STRONG SUMMABILITY OF TWO-DIMENSIONAL TRIGONOMETRIC-FOURIER SERIES

F. Weisz (Budapest, Hungary)

Dedicated to Prof. J. Balázs's 75-th birthday

Abstract. We extend some results of Sunouchi and Zygmund from one dimension to two dimensions and we prove that the Sunouchi operators and the supremum operator of the strong (C, α, β, q) means are bounded operators from L_p to L_p $(1 . As a consequence it is obtained that every function <math>f \in L_p$ $(1 is strong <math>(C, \alpha, \beta, q)$ summable.

1. Introduction

For the one-parameter trigonometric system it was proved by Sunouchi [12], [13] and Zygmund [21] that the operators

$$U_r f := \left(\sum_{n=1}^{\infty} \frac{|s_n f - \sigma_n f|^r}{n}\right)^{1/r} \qquad (r \ge 2)$$

and

$$Tf := \left(\sum_{n=0}^{\infty} |s_{2^n} f - \sigma_{2^n} f|^2\right)^{1/2}$$

This research was partly supported by the Hungarian Scientific Research Funds No. F019633.

392 F. Weisz

are bounded from L_p to L_p ($1) where <math>s_n f$ and $\sigma_n f$ denote the partial sums and the Cesàro means of the trigonometric-Fourier series of $f \in L_1$, respectively. With the help of this Sunouchi [13] proved that the supremum operator of the strong (C, α, q) means $(0 < \alpha, q < \infty)$

$$\sup_{n \in \mathbf{N}} \left(\frac{1}{A_n^{\alpha}} \sum_{k=0}^n A_{n-k}^{\alpha - 1} |s_k f|^q \right)^{1/q}$$

is also bounded from L_p to L_p if $1 where <math>A_n^{\alpha} := \binom{n+\alpha}{n}$. From this it follows that every function $f \in L_p$ $(1 is strong <math>(C, \alpha, q)$ summable $(0 < \alpha, q < \infty)$, i.e.

$$\frac{1}{A_n^{\alpha}} \sum_{k=0}^n A_{n-k}^{\alpha-1} |s_k f - f|^q \to \infty$$

as $n \to \infty$. Marcinkiewicz [9] and Zygmund [21] (see also Zygmund [22]) extended this result to every integrable function.

For Walsh-Fourier series these results are due to Sunouchi [13] and Schipp [11] in the one-dimensional case and to Weisz [19] in the two-dimensional case.

In this paper we deal with these problems for two-parameter trigonometric Fourier series and follow basically the ideas in [19]. In Section 2 the basic notations and results used later are given. We introduce the operators $s_n^1 \sigma_m^2$ and $\sigma_n^1 s_m^2$ that are the partial sums in the one dimension and the Cesàro means in the other dimension. The two-parameter analogues of the Sunouchi operators are defined and it is verified that they are bounded from L_p to L_p provided that 1 (see Section 3).

In Section 4 we prove that the operators

$$\sup_{n,m\in\mathbf{N}}|\sigma_{n,m}f|,\quad \sup_{n,m\in\mathbf{N}}|s_n^1\sigma_m^2f|\quad \text{and}\quad \sup_{n,m\in\mathbf{N}}|\sigma_n^1s_m^2f|$$

are all bounded from L_p to L_p for $1 . From this it follows that <math>\sigma_{n,m}f$, $s_n^1\sigma_m^2f$ and $\sigma_n^1s_m^2f$ converge to f a.e. as $n,m \to \infty$ whenever $f \in L_p$ $(1 . Stronger forms of the convergence result concerning the double Cesàro means can be found in Weisz [16], [17]. Moreover, the strong <math>(C,\alpha,\beta,q)$ means are defined and it is shown that the supremum operator of these means are bounded from L_p to L_p for $1 . This implies that every function <math>f \in L_p$ with $1 is <math>(C,\alpha,\beta)$ and strong (C,α,β,q) summable $(0 < \alpha,\beta,q < \infty)$. This last result was also proved by Gogoladze [6].

2. Preliminaries and notations

For a set $\mathbf{X} \neq \emptyset$ let \mathbf{X}^2 be its Descartes product $\mathbf{X} \times \mathbf{X}$ taken with itself, moreover, let $\mathbf{T} := [-\pi, \pi)$ and λ be the one- or two-dimensional Lebesgue measure. We briefly write L_p or $L_p(\mathbf{T}^j)$ (j = 1, 2) instead of the real $L_p(\mathbf{T}^j, \lambda)$ space while the norm (or quasinorm) of this space is defined by

$$||f||_p := \left(\int_{\mathbf{T}^j} |f|^p d\lambda\right)^{1/p} (0$$

We use the notations

$$e_n(x) := e^{inx}, \qquad e_{n,m}(x,y) := e_n(x)e_m(y)$$

where $i = \sqrt{-1}$.

For an integrable function f the numbers

$$\widehat{f}(n) := rac{1}{2\pi} \int\limits_{\mathbf{T}} f\overline{e}_n \, d\lambda, \qquad f(n,m) := rac{1}{(2\pi)^2} \int\limits_{\mathbf{T}^2} f\overline{e}_{n,m} \, d\lambda$$

are said to be the n-th and (n, m)-th trigonometric-Fourier coefficients of $f(n, m \in \mathbf{Z})$, respectively.

Denote by $s_n f$ $(n \in \mathbb{N})$ the *n*-th partial sum of the trigonometric-Fourier series of $f \in L_1(\mathbb{T})$, namely,

$$s_n f(x) := \sum_{k=-n}^n \hat{f}(k) e_k(x) = \frac{1}{\pi} \int_{\mathbf{T}} f(t) D_n(x-t) dt$$

where

$$D_n := \frac{1}{2} \sum_{k=-n}^n e_k$$

is the Dirichlet kernel.

The Fejér kernels are introduced with

$$K_n := \frac{1}{n+1} \sum_{k=0}^n D_k \qquad (n \in \mathbf{N}).$$

For $n \in \mathbb{N}$ and for $f \in L_1(\mathbb{T})$ the *Cesàro mean* of order n of the trigonometric-Fourier series of f is given by

$$\sigma_n f(x) :=$$

$$:= \frac{1}{\pi} \int_{\mathbb{T}} f(t) K_n(x-t) dt = \frac{1}{n+1} \sum_{k=0}^n s_k f(x) = \sum_{k=-n}^n \left(1 - \frac{|k|}{n+1} \right) \hat{f}(k) e_k(x).$$

The *n*-th partial sum in the first dimension of the Fourier series of $f \in L_1(\mathbf{T}^2)$ is defined by

$$s_n^1 f(x,y) := \frac{1}{\pi} \int_{\mathbb{T}} f(t,y) D_n(x-t) dt.$$

The operators s_n^2 , σ_n^1 and σ_n^2 can be introduced similarly. We shall use the following composition of these operators:

$$s_{n,m}f(x,y) := s_{n}^{1} s_{m}^{2} f(x,y) = \frac{1}{\pi^{2}} \int_{\mathbf{T}} \int_{\mathbf{T}} f(t,u) D_{n}(x-t) D_{m}(y-u) dt du =$$

$$= \sum_{k=-n}^{n} \sum_{l=-m}^{m} \hat{f}(k,l) e_{k,l}(x,y),$$

$$s_{n}^{1} \sigma_{m}^{2} f(x,y) = \frac{1}{\pi^{2}} \int_{\mathbf{T}} \int_{\mathbf{T}} f(t,u) D_{n}(x-t) K_{m}(y-u) dt du =$$

$$= \frac{1}{m+1} \sum_{l=0}^{m} s_{n,l} f(x,y) =$$

$$= \sum_{k=-n}^{n} \sum_{l=-m}^{m} \left(1 - \frac{|l|}{m+1}\right) \hat{f}(k,l) e_{k,l}(x,y),$$

$$\sigma_{n}^{1} s_{m}^{2} f(x,y) = \frac{1}{\pi^{2}} \int_{\mathbf{T}} \int_{\mathbf{T}} f(t,u) K_{n}(x-t) D_{m}(y-u) dt du =$$

$$= \frac{1}{n+1} \sum_{k=0}^{n} s_{k,m} f(x,y) =$$

$$= \sum_{k=-n}^{n} \sum_{l=-m}^{m} \left(1 - \frac{|k|}{n+1}\right) \hat{f}(k,l) e_{k,l}(x,y)$$

and

$$\sigma_{n,m}f(x,y) := \sigma_n^1 \sigma_m^2 f(x,y) = \frac{1}{\pi^2} \int_{\mathbf{T}} \int_{\mathbf{T}} f(t,u) K_n(x-t) K_m(y-u) dt du =$$

$$= \frac{1}{(n+1)(m+1)} \sum_{k=0}^n \sum_{l=0}^m s_{k,l} f(x,y) =$$

$$= \sum_{k=-n}^n \sum_{l=-m}^m \left(1 - \frac{|k|}{n+1}\right) \left(1 - \frac{|l|}{m+1}\right) \hat{f}(k,l) e_{k,l}(x,y).$$

It is known (see Carleson [1], Hunt [7]) that

(1)
$$||s_n f||_p \le ||\sup_{n \in \mathbb{N}} |s_n f||_p \le C_p ||f||_p$$
 $(1$

where C_p is independent of f. From this it follows easily that

(2)
$$||s_n^1 f||_p$$
, $||s_m^2 f||_p$, $||s_{n,m} f||_p \le C_p ||f||_p$

for every $n, m \in \mathbb{N}$, $f \in L_p(\mathbb{T}^2)$ (1 , and, moreover,

(3)
$$s_n^1 f, s_m^2 f, s_{n,m} f \to f \text{ in } L_p \text{ norm as } n, m \to \infty.$$

Note that the symbol C_p may denote different constants in different contexts.

We say that a sequence $(n_k, k \in \mathbb{N})$ of positive integers is a Hadamard sequence if

$$\inf_{k \in \mathbb{N}} n_{k+1}/n_k > 1.$$

The associated Hadamard decomposition of **Z** is defined by $(\Gamma_k, k \in \mathbf{Z})$,

$$\Gamma_k := \begin{cases} [n_{k-1}, n_k) \cap \mathbf{Z} & \text{if } k > 0, \\ (-n_0, n_0) \cap \mathbf{Z} & \text{if } k = 0, \\ (-n_{|k|}, -n_{|k|-1}] \cap \mathbf{Z} & \text{if } k < 0. \end{cases}$$

The following theorem is due to Littlewood and Paley (see e.g. Edwards, Gaudry [4], pp. 23, 155).

Theorem 1. Let $(n_k, k \in \mathbb{N})$ and $(m_l, l \in \mathbb{N})$ be two Hadamard sequences with Hadamard decompositions $(\Gamma_k, k \in \mathbb{Z})$ and $(\Delta_l, l \in \mathbb{Z})$. If $1 then for all <math>f \in L_p(\mathbb{T}^2)$,

$$c_p||f||_p \le \left\| \left(\sum_{k,l \in \mathbf{Z}} \left| \sum_{(i,j) \in \Gamma_k \times \Delta_l} \hat{f}(i,j) e_{i,j} \right|^2 \right)^{1/2} \right\|_p \le C_p ||f||_p.$$

We will also use the following Marcinkiewicz-Zygmund inequality, which can be found e.g. in Zygmund [22] (Volume 2, p.225) and Garcia-Cuerva, Rubio de Francia [5] (p. 496) (see also Weisz [19]).

Theorem 2. Assume that $f^{k,l} \in L_r$ $(k,l \in \mathbb{N})$ and $1 < p,r < \infty$. If N(k,l) and M(k,l) are arbitrary natural numbers for all $k,l \in \mathbb{N}$ then

$$\int_{\mathbf{T}} \int_{\mathbf{T}} \left(\sum_{k=0}^{\infty} \sum_{l=0}^{\infty} |s_{N(k,l),M(k,l)} f^{k,l}(x,y)|^{r} \right)^{p/r} dx dy \leq \\
\leq C_{p,r} \int_{\mathbf{T}} \int_{\mathbf{T}} \left(\sum_{k=0}^{\infty} \sum_{l=0}^{\infty} |f^{k,l}(x,y)|^{r} \right)^{p/r} dx dy.$$

3. The boundedness of the double Sunouchi operators

The following two operators were introduced by Sunouchi [12], [13] and Zygmund [21]:

$$U_r f := \left(\sum_{n=1}^{\infty} \frac{|s_n f - \sigma_n f|^r}{n}\right)^{1/r} \qquad (r \ge 1, f \in L_1(\mathbf{T})),$$

$$Tf := \left(\sum_{n=0}^{\infty} |s_{2^n} f - \sigma_{2^n} f|^2\right)^{1/2} \qquad (f \in L_1(\mathbf{T})).$$

It was proved there that

(4)
$$C_p ||f||_p < C_p ||Tf||_p < C_p ||U_2 f||_p < C_p ||Tf||_p < C_p ||f||_p$$

and

$$||U_r f||_p \le C_{p,r} ||f||_p$$

for $1 , <math>2 \le r < \infty$ and $f \in L_p(\mathbf{T})$.

We have for $f \in L_1(\mathbf{T})$ that

$$s_n f - \sigma_n f = \sum_{k=-n}^n \frac{|k|}{n+1} \hat{f}(k) e_k.$$

Motivated by this we define in the two-dimensional case U_rf and Tf by

$$U_r f := \left(\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{|s_{n,m} f - s_n^1 \sigma_m^2 f - \sigma_n^1 s_m^2 f + \sigma_{n,m} f|^r}{nm} \right)^{1/r}$$

and

$$Tf := \left(\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} |s_{2^{n},2^{m}} f - s_{2^{n}}^{1} \sigma_{2^{m}}^{2} f - \sigma_{2^{n}}^{1} s_{2^{m}}^{2} f + \sigma_{2^{n},2^{m}} f|^{2}\right)^{1/2}$$

for $r \ge 1$ and $f \in L_1(\mathbf{T}^2)$ because

(6)
$$s_{n,m}f - s_n^1 \sigma_m^2 f - \sigma_n^1 s_m^2 f + \sigma_{n,m}f = \sum_{k=-n}^n \sum_{l=-m}^m \frac{|kl|}{(n+1)(m+1)} \hat{f}(k,l) e_{k,l}$$

The following lemma is an easy consequence of the Littlewood-Paley inequality.

Lemma 1. Let 1 . We have in the one-dimensional case

$$(7) c_{p}||Tf||_{p} \leq \left(\int\limits_{\mathbf{T}}\left|\sum_{k=0}^{\infty}e_{2^{k+2}}(s_{2^{k}}f-\sigma_{2^{k}}f)\right|^{p}d\lambda\right)^{1/p} \leq C_{p}||Tf||_{p}$$

and in the two-dimensional case

(8)
$$c_{p} ||Tf||_{p} \leq \left(\int_{\mathbf{T}} \int_{\mathbf{T}} \left| \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} e_{2^{k+2},2^{l+2}} (s_{2^{k},2^{l}} f - s_{2^{k}}^{1} \sigma_{2^{l}}^{2} f - \sigma_{2^{k}}^{1} s_{2^{l}}^{2} f + \sigma_{2^{k},2^{l}} f \right) \right|^{p} d\lambda \right)^{1/p} \leq C_{p} ||Tf||_{p}.$$

Proof. Let $n_k=m_k=3\cdot 2^k$ $(k\in {\bf N})$ be two Hadamard sequences. Since $5\cdot 2^k<3\cdot 2^{k+1}$, we have that

$$\sum_{(i,j)\in\Gamma_k\times\Delta_l} \mathring{g}(i,j)e_{i,j} = e_{2^k+2,2^l+2}(s_{2^k,2^l}f-s_{2^k}^1\sigma_{2^l}^2f-\sigma_{2^k}^1s_{2^l}^2f+\sigma_{2^k,2^l}f)$$

where

$$g = \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} e_{2^{k+2},2^{l+2}} (s_{2^{k},2^{l}} f - s_{2^{k}}^{1} \sigma_{2^{l}}^{2} f - \sigma_{2^{k}}^{1} s_{2^{l}}^{2} f + \sigma_{2^{k},2^{l}} f).$$

The lemma follows from Theorem 1.

The following corollary comes from (4) and Lemma 1.

Corollary 1. For 1 we have in the one-dimensional case

$$|c_p||f||_p \le \left(\int\limits_{\mathbf{T}} \left|\sum_{n=0}^{\infty} e_{2^{n+2}}(s_{2^n}f - \sigma_{2^n}f)\right|^p d\lambda\right)^{1/p} \le C_p||f||_p.$$

The next result generalizes (4) and (5) and shows that the two-dimensional analogue of Corollary 1 also holds.

Theorem 3. For $1 , <math>2 \le r < \infty$ and $f \in L_p$ we have in the two-dimensional case

(9)
$$C_p||f||_p \le C_p||Tf||_p \le C_p||U_2f||_p \le C_p||Tf||_p \le C_p||f||_p$$

and

(10)
$$||U_r f||_p \le C_{p,r} ||f||_p.$$

Proof. First we prove that

(11)
$$||U_r f||_p \le C_{p,r} ||Tf||_p \qquad (f \in L_p).$$

From (6), Theorem 2 and from Jensen's inequality we obtain that

$$||U_{r}f||_{p}^{p} = \int_{\mathbf{T}} \int_{\mathbf{T}} \left(\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} \sum_{n=2^{k-1}}^{\infty} \sum_{m=2^{l-1}}^{2^{l}-1} \sum_{m=2^{l-1}}^{2^{l}-1} \frac{|s_{n,m}f - s_{n}^{1}\sigma_{m}^{2}f - \sigma_{n}^{1}s_{m}^{2}f + \sigma_{n,m}f|^{r}}{nm} \right)^{p/r} d\lambda \le$$

$$\leq C_{p,r} \int_{\mathbf{T}} \int_{\mathbf{T}} \left(\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} \sum_{n=2^{k-1}}^{\infty} \sum_{m=2^{l-1}}^{2^{l}-1} \frac{|s_{2^{k},2^{l}}f - s_{2^{k}}^{1}\sigma_{2^{l}}^{2}f - \sigma_{2^{k}}^{1}s_{2^{l}}^{2}f + \sigma_{2^{k},2^{l}}f|^{r}}{nm} \right)^{p/r} d\lambda \le$$

$$\leq C_{p,r} \int_{\mathbf{T}} \int_{\mathbf{T}} \left(\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} |s_{2^{k},2^{l}}f - s_{2^{k}}^{1}\sigma_{2^{l}}^{2}f - \sigma_{2^{k}}^{1}s_{2^{l}}^{2}f + \sigma_{2^{k},2^{l}}f|^{2}} \right)^{p/2} d\lambda$$

which shows (11).

Now we investigate the second inequality of (9). By the definition of T and (6),

$$||Tf||_{p}^{p} = \int_{\mathbf{T}} \int_{\mathbf{T}} \left[\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{1}{(2^{n}+1)^{2}(2^{m}+1)^{2}} \left(\sum_{k=-2^{n}}^{2^{n}} \sum_{l=-2^{m}}^{2^{m}} |kl| \hat{f}(k,l) e_{k,l} \right)^{2} \right]^{p/2} d\lambda \le$$

$$\leq C \int_{\mathbf{T}} \int_{\mathbf{T}} \left[\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \sum_{i=2^{n}}^{2^{n+1}-1} \sum_{j=2^{m}}^{2^{m+1}-1} \frac{1}{(i+1)^{3}(j+1)^{3}} \cdot \left(\sum_{k=-2^{n}}^{2^{n}} \sum_{l=-2^{m}}^{2^{m}} |kl| \hat{f}(k,l) e_{k,l} \right)^{2} \right]^{p/2} d\lambda.$$

Applying again Theorem 2 we can see that

$$\begin{split} ||Tf||_{p}^{p} & \leq C_{p} \int \int \int \prod_{\mathbf{T}} \left[\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \sum_{i=2^{n}}^{2^{n+1}-1} \sum_{j=2^{m}}^{2^{m+1}-1} \frac{1}{ij} \cdot \left(\sum_{k=-i}^{i} \sum_{l=-j}^{j} \frac{|kl|}{(i+1)(j+1)} f(k,l) e_{k,l} \right)^{2} \right]^{p/2} d\lambda \leq \\ & \leq C_{p} \int \int \prod_{\mathbf{T}} \left[\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \frac{|s_{i,j}f - s_{i}^{1} \sigma_{j}^{2} f - \sigma_{i}^{1} s_{j}^{2} f + \sigma_{i,j} f|^{2}}{ij} \right]^{p/2} d\lambda \leq \\ & \leq C_{p} ||U_{2}f||_{p}^{p}. \end{split}$$

We are going to present the proof of the fourth inequality of (9). By Lemma 1, (2) and (3),

$$||Tf||_{p}^{p} \leq C_{p} \sup_{N,M \in \mathbb{N}} \int_{\mathbb{T}} \int_{\mathbb{T}} \left| \sum_{n=0}^{N} e_{2^{n+2}}(x) (s_{2^{n}}^{1} - \sigma_{2^{n}}^{1}) \cdot \left[\sum_{m=0}^{M} \epsilon_{2^{m+2}}(y) (s_{2^{m}}^{2} f(\cdot, y) - \sigma_{2^{m}}^{2} f(\cdot, y)) \right] (x) \right|^{p} dx dy \leq$$

$$\leq C_{p} \sup_{M \in \mathbb{N}} \int_{\mathbb{T}} \sup_{N \in \mathbb{N}} \int_{\mathbb{T}} \left| \sum_{n=0}^{N} e_{2^{n+2}}(x) (s_{2^{n}}^{1} - \sigma_{2^{n}}^{1}) \cdot \left[\sum_{m=0}^{M} e_{2^{m+2}}(y) (s_{2^{m}}^{2} f(\cdot, y) - \sigma_{2^{m}}^{2} f(\cdot, y)) \right] (x) \right|^{p} dx dy.$$

Applying (1) and Corollary 1,

$$||Tf||_{p}^{p} \leq C_{p} \sup_{M \in \mathbb{N}} \int_{\mathbb{T}} \int_{\mathbb{T}} \left| \sum_{m=0}^{M} e_{2^{m+2}}(y) (s_{2^{m}}^{2} f(x,y) - \sigma_{2^{m}}^{2} f(x,y)) \right|^{p} dx dy \leq$$

$$\leq C_{p} \int_{\mathbb{T}} \sup_{M \in \mathbb{N}} \int_{\mathbb{T}} \left| \sum_{m=0}^{M} e_{2^{m+2}}(y) (s_{2^{m}}^{2} f(x,y) - \sigma_{2^{m}}^{2} f(x,y)) \right|^{p} dy dx \leq$$

$$\leq C_{p} \int_{\mathbb{T}} \int_{\mathbb{T}} |f(x,y)|^{p} dy dx.$$

To prove the converse we obtain by Corollary 1, (2) and (3) that

$$||f||_{p}^{p} \leq C_{p} \int_{\mathbf{T}} \int_{\mathbf{T}} \left| \sum_{m=0}^{\infty} e_{2^{m+2}}(y) (s_{2^{m}}^{2} f(x, y) - \sigma_{2^{m}}^{2} f(x, y)) \right|^{p} dy dx \leq$$

$$\leq C_{p} \sup_{M \in \mathbf{N}} \int_{\mathbf{T}} \int_{\mathbf{T}} \left| \sum_{m=0}^{M} e_{2^{m+2}}(y) (s_{2^{m}}^{2} f(x, y) - \sigma_{2^{m}}^{2} f(x, y)) \right|^{p} dy dx.$$

Again, by Corollary 1, (2) and (3),

$$\begin{split} \int\limits_{\mathbf{T}} \int\limits_{\mathbf{T}} \bigg| \sum_{m=0}^{M} e_{2^{m+2}}(y) (s_{2^{m}}^{2} f(x,y) - \sigma_{2^{m}}^{2} f(x,y)) \bigg|^{p} dx dy \leq \\ & \leq C_{p} \int\limits_{\mathbf{T}} \int\limits_{\mathbf{T}} \bigg| \sum_{n=0}^{\infty} e_{2^{n+2}}(x) (s_{2^{n}}^{1} - \sigma_{2^{n}}^{1}) \cdot \\ & \cdot \bigg[\sum_{m=0}^{M} e_{2^{m+2}}(y) (s_{2^{m}}^{2} f(\cdot,y) - \sigma_{2^{m}}^{2} f(\cdot,y)) \bigg] (x) \bigg|^{p} dx dy \leq \\ & \leq C_{p} \sup_{N \in \mathbf{N}} \int\limits_{\mathbf{T}} \int\limits_{\mathbf{T}} \bigg| \sum_{n=0}^{N} e_{2^{n+2}}(x) (s_{2^{n}}^{1} - \sigma_{2^{n}}^{1}) \cdot \\ & \cdot \bigg[\sum_{m=0}^{M} e_{2^{m+2}}(y) (s_{2^{m}}^{2} f(\cdot,y) - \sigma_{2^{m}}^{2} f(\cdot,y)) \bigg] (x) \bigg|^{p} dx dy. \end{split}$$

Hence

$$||f||_p \le C_p ||Tf||_p$$

follows from Lemma 1. The proof of the theorem is complete.

4. Strong summability of double trigonometric-Fourier series

It is known that the operator $\sup_{n \in \mathbb{N}} |\sigma_n|$ is bounded from L_p to L_p ($1) (see Zygmund [22]) and from the classical <math>H_1$ space to L_1 (see Weisz [17]). We generalize the first half of this result for two dimensions.

Theorem 4. There exist constants C_p depending only on p such that for all $f \in L_p(\mathbf{T}^2)$ (1

$$\left\| \sup_{n,m \in \mathbf{N}} |\sigma_{n,m} f| \right\|_{p} \le C_{p} ||f||_{p}.$$

Proof. Applying the one-dimensional result twice and the fact that the Fejér kernel K_n is non-negative for each $n \in \mathbb{N}$ (see e.g. Zygmund [22]), we have

$$\int_{\mathbf{T}} \int_{\mathbf{T}} \sup_{n,m \in \mathbf{N}} \left| \int_{\mathbf{T}} \int_{\mathbf{T}} f(t,u) K_{n}(x-t) K_{m}(y-u) dt du \right|^{p} dx dy \leq
\leq \int_{\mathbf{T}} \int_{\mathbf{T}} \sup_{m \in \mathbf{N}} \left[\int_{\mathbf{T}} \left(\sup_{n \in \mathbf{N}} \left| \int_{\mathbf{T}} f(t,u) K_{n}(x-t) dt \right| \right) K_{m}(y-u) du \right]^{p} dy dx
\leq C_{p} \int_{\mathbf{T}} \int_{\mathbf{T}} \sup_{n \in \mathbf{N}} \left| \int_{\mathbf{T}} f(t,y) K_{n}(x-t) dt \right|^{p} dx dy \leq
\leq C_{p} \int_{\mathbf{T}} \int_{\mathbf{T}} |f(x,y)|^{p} dx dy$$

which proves the theorem.

Using (1) we can prove the following theorem with the same method.

Theorem 5. There exist constants C_p depending only on p such that for all $f \in L_p(\mathbf{T}^2)$ (1

$$\left\|\sup_{n,m\in\mathbf{N}} |s_n^1 \sigma_m^2 f|\right\|_p, \quad \left\|\sup_{n,m\in\mathbf{N}} |\sigma_n^1 s_m^2 f|\right\|_p \le C_p ||f||_p.$$

Since the two-dimensional trigonometric polynomials are dense in $L_p(\mathbf{T}^2)$ (1), the usual density argument (see Marcinkiewicz, Zygmund [10]) implies the generalization of the well-known one-dimensional Lebesgue theorem (see e.g. Torchinsky [15]):

Corollary 2. For every $f \in L_p(\mathbf{T}^2)$ (1

$$\sigma_{n,m}f \to f$$
, $s_n^1 \sigma_m^2 f \to f$ and $\sigma_n^1 s_m^2 f \to f$ a.e. as $n, m \to \infty$.

The (C, α, β) means and strong (C, α, β, q) means of a function $f \in L_1(\mathbf{T}^2)$ are defined by

$$\sigma_{n,m}^{\alpha,\beta}f := \frac{1}{A_n^{\alpha}A_m^{\beta}} \sum_{k=0}^n \sum_{l=0}^m A_{n-k}^{\alpha-1} A_{m-l}^{\beta-1} s_{k,l} f$$

and

$$\sigma_{n,m}^{\alpha,\beta,q}f := \left(\frac{1}{A_n^{\alpha}A_m^{\beta}}\sum_{k=0}^n\sum_{l=0}^m A_{n-k}^{\alpha-1}A_{m-l}^{\beta-1}|s_{k,l}f|^q\right)^{1/q},$$

respectively, where $-1 < \alpha, \beta < \infty, 0 < q < \infty$ and

$$A_n^{\alpha} := {n+\alpha \choose n} = \frac{(\alpha+1)(\alpha+2)\dots(\alpha+n)}{n!}.$$

It is easy to see that

$$\sigma_{n,m}^{0\ 0}f = s_{n,m}f, \qquad \sigma_{n,m}^{1,0}f = \sigma_{n}^{1}s_{m}^{2}f,$$

and

$$\sigma_{n,m}^{0,1}f = s_n^1 \sigma_m^2 f, \qquad \sigma_{n,m}^{1,1}f = \sigma_{n,m}f.$$

We say that a function $f \in L_1(\mathbf{T}^2)$ is (C, α, β) summable and strong (C, α, β, q) summable if

$$\sigma_{n,m}^{\alpha,\beta}f \to f$$
 a.e.

and

$$\frac{1}{A_n^{\alpha} A_m^{\beta}} \sum_{k=0}^n \sum_{l=0}^m A_{n-k}^{\alpha-1} A_{m-l}^{\beta-1} |s_{k,l} f - f|^q \to 0 \quad \text{a.e.}$$

as $n, m \to \infty$, respectively.

Since

$$\sum_{k=0}^{n} A_{n-k}^{\alpha-1} = A_n^{\alpha}$$

(see Zygmund [22]), it is clear by Hölder's inequality that if f is strong (C, α, β, q) summable for any $q \ge 1$ then it is also (C, α, β) summable.

In the one-parameter case Zygmund [22] and Sunouchi [12], [13] proved that each function $f \in L_p(\mathbf{T})$ $(1 is strong <math>(C, \alpha, q)$ summable $(0 < \alpha, q < \infty)$. We generalize this result for two parameters. The next theorem can be verified in the same way as for two-dimensional Walsh-Fourier series (see Weisz [19], Theorem 11).

Theorem 6. If $f \in L_p(\mathbf{T}^2)$ $(1 and <math>0 < \alpha, \beta, q < \infty$ then

$$\left\| \sup_{n,m \in \mathbf{N}} |\sigma_{n,m}^{\alpha,\beta,q} f| \right\|_{p} \le C_{p} ||f||_{p} \qquad (f \in L_{p}(\mathbf{T}^{2}))$$

where C_p is independent of f.

From this it follows that

$$\left\| \sup_{n,m \in \mathbf{N}} \left(\frac{1}{A_n^{\alpha} A_m^{\beta}} \sum_{k=0}^n \sum_{l=0}^m A_{n-k}^{\alpha-1} A_{m-l}^{\beta-1} |s_{k,l} f - f|^q \right)^{1/q} \right\|_p \le C_p ||f||_p,$$

so with the density argument one can obtain the following

Corollary 3. If $f \in L_p(\mathbf{T}^2)$ $(1 and <math>0 < \alpha, \beta, q < \infty$ then f is strong (C, α, β, q) summable and (C, α, β) summable, more exactly,

$$\frac{1}{A_n^{\alpha} A_m^{\beta}} \sum_{k=0}^n \sum_{l=0}^m A_{n-k}^{\alpha-1} A_{m-l}^{\beta-1} |s_{k,l} f - f|^q \to 0 \quad \text{a.e.}$$

and

$$\sigma_{n,m}^{\alpha,\beta}f \to f$$
 a.e.

as $n, m \to \infty$.

This corollary was proved by Gogoladze [6] with another method.

References

- [1] Carleson L., On convergence and growth of partial sums of Fourier series, Acta Math., 116 (1966), 135-157.
- [2] Edwards R.E., Fourier series. A modern introduction, Vol. 1, Springer, 1982.
- [3] Edwards R.E., Fourier series. A modern introduction, Vol. 2, Springer, 1982.
- [4] Edwards R.E. and Gaudry G.I., Littlewood-Paley and multiplier theory, Ergebnisse der Mathematik und ihrer Grenzgebiete 90, Springer, 1977.

- [5] Garcia-Cuerva J. and Rubio de Francia J.L., Weighted norm inequalities and related topics, Mathematics Studies 116, North-Holland, Amsterdam, 1985.
- [6] Гоголадзе Л.Д., О (H, k)-суммируемости кратных тригонометрических рядов Фурье, Изв. АН СССР Сер. мат., 41 (1977), 937-958. (English trans. in Math. USSR Izv.: Gogoladze L.D., On (H,k)-summability of multiple trigonometric Fourier series, 11 (1977))
- [7] Hunt R.A., On the convergence of Fourier series. Orthogonal expansions and their continuous analogues, *Proc. Conf. Edwardsville*, *Ill.*, 1967, Illinois Univ. Press, Carbondale, Ill., 1968, 235-255.
- [8] Leindler L., On summability of Fourier series, Acta Sci. Math. (Szeged), 29 (1968), 147-162.
- [9] Marcinkiewicz J., Sur l'interpolation, Studia Math., 6 (1936), 1-17, 67-81.
- [10] Marcinkiewicz J. and Zygmund A., On the summability of double Fourier series, Fund. Math., 32 (1939), 122-132.
- [11] Schipp F., Über die starke Summation von Walsh-Fourierreihen, Acta Sci. Math. (Szeged), 30 (1969), 77-87.
- [12] Sunouchi G.-I., On the strong summability of Fourier series, Proc. Amer. Math. Soc., 1 (1950), 526-533.
- [13] Sunouchi G.-I., Strong summability of Walsh-Fourier series, *Tohoku Math. J.*, 16 (1969), 228-237.
- [14] Tandori K., Bemerkung zur starken Summation der Fourierreihe, Acta Math. Acad. Sci. Hung., 19 (1968), 271-285.
- [15] Torchinsky A., Real-variable methods in harmonic analysis, Academic Press, New York, 1986.
- [16] Weisz F., Cesàro summability of multi-dimensional trigonometric-Fourier series, J. Math. Anal. Appl. (to appear)
- [17] Weisz F., Cesàro summability of one- and two-dimensional trigonometric-Fourier series, Coll. Math. (submitted)
- [18] Weisz F., Martingale Hardy spaces and their applications in Fourier-analysis, Lecture Notes in Math. 1568, Springer, 1994.
- [19] Weisz F., Strong summability of two-dimensional Walsh-Fourier series, Acta Sci. Math. (Szeged), 60 (1995), 779-803.
- [20] Weisz F., The boundedness of the two-parameter Sunouchi operators on Hardy spaces, Acta Math. Hung., 72 (1996), 85-116.
- [21] Zygmund A., On the convergence and summability of power series on the circle of convergence, *Proc. London Math. Soc.*, 47 (1941), 326-350.

406 F. Weisz

[22] Zygmund A., Trigonometric series, Cambridge Press, London, 1959.

F. Weisz

Department of Numerical Analysis Eötvös Loránd University VIII. Múzeum krt. 6-8. H-1088 Budapest, Hungary