy and G. Kdkai

Shapiro’s Interactive Diagnosis Algorithm was originally applied to Prolog
programs to diagnose the following threc types of errors: termination with
incorrect output, termination with missing output, and nontermination. The
main problem with this diagnosis algorithm is that the user (oracle) has to
answer many queries during the diagnosis process.

These questions may be very difficult to answer, therefore the application
of this diagnosis method to practical problems is questionable. Shapiro suggests
that query complexity of this algorithm can be improved by using test results.
However, to our knowledge the 1IDT system 1s the first integrated tool for
testing, debugging and learning of Prolog programs.

The basic concept of IDT is very similar to GADT (Generalized Algorith-
mic Debugging and Testing) presented in [1]. In GADT the CPM (Category
Partition Testing Method) [3] was combined with an algorithmic debugging
method to localize a bug in the program using minimal number of user
interactions. In CPM the tester has to define equivalence classes called test
frames over the input domain. There is an assumption that the behaviour of a
test frame from the point of view of the testing process can be represented by
an arbitrary element of it (called test case).

The IDT method for logic programs is presented in [2]. This method can be
used for both debugging and testing of Prolog programs. The main difference
between GADT and IDT is that GADT has been applied to umperative
languages and IDT to logic programs.

In the debugging process the concrete values of parameters of procedures
are given. By determining the test frame corresponding to a given input the test
database can be checked against the selected frame. In the case of a successful
test the debugger skips to the next procedure without a query to the user.

A further improvement for bug-localization process is presented in [4]. In
that paper a method was introduced which combines the IDT with program
slicing.

The close relationship between a diagnosis algorithm and inductive learn-
ing of logic programs has been reported in [5]. Therefore we can apply the
IDT system not only in the debugging and testing but in the learning of logic
programs as well.

In the paper we first give a description of the IDT system. Section 3
presents Shapiro’s original diagnosis system, Section 4 contains the inductive
inference algorithm which synthesizes logic programs using positive and neg-
ative samples. The algorithm combines the diagnosis algorithm with CPM
methods. Finally, in Section 5 some remarks for the future work are given.

IDT: Integrated system for debugging and testing Prolog programs 5

2. Description of the IDT system

In this section first we give a short overview of CPM and the implemen-
tation of this method in Prolog environment. After that the basic idea of
Shapiro’s single stepping diagnosis algorithm is presented. The last part of
this section describes the combination of CPM with diagnosis algorithm.

2.1. Category partition testing method

The CPM method has been defined in [3]. A formal description of this
method can be found in [2]. During the process of functional testing the
programs (procedures) cannot be tested with all possible properties of the input
parameters. Hence, the tester’s first task is to define the critical properties of
parameters. These critical properties - called categories - are investigated in
the testing process.

The categories can be divided into classes - called choices - presuming that
the behavior of the elements of one choice is 1dentical from the point of view
of the testing.

When the categories and choices for a program have been defined, then all
the possible test frames can be generated. A test frame contains exactly one
choice from each category.

In general, there are many superfluous frames among the generated test
frames. These frames can be eliminated by associating selector expressions with
the choices. A choice can be made in a test frame if the selector expression
associated with the choice is true. The selector expressions contain property
names. A property name is also associated with a choice and can be considered
as a logical variable. The value of this variable is true if the given frame contains
that choice. In Example 2.1 we give simmple CPM specification for the predicate
member and the generated test frames are also presented.

Example 2.1. The category-partition specification for the predicate
member:
member (X, [X|_]).
member (X, [Y|Z]) :- member(X,Z).

Test specification: member
Category: number_ of the elements
empty: property empty
{The second argument is an empty list}

6 Z. Alexin, T. Gyiméthy and G. Kdkai

one: property one
{The second argument has exactly one element}
more: property more
{The second argument has more than one element}
Category: position_in_the_list
first: if not empty
{The first argument and the first element of the second argument
are the same.}
last: if more
{The first argument and the last element of the second argument
are the same}
inside: if more
{The first argument can be found in the second argument but it
is neither the first nor the last element of the list}
none: if not empty
{The first argument can not be found in the second argument}

End of specification

In Example 2.1 the keywords of the specification are in bold. There are
two categories (number_of_the_elements, position_in_the_list) and seven choices.
There are three choices in the first category (empty, one, more) and four are
in the second (first, last, inside, none). The choices in the first category
have property names and the choices in the second category have selector
expressions. The text enclosed in braces {, } are comments.

From this CPM specification the following test frames are generated:
(empty,), (one, first), (one, none), (more, first), (more, last), (more, inside),
(more, none). For example the test frame (more, first) denotes those inputs
where the second argument has more than one element, and the first argument
is identical with the first element of the second argument. In this example we
assume that both arguments of the predicate member are input.

2.2. The implementation of CPM in Prolog

2.2.1. Preparing the initial test database

The test database is generated by the IDT system. The input of the
program is a test specification which is given in a Prolog form. The descriptions
are Prolog facts in the following form:

choice_of(category_name_1, choice_name_1).

IDT: Integrated system for debugging and testing Prolog programs 7

choice_of(category_name_1, choice_name_2).

choice_of(category_name_n, choice_name_ni).

choice_of(category_name_n,choice_name_n2).

In the IDT system we can choose a function from the following menu:

l. Load CPM description.

Generate database.

&>

Save database.
Load database.
Searching functions.
Listing database.
Clear database.
Testing.

© o N o w

Reset system.
Quit.

Below we explain only functions 2, 5, 8. The meaning of the other functions
is obvious.

—
<

2. Generate database

The program generates the initial test database from the CPM description
loaded previously. The elements of test database are Prolog facts in the
following form:

test (P, A, F, I0, E),

where P is the predicate name, A is the predicate arity, F is the test frame
(represented by a list of corresponding choices), 10 is the list of input and
output values of representative elements, E is the evaluation of the test frame

e.g.:
test (member, 2, [more, first],[],undefined).
The last argument of the item will be the evaluation of the test (initially

undefined). The test database is manipulated by the Prolog system predicates
retract and assert.

5. Searching functions.

In the IDT system searching functions have been introduced to decide which
test frame contains the given input. For every choice name a searching function
can be defined. If the searching function is not defined the selection of the

8 Z. Alexin, T. Gyiméthy and G. Kdkai

proper test frame is performed via a menu. The searching functions are Prolog
predicates. For example whether an element is the last element of the list can
be decided with a help of these two clauses:

last(X,[Y]Ys]):- X \== Y, last(X,Ys).
last (X, [X]).

8. Testing.

At the beginning of testing the database does not contain any test case. The
user can choose a test frame and can give a representative element of this frame.
It means that the user types in the valucs of the input variables. Then it can
be decided whether the evaluation that takes the input and returns the output
is correct or not. The user need not fill in the full database because there are
some items which are not relevant for the testing. The test database contains
every proper combination of choices. In Example 2.2 we give a test database.

Example 2.2. The database for member:
Test frames:

test(member, 2, [empty,_],[],undefined).

test (member, 2, [one, first], [([a,[al],[a,[al])],true).
test(member, 2, [one, nonel,[([a,[b]],[a,[b]l])],false).

test (member, 2, [more, first],[],undefined).

test(member, 2, [more, last],[([b,[a, b]],[b,[a, b]l])],true).
test(member, 2, [more, inside],[],undefined).

test (member, 2, [more, nonel, [],undefined).
Searching functions:

empty(_,[]1).

one(_,[1).

more(,[In|_J).

first(In, [In|_]).

last(X,[Y|Ys]):- X \== Y, last(X,Ys).

last (X, [x]).

inside(X,Y):- member(X,Y), \+ first(X,Y), \+ last(X,Y).
none(X,Y):- \+ member(X,Y).

The debugger is working as follows:

e the user enters a prolog goal
e the debugger calls the prolog interpreter
e the user is asked to qualify the result (whether it is correct or not)

IDT: Integrated system for debugging and testing Prolog programs 9

o if the answer is correct then store the evaluation of the test frame corre-
sponding to the input in the test database and stop

o if the answer is incorrect then the debugger enters into the computation
tree and looks for the false node. When the user evaluates some node in
the computation tree then this information is stored in the test database,
too.

The user need not care about the test frames. In the IDT system
the following algorithm is used to automatically determine the test frame
corresponding to some specific input.

2.2.2. Finding the test frame corresponding to some input

An input belongs to a test frame iff all searching functions, associated with
the choices of the test frame, succeeds for this input.

Algorithm 1

Input: the procedure P, its arity A and the input.

Output: the test frame Fe which contains this input and the evaluation
value E of this test frame.

Algorithm: finds all test frames in the test database, then selects those test
frames for which all searching functions return true, then takes
the evaluation of the resulting test frame from the test database.

The program collects all the possible test frames belonging to the predicate
P by the findall built-in metapredicate, then selects suitable ones from that list
of test frames. In the case of correct test specification the selected list of test
frames will contain exactly one element. Any other result means incorrect test
specification.
2.2.3. Modification of the test database

If the program has found the test frame which contains the input and
its evaluation is undefined then it modifies the test database. When the test

database contains some evaluation already then this should be the same as the
evaluation of the current input. Otherwise the test specification is inconsistent.

Algorithm 2 Modification of the test database

Input: the fact P and the predicate name F of this fact with its arity,
A, the input I and the frame C.
Output: the new evaluation S.

Algorithm: the program solves the fact and asks the user if the output is
correct or not, then evaluation is stored in the test database.

10 Z. Alexin, T. Gyiméthy and G. Kdkai

3. Shapiro’s PDS (Program Diagnosis System)

3.1. Shapiro’s single stepping algorithm

In this section we give a short overview of an algorithm presented in [5] and
recall definitions related to this algorithm. Shapiro’s single stepping algorithm
can isolate an erroneous procedure (clause), given a program and an input on
which it behaves incorrectly. This algorithm traverses the refutation tree of a
program and asks the user about the expected behavior of each clause. The
user has to give a yes or no answer and the bug inside a certain procedure is

identified.

3.1.1. Definition. A logic program P is a finite set of definite clauses
(the clause A — By, ..., By s definite iff all B’s are atoms, n > 0).

3.1.2. Definition. Let C denote the clause A — B,,...,B, (n > 0).
Then head(C) denotes A and body(C) is the set {By,..., Bn}.

3.1.3. Definition. The interpretation M of a logic program P 1s the set
of all facts on which P refutes [5].

3.1.4. Definition. Let P be a logic program, M an interpretation of P,
A’ a ground atom and A — By, ..., By an arbitrary clause in P. We say that
A — By, ..., B, covers A’ in M iff there is a substitution © such that A© = A’
and foralli (1 <i<n) Bi®O€eM.

3.1.5. Definition. An arbitrary clause p € P is correct in M iff all
ground atoms covered by p are in M. Otheruise we say that p s incorrect in

M.

3.1.6. Definition. Let p be an arbitrary clause in P that terminates
on some input r and relurns y as oulput. Then the top level trace of the triple
< p,x,y > is a finite (possibly empty) ordered set {< p1,z1,y1 >, < p2,Z2,y2 >
sy < Pny,Tn,Yn >}, where p on input z calls first py with input z,, that returns
y1 as oulpul, then py with 3, ... , and so on. Finally p calls p, on input z,
which returns y, and p returns y.

3.1.7. Definition. A partial computation tree of P is an ordered trec.
Every node in this tree is labeled with some triple < q,u,v >. The set of the
direct descendants of an inner node s a legal top level trace of this node. A T
tree 1s a complete computation tree of P if it 1s a partial computation tree and
all leaves in T are empty sets.

In the following we suppose that the program P is free of side-effects. Let
p be an arbitrary clause in P that terminates on input z and returns y as

IDT: Integrated system for debugging and testing Prolog programs 11

output such that < p,z,y > is not in M. It means that P has at least one
incorrect clause. Then for finding the incorrect clause that causes the error
the computation tree rooted by < p, z,y > is traversed in a postorder manner.
During the traversing of the tree at each < ¢, u, v > node a membership
question is issued. Let us suppose that the first false answer is received at the
node < q, u, v >. Let the direct descendants of < ¢, u, v > be < ¢, u;, v; >,
.. v < @m, Um, Um >. Since we used postorder strategy for all ¢ (1 < i< m) it
holds that < ¢;, u;, v; >€ M. From this it follows that the clause ¢ — ¢, ..., ¢m
covers the triple < ¢, u, v > which 1s not in M. The algorithm stops at the
node < ¢, u, v > and returns the clause instance < ¢, u, v >—< qy, uy, v; >,

. < qm, Um, Um >. By this method the erroneous clause can always be
identified assuming that the answers to the membership questions are correct.

A query-optimal modified version of this method is called divide-and-query.
We demonstrate the behavior of the Single Stepping Method through the clause
member but in this case it is a wrong version.

Example 3.1. The performance of single stepping algorithm for a buggy
version of member (called member_ver):
member ver (X, [X| J1).

member ver(X,[Y|Z]):- member_ver(Y,Z).

?- fp(member_ver(x, [a,a,a,a,a,b]),X).

Is it ok [member_ver(a, [a, bl)] (y/n) y

Is it ok [member ver (a, [a, a, b])] (y/n) y

Is it ok [member ver (a, [a, a, a, b])] (y/n) y

Is it ok [member ver(a,[a, a, a, a, b])] (y/n) y

Is it ok [member ver(x,[a, a, a, a, a, bl])] (y/n) n

X=(member ver(x, [a, a, a, a, a, b]) :- member ver(a, [a, a, a, a,
bl))?

yes
3.2. Modified single stepping with category partition method

Now we are ready to modify Shapiro’s single stepping method. The idea of
modification is that the algorithm does not ask the user about the correctness
of each resolved goal if it finds the evaluation of this goal in the database for
test frames. The original description of the algorithm and the program written
in Prolog can be found in [5].

The algorithm traverses the computation-tree in postorder manner and at
each step 1t consults with the test database. If the test database contains the
evaluation of the corresponding test frame then this evaluation is taken and

12 Z. Alexin, T. Gyimé6thy and G. Kdkai

the algorithm goes on. If it does not contain such evaluation then the oracle
1s asked whether the inspected node is correct or not. The advantage of our
method can be seen if we run it on the predicate member_ver described above:

Example 3.3. The advantage of modified single stepping algorithm:
?- fpx(member_ver(x, [a, a, a, a, a, b]),X).
Is it ok [member ver(a,[a, b])] (y/n) y
Is it ok [member ver(x,[a, a, a, a, a, b])] (y/n) n
X = (member_ver(x,[a, a, a, a, a, bl]):-member_ver(a,[a, a, a, a,
bl)) 7

yes

In this example we supposed that the system uses the test database
presented in Example 2.2. Therefore the IDT system first gives a question
for the input (a,[a, b]l) because the test frame (more, first) was undefined
(see Example 2.2). However after the answer yes the evaluation of this test
frame changed to true. After that the system does not give more questions to
this frame. The state of the test database after running the Example 3.3 can
be seen below.

7- listing(test/5)

test(member ver, 2, [empty, (11, [([a, [1], [a, [11)], false).
test(member ver, 2,[one, first], [([a, [all, [a, [a]])], true).
test (member ver, 2, [one, nonel], [([a, [b]], [a, [b]])], false).
test(member ver, 2,[more, last], [([b, [a, bl], [b, [a, b11)],
true).

test (member ver, 2, [more, inside],[], undefined).
test(member ver, 2, [more, first], [([a, [a, bl], [a, [a, bl1)],
true).

test (member_ver, 2, [more, nonel], [([x, [a, a, a, a, a, bl], [x,
[a, a, a, a, a, b]])], false).

yes

4. The improved inductive program synthesis

In this section we apply the CPM method for improving the inductive
program synthesis algorithm published in [5]. A detailed description of the
concept and implementation (MIS Model Inference System) of this algorithm

IDT: Integrated system for debugging and testing Prolog programs 13

can be found in [5]. Now we give an informal description which helps to
understand our improvement.

4.1. The inductive inference algorithm of Shapiro

A presentation of a program P is a (possibly infinite) sequence of in-
put/output samples of P in which every input in the domain of P eventually
appears. Assume that the algorithin is given an initial program (normally
the empty program) and a presentation of some target program. The inference
algorithm reads samples, one at a time, and performs modifications to the initial
program as it 1s necessary. The inference algorithm is said to identify the target
program in the linit, if eventually there comes a time when the modifications
perform results in a program with the same input/output behavior as the target
program, and it does not modify this program afterwards.

Note that within this definition, an inference algorithm based on patching
alone will not identify a program in the limit if the initial program behaves
incorrectly on an infinite number of inputs. The algorithm that has a fixed
initial program (say, the empty program) is called an inductive inference
algorithm.

4.2. The algorithm for inductive program synthesis

Algorithm 3. Inductive program synthesis

(hwven: a (possibly infinite) ordered set of clauses L,
an oracle for an interpretation M,
an oracle for a well-founded ordering > on the domain of L,
and a definition of X, the parameterized interpretation.
Input: a (possibly infinite) list of facts about M.
Qutput: a sequence of programs Py, Py, ... in L each of which is totally cor-
rect with respect to the known facts.

Algorithm:
set P to be the empty program

let the set of marked clauses be empty.
repeat
read the next fact.
repeal
if the program P fails on a goal known to be true
then find a true goal A uncovered by P

search for an unmarked clause p in L the covers A in X

14 Z. Alexin, T. Gyiméthy and G. Kdkai

add p to P.
if the program P succeeds on a goal known to be false
then detect a false clause p in P
remove p from P and mark it.
until the program P is totally correct
with respect to the known facts
output P.

until no facts left to 1ead.

if the depth of a computation of P on some goal A exceeds h(A), then
apply the stack overflow diagnosis algorithm, which either
detects a clause p in P that is diverging with respect to > and
M or a clause p in P that is false in M;

remove p from P, mark it, and restart the computation on A.
4.3. The modified MIS

We modified the part of the Algorithm 3 listed above. Originally for
detecting the false clause in the logic program the Shapiro’s single stepping
algorithm was used. Instead of this we introduced the IDT debugging algorithm
(see Section 3.2) to avoid the questions. The modification is listed below:

if the program P succeeds on a goal known to be false
then detect a false clause p in P

remove p from P and mark it.

Initially we have some knowledge about the behaviour of the program to
be lcarned and the initial test database. All the evaluations in the test database
are undefined.

In every step of the learning algorithm we use those frames of the test
database that are valid. We mean those frames that are consistent with some
positive samples. If the algorithm produces a new program which is correct for
every sample and we want to learn a new sample with the help of the inference
system we must qualify our test database again.

The advantage of our modified system can be seen for example in the
learning of member. The Algorithm 3 finds the clause by using the refinement
operatorlz

! The refinement operator is defined in [5] to enumerate clauses starting
from the clause p(X, Y, Z,...) top(a, b, c,...) performing a refinement
transformation at each step.

IDT: Integrated system for debugging and testing Prolog programs 15

member (X, [Y|Z]) : - member (Y,Z).

This clause is of course wrong. Let member (x,[a, a, a, a, a, b])
be one of the negative samples. If the inferred program would accept it the
program has to be corrected. The inference system asks questions (see Example
3.1) to find the false clause. Our modification decreases the number of questions
asked. In the example above we saved four questions. In the case of more
samples more questions might be saved.

5. Conclusion

In this paper a system has been presented which combines the Category
Partition Testing with the algorithmic debugging techniques introduced in [3].
A similar method is presented in [1] to diagnose imperative programs but as far
as we know the ID'T' systemn presented in this paper is unique in the context of
logic programming. This integrated tool can be used in the testing, debugging
and learning of Prolog programs.

The Category Partition Testing Method in Prolog environment has already
been implemented. The integration of CPM with the single stepping and
divide and query diagnosis algorithms 1s also implemented. The integration
of CPM with the other two diagnosis algorithms and the MIS is currently
under development.

References

[1] Fritzson P., GyimSthy T., Kamkar M. and Shahmeri N., Gen-
eralized Algorithmic Debugging and Testing, Proceedings of the ACM
SIGPLAN ’91 Conference on Programming Language Design and Imple-
mentation, Toronto, Ontario, Canada, June 26-28, 1991, 317-326.

(2] Horvath T., Gyiméthy T., Alexin Z. and Kocsis F., Interactive
Diagnosis and Testing of Logic Programs, Proceedings of the Third Sym-
postum on Programming Languages and Software Tools, Kadriku, Estonia,

August 23, 1993, ed. Mati Tombak.

[3] Ostrand T.J. and Balker M.J.,: The Category-Partition Method for
Specifying and Generating Functional Tests, CACM 31:6 (1988), 676-686.

16 Z. Alexin, T. Gyiméthy and G. Kdkai

[1] Paakki J., Gyim6thy T. and Horvath T., An Integrated Method for
Algorithmic Debugging of Logic Programs (manuscript)
[5] Shapiro E.Y., Algorithmic Program Debugging, MIT Press, 1983.

Z. Alexin T. Gyiméthy

Dept. of Applied Informatics Research Group on the Theory of Automata
Jozsef Attila University Hungarian Academy of Sciences

Arpad tér 2. Aradi vértanuk tere 1.

H-6720 Szeged, Hungary H-6720 Szeged, Hungary
alexin@inf.u-szeged.hu gyimi@inf.u-szeged.hu

G. Kdkai

Department of Informatics
Jozsef Attila University
Arpad tér 2.

H-6720 Szeged, Hungary
kokai@inf.u-szeged.hu

