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STRONG SUMMABILITY OF TWO-DIMENSIONAL
TRIGONOMETRIC-FOURIER SERIES

F. Weisz (Budapest, Hungary)

Dedicated to Prof. J. Baldzs’s 75-th birthday

Abstract. We extend some results of Sunouchi and Zygmund from one
dimension to two dimensions and we prove that the Sunouchi operators
and the supremum operator of the strong (C, @, 3, ¢) means are bounded
operators from Ly to L, (1 < p < 00). As a consequence it is obtained
that every function f € L, (1 < p < 00) is strong (C, a, f, ¢) summable.

1. Introduction

For the one-parameter trigonometric system it was proved by Sunouchi
(12], [13] and Zygmund [21] that the operators

© ” 1/r
U f = (Z |sn f —nanfl ) (r>2)
n=1

and
o 1/2
Tf = (Z |32uf - UQﬂf|2>
n=0
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are bounded from L, to L, (1 < p < o) where s, f and o, f denote the partial
sums and the Cesaro means of the trigonometric-Fourier series of f € L,
respectively. With the help of this Sunouchi [13] proved that the supremum
operator of the strong (C, «,¢) means (0 < a, ¢ < 00)

1 n 1/4
sup (T"_ > A,‘I:ilsdl“)

neN \ “n 7,

is also bounded from L, to L, if 1 < p < co where A% := ("**). From this it
follows that every function f € L, (1 < p < ) is strong (C, v, q¢) summable
(0 < a,q < 00), ie.

|
FZAH—}:lsk.f'_flq — 00

n k=0

as n — o0o. Marcinkiewicz [9] and Zygmund [21] (see also Zygmund [22])
extended this result to every integrable function.

For Walsh-Fourier series these results are due to Sunouchi [13] and Schipp
[11] in the one-dimensional case and to Weisz [19] in the two-dimensional case.

In this paper we deal with these problems for two-parameter trigonometric
Fourier series and follow basically the ideas in [19]. In Section 2 the basic
notations and results used later are given. We introduce the operators slo?,
and ols2 that are the partial sums in the one dimension and the Cesaro
means in the other dimension. The two-parameter analogues of the Sunouchi
operators are defined and it is verified that they are bounded from L, to L,

provided that 1 < p < oo (see Section 3).
In Section 4 we prove that the operators

sup |onmfl,  sup |spokf| and  sup |opsf|
n,meN n,me n,meN

are all bounded from L, to L, for | < p < oo. From this it follows that
Onmf, shol f and o} s? f converge to f a.e. as n,m — oo whenever f € L,
(1 < p < 90). Stronger forms of the convergence result concerning the double
Cesaro means can be found in Weisz [16], [17]. Moreover, the strong (C, «, 3, q)
means are defined and it is shown that the supremum operator of these means
are bounded from L, to L, for 1 < p < oco. This implies that every function
f € L, withl < p < oois(C,a,B3) and strong (C,a, 3,¢) summable (0 <
< a,f3,9 < 00). This last result was also proved by Gogoladze [6].
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2. Preliminaries and notations

For a set X # 0 let X? be its Descartes product X x X taken with
itself, moreover, let T := [—w,7) and A be the one- or two-dimensional
Lebesgue measure. We briefly write L, or L,(T7) (j = 1,2) instead of the
real L,(T7,)) space while the norm (or quasinorm) of thls space is defined by

I £llp = (Tf IfIPd/\) (0 <p < o0)

We use the notations

nr

en(z) := €7, enm(Z,y) = en(T)em(y)

where 1 = /—1.

For an integrable function f the numbers

f(n) = 2%/]?,, dX, f(n,m) = (2;)2 /f"é,,,,,, d)
T T3

are said to be the n-th and (n,m)-th trigonometric-Fourier coefficients of f
(n,m € Z), respectively.

Denote by s, f (n € N) the n-th partial sum of the trigonometric-Fourier
series of f € Ly(T), namely,

snf(z) = Z f(k)ex(z) = /f(t)D (z —t)dt
k=—n

where

I\:'Iv—-

-2

is the Dirichlet kernel.
The Fejér kernels are introduced with

1
’n = Dn N
K —— ; (n € N)

For n € N and for f € L (T) the Cesdro mean of order n of the trigonometric-
Fourier series of f is given by

onf(z) =
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/f V(2 —t)dt = nilz sef(x)= ) (1—71—':{'—1) f(k)ex(z).

k=-n

The n-th partial sum in the first diinension of the Fourier series of f €
€ L1(T?) is defined by

fla.y) = /fcy D —t)dt.

The operators s2, o) and o2 can be introduced similarly. We shall use the

following composition of these operators:

snmf(z,y) = sn mf(:c Y) %//f(t,u)D,,(z =)Dy (y — u)dtdu =

m

Z Y Sk Dera(z,y),

k=-nil=-m

stal f(z,y) ;13//f(t,u)[)n(;c—t)Km(y—u)dtdu:
T

T

m

1
T m+1 ‘Z;s"‘lf(i' y) =

= Z Z (1—171'%)};(1\7,1)%,“3»?/);

k==nl=-m

ohsiu ) = 75 [ [ F R - 0Dy - wdtdu =
T

> E (1 - L ik ez, )

k=—-nil=—m
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and

Onmf(z,y): = a'l,‘a,":, flx,y) = // ft, )Ry (e =) K (y — u)dtdu =
T T

n m

1
= — seaf(zy) =
(n+1)(m+1) P
m '

Z > ( - )(1—171'21)f(k,1)e,,_,(z,y).

k==nl=-m

It is known (see Carleson (1], Hunt [7]) that
(1) llsn fllp < H:‘E‘g Isn flllp < Gl £l (1<p< oo, feLy(T))
where C, is independent of f. From this it follows easily that
(2) ||3111f||p' HSZ‘LJ’IIP, lsn,m fllp < Collfllp
for every n,m € N, f € L,(T?) (1 < p < o0), and, moreover,
(3) sk f, si f, Snmf — f in L, norm as n,m — oo.

Note that the symbol C, may denote different constants in different contexts.
We say that a sequence (ny,k € N) of positive integers is a Hadamard

sequence if
1.1211\1 nesr/ne > 1.
The associated Hadamard decomposition of Z is defined by (I'x, k € Z),
[nk—1,n:)NZ if k>0,
[y =< (=no,n0)NZ ifk=0,
(=nykl —nm_l] NZ ifk<0.

The following theorem is due to Littlewood and Paley (see e.g. Edwards,
Gaudry [4], pp. 23, 155).
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Theorem 1. Let (n;, k € N) and (my,! € N) be two Hadamard sequences
with Hadamard decompositions (T, k € Z) and (A,l € Z). If 1 < p < 00 then
for all f € L,(T?),

9\ 1/2

ollfle < Do | Do flides < Gllflle-

kI€Z |(i,j)eETxx A

We will also use the following Marcinkiewicz-Zygmund inequality, which
can be found e.g. in Zygmund [22] (Volume 2, p.225) and Garcia-Cuerva, Rubio
de Francia [5] (p. 496) (see also Weisz [19]).

Theorem 2. Assume that f*' € L, (k,l € N) and 1 < p,r < oco. If
N(k,l) and M(k,l) are arbitrary netural numbers for all k,1 € N then

o plr
// (Zz|SN(L-,1),M(k.1)fk"(:v.y)l") dzdy <
k=0 I=0
SIS plr
SCp,r// (ZZU“ (z, y)|') dz dy.
T T

k=01=0
3. The boundedness of the double Sunouchi operators

The following two operators were introduced by Sunouchi [12], [13] and
Zygmund [21]:

0 | _ - 1/r
U f = (Z 'f—,"f—') (r>1,f € Ly(T)),
n=1

o

- 1/2
Tf = (Z |son f — 02-~f!2> (fe LI(T))'

n=0
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It was proved there that

(4) Collflle S GolITfllp < CollUzfllp < GolIT fllp < Cpllfllp
and
(5) (1Urfllp < Cprll fllp

for 1< p<oo,2<r<ooand f € Ly(T).
We have for f € L;(T) that

saf—onf= ) l|+|1f(k)
k=-n

Motivated by this we define in the two-dimensional case U, f and T'f by

1/r
. |sn mf - 5 - ansrnf + 0n mflr
Urf = (Z Z nm

n=1m=1

and

v 1/2
Tf:= (Z D lsenanf = shaoin f - Uénsgmf+02".2"-f|2)

n=0m=0

for r > 1 and f € L;(T?) because

2 kl
(6) sn.mf_s'rllay‘nf" (o mf+UH mf— Z Z n+ ll(l +1)f(k)l)ek,l-

k==nl=-m

The following lemma is an easy consequence of the Littlewood-Paley
inequality.

Lemma 1. Lelt 1 < p < oc. We have in the one-dimensional case

|

T

o

Z eak+2(sgk f — ogx f)

» 1/p
dA < GolITfllp
k=0

(7) Cp“Tf“p < (
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and in the two-dimensional case

B)  llTflly £ (// ZZCQH'-',':‘H(SQ*,M"‘Sékagrf—

k=01=0

p 1/p
— opussf+ 0w uf) d/\) < CplITfllp-

Proof. Let n; = m; = 3-2% (k € N) be two Hadamard sequences. Since
5.2% < 3.2+ we have that

z 9(%,7)ei; = €orsz mia(Sak o1 f — ,k 02.f a’éksg,f + o9k 21 f)
(1,7)ETkx Oy

where
00 00
Z z 0L+‘1_21+2(32k'21f - S._l?kO’g,f - a;ksg,f + Uzk_zlf).
k=01=0

The lemma follows from Theorem 1.
The following corollary comes from (4) and Lemma 1.

Corollary 1. For |l < p < > we have in the one-dimensional case

iy < | [

T

~ P 1/p

Y ewmsz(sanf =0 f)| dX] < Cpllfllp-

n=0

The next result generalizes (4) and (5) and shows that the two-dimensional
analogue of Corollary 1 also holds.

Theorem 3. For 1 < p< oo, 2 <71 < o and f € L, we have in the
two-dimenstonal case

(9) Cp“f“p < Cp“TfHI-' < C"p“UQ.f”p < Cp”Tf“p < Cp”f”ﬁ

and

(10) WO fllp < Cprll fllp-
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Proof. First we prove that

(1) 1l < CorlITAly  (F € Ly).

From (6), Theorem 2 and from Jensen's inequality we obtain that

om={[(£5 5 &

k=11=1 n=2k-1m=2i-1

nm

l's”-"lf - svlza?nf _ 0’” mf +on mfl ) d\ <

d) <

nm

-\ P/
[sgu‘ztf—Sékagnf—Uék3§1f+‘72“,2‘f|, )

o oo r/2
< Cpr // ( [$ak o1 f — shuos f — Tasaf + oo o f|? ) d

which shows (11).

Now we investigate the second inequality of (9). By the definition of T
and (6),

WAl =

//[ii(2"+l 2m +1)? (Z Z IL’Ifklek:)2Jp/2d,\5

n=0m=0 2n |=—2m

CfJ[E5EE

n=0m=0 =2~ ;=2m™ (l + 1)3(_, + 1)3

k=-2nl=-2m

2" 2T p/2
( Z Z |k’|j(k,1)€k,1)2} dX.
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Applying again Theorem 2 we can see that

21 41 —19 om+1

lell”<C//[ii >y =

n=0m=0 =2 j;=2m

29p/2
L.
E E f(k,Dey d) <
( (1 + 1)( _1+1 (k. Dewi =

k=—il=—j

9 4 9 4 5 P/2
<c',,// [Zzls,,f lotf -'-‘.al-ls;f+0.',jf|zJ i<

1
i=1l j=1 J

< GV

We are going to present the proof of the fourth inequality of (9). By
Lemma 1, (2) and (3),

ITfIl5 < Cp .

e',..w(z )(55n — 03a):

n=0
P
- [Z €amra (4)(53m S(-,y) = 05 f y))J (2) | dady<
m=0
N
<G sup/sup/ Ze-_)..+:(.L)(52 — O5n)
MeNJ NeNJ | o
T T
M P
[Zfow(y)(%mf( y) = o3m f(,9)) J(x) dz dy.
m=0
Applying (1) and Corollary |,
P
HTAIIE < Cp aup Z eamsz(y)(83m f2,y) — 02 f(2,y)) | dzdy <
m=0
P
<Cyp | sup e,,..+a (S-,,..f(l y) — 02 f(z,y)) | dydz <
IMGN m=0

< Cp//mm,y)l*’ dy d.
T T
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To prove the converse we obtain by Corollary 1, (2) and (3) that

o P
A1 < G / / S omss()(sdn F2.y) - 3 flz,9)) | dyda <
T m=0
P
< Cp sup 6) 2 (Y)(S3m fl2,y) — 03n f(z,y)) | dyda.
NIEN m=0
Again, by Corollary 1, (2) and (3),
M v
S eomsa(¥)(shn fl2,y) — 03 f(2,9)) | dedy <
m=0
<G [ [| Zemntaltsh - abu)
TT n=0
M P
: [ m+:(y)(s::§mf(-,y)—tf%mf(-,y))J (z)| dzdy<
m=0
< Cp su // zfzn“(’- )(83n = 03n)-
N n=0
TT
M P
: [ Z ""‘+2(y)(s§"'f('»y) - a%"‘f(')y))} (17) dz dy
m=0

Hence
ANl < CHlIT Il

follows from Lemma 1. The proof of the theorem is complete.

4. Strong summability of double trigonometric-Fourier series

It is known that the operator sup |oy| is bounded from L, to L, (1 < p <
neN

< 00) (see Zygmund [22]) and from the classical H; space to L; (see Weisz
[17]). We generalize the first half of this result for two dimensions.
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Theorem 4. There ezist constants C, depending only on p such that for
all f € Ly(T?) (1 <p<ox)

mplmme < Gyllflh.
n.neN P

Proof. Applying the one-dimensional result twice and the fact that the
Fejér kernel K, is non-negative for each n € N (see e.g. Zygmund [22]), we

have
//f(t,u)]&',,(:c —t)Km(y — u)dtdu

// sup
n,meN
T T T T

) P
5//sup [/ sup /f(t,u)]\'n(;r—t)dt Km(y—u)du} dydz
meN neN
TT T

T

p
< C'p//::g /f(t,y)lfn(w—t)dt dedy <
T T T

<6, [ 1t day

T T

P
dzdy <

which proves the theorem.
Using (1) we can prove the following theorem with the same method.

Theorem 5. There exist constants Cy depending only on p such that for
all f € Ly(T?) (1 < p< )

< CollFllp-

p

sup o sy f]|
nmeN

A2
sup l'sn.amfl
n,meN

L]

14

Since the two-dimensional trigonometric polynomials are dense in L,(T?)
(I < p < o), the usual density argument (see Marcinkiewicz, Zygmund [10])
implies the generalization of the well-known one-dimensional Lebesgue theorem
(see e.g. Torchinsky [15]):

Corollary 2. For every f € LP(TQ) (1 <p<oo)

onmf — f, s,l,a,"’nf — f and a,,s;"nf — f a.e. as n, m — oo.
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The (C.a.p) means and strong (C.a,[3,q) means of a function f € L;(T?)
are defined by

n n

1
U:; 1131 . Ao 413 ZZ 4:: L.4m l*’k,lf

™ k=01=0

and

noom 1/q
ocePIF .= q
On'm f (AgAﬁ ZZA m I'sk Ifl ) )

M k=01=0

respectively, where —1 < a, < 00, 0 < ¢ < o0 and

n n!

40 = (n+a) _ (a+1)(a+‘2)...(a+n)_

It is easy to see that

Oy, mf = Sn mj f - U m ’

and
U 1 l 1 —
On mf - "namf On mJd = 0’,,'mf_

We say that a function f € L,(T?) is (C, a, ) summable and strong (Cie,8,9)
summable if

oy mf f a.e.

and

n m

A"A" ZZ A2 :Ag; seaf = flP =0 a.e.

m k=0 (=0

as n,m — 00, respectively.

Since

k=0

(see Zygmund [22]), it is clear by Holder’s inequality that if f is strong
(C,a, 8, q) summable for any ¢ > 1 then it is also (C, «, f) summable.

In the one-parameter case Zygmund [22] and Sunouchi [12], [13] proved
that each function f € L,(T) (1 < p < o0) is strong (C,a,q) summable
(0 < a,¢ < oo). We generalize this result for two parameters. The next
theorem can be verified in the same way as for two-dimensional Walsh-Fourier
series (see Weisz [19], Theorem 11).
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Theorem 6. [f f € Ly(T?) (1 < p< x) and 0 < a,B,¢ < 0o then

sup oy f]
nmeN

< Gollfllp (f € Lp(T?))
p

where Cp 15 independent of f.

From this it follows that

n om 1/q
1
su E E A"‘I,Ap"lsk,f—f" < Gl fllp,
n,mgN (Ag’Ag, k=0 1=0 n-k m—ll ' I - P” “P

P

so with the density argument one can obtain the following

Corollary 3. If f € L,(T?*) (1 <p < ) and 0 < a,,q < 0o then f is
strong (C, «, 3, q) summable and (C, a, ) summable, more ezactly,

n m
1

8 Z zAﬁiiAff_lllsk,zf -flIf—0 a.e.

a
n Am k=0 1=0

and
o,p 4 N
on'mf — f a.e.

as n,m— oc.

This corollary was proved by Gogoladze [6] with another method.
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