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ON PERTURBATIONS OF
INITTAL-BOUNDARY VALUE PROBLEMS
FOR NONLINEAR PARABOLIC EQUATIONS

L. Simon (Budapest, Hungary)

Dedicated to Professor J. Baldzs on his 75-th birthday

This paper is devoted to certain nonlinear parabolic equations in un-
bounded domains of the space variable. Consider e.g. the problem

Dyu+ Z ‘O‘lDO‘ [fa(t,z,u, Dfu,)] =g in Qr=(0,T)xQ,
la|<m
u(0,z) =0, z €N,
Dlu(t,z) =0, t€[0,T7], €9, |v]<m-1,
where €2 C R™ is an unbounded domain.

There will be formulated conditions such that the weak solution of this
problem can be obtained as the limit (as k& — oo) of weak solutions wy of
problems

Diup+ »_ (=D)IDY [#¥(t, 2, up, .. Diug, )] = gx in Q= (0,T) x ,
|la|]<m
ur(0,z) =0 in Qp,
Dlug(t,z) =0, t€[0,T], €V, |y/<m-1,

where Q, C Q is a bounded domain such that By N Q C Q, Br = {z €
eER™: |z| < k}.

Similar results have been proved e.g. in [4]-[8] for nonlinear elliptic
equations.
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In §1 we shall prove a rather general perturbation theorem on nonlinear
evolution equations with pseudo-monotone type operators. In §2 it will be
formulated several applications of this theorem.

1. The general perturbation theorem

Let © C R™ be a (possibly unbounded) domain and Q5 C Q be bounded
domains with the cone property (see [10]) such that Q; D QN By, for sufficiently
large k € N. Let p > 2 and m a positive integer. Denote by W;"($2) the usual
Sobolev space of real valued functions w whose distributional derivatives of
order < m belong to LP(£2). The norm on W,*(Q) is defined by

1/p

||UHW;’L(Q) = Z /lDO‘u|p ,

lal<m g

0
where o = (aq,...,®y) is a multiindex, D* = D' ...D%", D; = FT The
Ly

expression W', (€2) will denote the closure in |- [Jw o) of C5°(£2), the infinitely
differentiable functions with compact support contained in 2.

Let X be a closed linear subspace of W;"(Q2), by LP(0,7;X) will be

denoted the Banach space of the set of measurable functions v : (0,7) — X
such that |ul? is integrable. The dual space of LP(0,T; X) is L2(0,T; X') where
1/p+1/q¢=1and X' is the dual space of X (see e.g. [3]).

Let ¢ € C3°(R™) be a fixed function with the properties
pl)y=1 if |z <1/2, plr)=0 if |z|>1,
and define ¢y by
or(z) = p(z/k)), ze€R" keN.

Further, let X}, be a closed linear subspace of W} () and define the restriction
operator My, by Mpw = w|q,, w € X.

Assume that

L For any w € X Mg(ppw) € X.
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Then for any u € LP(0,T; X) we have My (¢ru) € LP(0,T; X ), where the
operator My, is defined by

(Myv)(t,x) = [Mgr(t, )](z), veLP(0,T;X).

Further, assume that there exist linear continuous (extension) operators
Ny : X — X such that Mywl|g, = w a.e. and the norms of N are bounded
(k € N). Then we have linear continuous operators

Ny : LP(0,T; Xy) — LP(0,T; X)
such that the norms of Ny are bounded, where operators N are defined by

(Ngv)(t, ) = [Ny (t, . )](2), v € LP(0,T; Xg).

IT. Let Ay : LP(0,T;Xy) — L9(0,T;X},) be (nonlinear) operators such
that if
U € LP(O,T;Xk) and ||uk||Lp(07T;Xk)

is bounded, then || Ak (uk)||za(0,7;x;) is bounded (k € N).

ITI. The operators Ay satisfy the following coercivity condition: wy €
€ L?(0,T; X)) and

o Ar(ue), ul .

li . = impl li
Pl k]| 2o 0,700,y = 00 Py P [l ]l

([Ag(ug), v] denotes the value of the functional Ag(ug) at v € LP(0,T; X})).

IV. There exists an operator A : LP(0,T;X) — L%(0,T; X’) such that if
ug € LP(0,T, Xi), (Nyug) — u weakly in LP(0,T; X) to some u € LP(0,T; X},)
such that for the distributional derivatives of functions uy € LP(0,T; X)) we
duk

— are bounded and
dt

d
have % € L9(0,T; X},), the norms

L9(0,T5X])
lim sup[Ay (ur), ur — Mi(pru)] <0,

then
Ag (ug) — A(u) weakly in L(0,T; X"),

where the ”extensions” Ay, (ug) are defined by

[Zk (uk),u} = [Ax(up), My(orv)], v e LP(0,T;X).
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V. The functionals hy € L(0,T, W;"(Q)") are such that for their exten-
sions defined by

(i v] = e, My, v e 10,75 X)

(fzk) — h in the norm of L%(0,T; X') with some h € L1(0,T; X’).
Theorem 1. Assume I-V. If u, € LP(0,T; Xi) satisfy

duy, duy, /
1.1 —+ A =h — e L90,T; X
( ) dt + k(uk) k> dt € (07 ) k)v
uk(O) = 0,

then there exist a subsequence (uy,) of (ug) and w € LP(0,T;X) such that
(Nk,ug,) — u weakly in LP(0,T; X) and u satisfies

du du
o — S e . x!
(1.2) 7 + A(u) = h, i € L0, T; X'),
u(0) = 0.

Remark 1. Since X is continuously and densely imbedded into L?({2)
thus X, C L3(Q) C X}, and so

d
we € L0, 15Xy, 2 € LU0, T5 X))

imply u € C(0,T; L?(Q)), consequently u(0) is well defined (see e.g. [3]).

Remark 2. Existence theorems on problem (1.1) with monotone type
operators Ay can be found e.g. in [1].

Remark 3. Clearly, if the solution of (1.2) is unique then also (Nguy)
tends weakly to w in LP(0,T; X).

The proof of Theorem 1. By III the norms ||ug|z»(0,1,x,) are bounded.
Because for the solutions of (1.1) we have

[d;kv “k} + [Ak(ur), uk] = [l wr],
where
{d;;k, wf} O/T<d;:“(t, ), uk(t, )>dt ;O/Ti@k(t,.), ug(t,.))dt =
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[\:J\)—l

T

d 1
/df Dy ug(t 7.))L2(Qk)dt = §(uk(T7.), Uk;(T,.))LZ(Qk) >0
0

((w, v) denotes the value of the functional w € X" at v € X, (w,v)12(q) denotes
the scalar product of functions w,v € L*(Q2), see e.g. [3]). Thus

[Ak (u), u]
(o7

< |lh&llLao,1:x7)

where the right hand side is bounded. Consequently, III implies that
||Uk||Lp(o,T;Xk) are bounded.

Therefore (Njuy) is a bounded sequence in LP(0,T; X). By assumption
IT the sequence (Ajug) is bounded in L7(0,T; X}) and so by the definition of

Ax (uk), (Zlk (ug)) is a bounded sequence in L%(0,T; X'). Since LP(0,T;X)
and L?(0,T; X') are reflexive Banach spaces, thus there exist a subsequence
(ug,), w € LP(0,T; X) and a € L1(0,T; X’) such that

(1.3) (Nk,u,) = u  weakly in  LP(0,T; X)
and
(1.4) (Ax, (ug,)) — a weakly in  L9(0,T; X).

First we show that by (1.3), (1.4), V we obtain from (1.1)

du du
1. — = — e LY, T; X'
(1.5) dt+a h, dte (0,T7; X"),
u(0) = 0.

Let v € LP(0,T; X)NC*(0, T; L?(2)) be an arbitrary fixed function with v(T) =
= 0. Then from (1.1) we obtain

[dukl

o M ()| + A ). M (91)] = s M)

i.e. by the definition of Ay (ur) and by using the definition [zk, vl =
= [hk, Mi(prv)] we have

(16) e G| + G )01 = G
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Clearly,

d dv dv
dt(Mkl(<pkz )):| = |:ukz’ My, (@klﬁ)] = |:Nkluk'l’ ‘szdt:| =

T

dv
/ (Nklukl y Pk dt( )) dt.
0 L2(Q)

Uk

(1.7)

It is easy to show that

dv  dv 9 o
Prigy gy 0 the norm of L*(0,T; L*(Q))
and by (1.3)
(Ngug,) — v weakly in L?(0,T; L*(9)).
Consequently,

T
l]ifg |:Nkzukl’ Pk, dt:| /( )LQ(Q) dt.
0

d
Denote the last term by (u, V) . It is easy to show that
dt ) r2(0.1:22(0)
Jim ||y~ e =0,
La(0,T;X")
thus, by V,
lim (hi, v] = [h,v].

Consequently, by (1.4), (1.6) one obtaines as k — oo

d
(1.8) - (u ”) +[a,v] = [h, ).
dt ) p20,miL2(2))

Since the functions v € C*(0,T;L?(2)) with v(0) = v(T) = 0 are dense in
d
L?(0,T; X), thus we obtain that for the distributional derivative d—? of u
du

du
q ' —
(1.9) o €LY0,T;X") and — +a=h.
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Further, applying (1.8) to functions v € C*(0,T; L3(Q)) with v(T') = 0 we get

[Cf;:’ ”} + (w(0),v(0) r2(0) + [a,v] = [h, V],

thus by (1.9) we obtain
(u(0),(0))2(0) = 0, hence u(0) =0,

i.e. we have shown (1.5).

Now we prove that a = A(u). By IV it is sufficient to show the inequality

(1.10) lim sup [Ay, (ug,), ug, — M, (or,u)] < 0.

l—o00
By (1.1) we have

duki
dt

y Uk — Mkz(cpkzu) + [Akz (ukl)’ Uk, — Mkl (Saklu)] =

(1.11) = [Py, ur, — M, (o, 0)] -
For the right hand side

[hku Uk — Mkz(wklu)] = [hkz’ Mkl (Nkzukz) - Mkz((pkzu)} =

(1.12) = [}Alk“ Ny, ug, — @klu} —0
holds since
zliglo ”ilkl - hHLq(O,T;X') =0 and (Nk,ukl - kalu) —0
weakly in LP(0,T; X)) because of (1.3) and
Jim lor,u — ul| Lo (o,7;x) = O.
Further, for the first term in the left of (1.11)

dukl
dt

y Uk — Mkl (‘szu) =
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du d(M, U dM U
[ d:l - ( kl(gfkl ))’ Uk, _Mkz(wkzu)] + [ kzész )7 Uk, _Mkz(QOkzu)

[\D\)—‘

T

d
/ Sk (8) = M (pr0) (1), s (1) = M (o1, 0)(0) 20, i+
0

du
+ |:Mkz <<pkzdt> y Uy, — Mkl(@kzu):| =

= 5 (s, (T) = M (k) (T), s, (T) ~ M (p10)(T)) +

du du
+ |:‘Pkl E7 Nk‘l ukl - @klu] Z |:g0k‘l Ea Nkl ukl - Sokz 'U/:| )
where the last term tends to 0 since

d d
(pk,ld—l; — d—qtt in the norm of L9(0,T; X’) and

Ny, up, —or,u— 0 weakly in LP(0,T; X).

Hence

d
lim inf %, ug, — My, (oru)| >0,

l—o00 d

thus (1.11), (1.12) imply (1.10). So we have shown that a = A(u), thus by
(1.5) the proof of Theorem 1 is complete.

From the above proof it easily follows a modification of Theorem 1:
Theorem 2. Assume I, IV, V. If uy, € LP(0,T; Xy) satisfy (1.1), further,

(Niug) — u weakly in LP(0,T; X) and (zk (ug)) — z weakly in L9(0,T; X")
with some z € L1(0,T; X"), then u satisfies (1.2).

2. Applications

It will be formulated several special cases when the conditions of Theorem
1 are satisfied.

Clearly, the assumption I is satisfied, e.g. if
a) X = pO(Q)7 X = W;TO(QIC);
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b) 9 is bounded, ), = QNBy, X = W;"(Q2) and Xy = W) (Q) or X}, =
={v e W) : D|s, =0 for |[y| < m — 1}, where D7v[s, denotes the
trace of D7y on the sphere S, = {x € R" : |z| = k}.

c) 0 € C™ is bounded, Qx = QN By, X = WH(Q), X = {v €
€ W () : DVvlpa =0 for |y| <m —1}.

The following special operators Ay, satisfy assumptions II-IV.

A) Let N and M be the number of multiindices g satisfying |3] < m resp.
|B] < m — 1. The vectors £ € R™ will also be written in the form & = (n, (),

where 7 € RM consists of those coordinates &5 for which || < m — 1 and ¢
consists of coordinates &g with |G| = m.

Assume that

(2.1) The functions f¥ : QxRN — R, f, : Qr x RY — R satisfy the
Carathéodory conditions, i.e. they are measurable in (¢, x) for each fixed
¢ € RY and continuous in ¢ for almost all (t,x) € Q% resp. Q7.

(2.2) |fEt, 2, 8)| < er]é]P7t + ki(t,z) for ae. (t,z) € Qh, all ¢ e RN ke N
with some ¢; > 0, k1 € LY(Q7).

Z [ff(twanﬂ) - f(ij(t,xﬂ],(/)} (ga - Eéx) >0,
(2.3) lal=m

if ¢(#¢ forae. (t,z) €@k, all (n,¢), (n,¢)eRY.

(2.4) > FE 2,8 = cal€P — kot )

la|<m

for a.e. (t,z) € Q%, all ¢ € RN, k € N with some ¢y > 0, ko € LY(Q7).

(2.5) fE(t,z,&) — fa(t,x,&) (as k — oo) uniformly in £ € G for any bounded
G € RN and a.e. (t,z) € Qr.

Let

T
[Bi(u),v] = Z/ /fgj((t,m,u,...,ngu,...)Dgudm dt,

la|<m ©

u,v € LP(0,T; Xy),
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T

[B(u),v] = Z / /fa(t,;v,u7...,Dfu7...)Dgydx dt,
)

la]<m
u,v € LP(0,T; X).
Theorem 3. Assume (2.1)-(2.5). Then operators A, = By, A = B
satisfy II-1V.
Proof. Conditions II, IIT directly follow from (2.1), (2.2), (2.4).
In order to prove IV assume that uy € LP(0,T; Xi),

duk

(Npug) — u weakly in LP(0,T; X), o € L9(0,T; X},),
(20 the norms ’duk are bounded
dt || Lago,r:x1)
and
(2.7) limsup By (uk), ur — Mg(pru)] < 0.

Since for arbitrary fixed ko the sequence (uy) is bounded in LP(0, T W (),

d
(:;tk) is bounded in L9(0, T; W (Q%,)"), and Q, C R" is a bounded domain,

thus there is a subsequence of (uy) which is convergent in LP(0, T; W}~ (Q,))
(see e.g. [3]), so we can choose a subsequence (uy) for which

(2.8) DY (My,ug,) — DJu a.e. in Qr if |y] <m —1.

Since
Ji [ M (oru) = ull Lo o, 1w (4)) = 0

and || Bi(uk)llLa(o, 7w (9,)) is bounded, thus from (2.7) follows

T
(2.9) limsup Z / /ff;(t,:c,uk,...,Dfuk,...)(Dg‘uk —DZu)| <0.

la|<m x

Define functions py by
> [fgf(t,x,uk, oy DBuy) — fR(t, 2, u, .., DPu, )] (Duy, — D),
|| <m

Pk = (tvx) € Q’%v

0, (t,z) € Qr \ QF.
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Then (2.9), (2.2) and (2.6) imply
limsup/pk <0.
Qr
By using arguments of Lemma 9 of [6], based on the work [2] of F.E.Browder,
we obtain that there exist subsequences (ux,) and (pg,) of (uy) resp. (px) such
that
(2.10) lim(pg,) =0 a.e.in Qr

and for |0| =m

(2.11) sup ’Dgukl (t,x)’ < 4oo forae. (t,z)€Qr.
!

From (2.5), (2.8), (2.10), (2.11) it follows

. 5
111210 Z [fj/ (t,x,ukl,..,Dfukl,..) — fh (t,x,u,..,D;’u,...,Dxukl,..)} X
|a]=m

(2.12) x(Dgu,, — Dfu) =0

T

a.e. in Qr, where |y| <m —1, |§] = m (see e.g. [2], [6]).
Finally, by (2.3), (2.11), (2.12) one obtains

Dg(Nklukl) — Du a.e. in Qr.

Thus (2.5), (2.8) and Vitali’s theorem imply that

~

B, (u,) — B(u) weakly in L9(0,T;X").

l

By virtue of II B (ug) is bounded in L9(0,T;X’), thus from the above
argument it follows that

Br (ux) — B(u) weakly in L9(0,T;X),
i.e. we have shown IV.
B) Assume that operators Cy, : LP(0,T; X)) — L(0,T; X)) satisfy II, i.e.
(2.13) If [Jug|[r(0,7;x,) is bounded then [|Cy(ug)|| Le(0,,x7) is bounded (k € N).
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There is a number p with 1 < p < p such that

214)  [[Ce), V| < eall vl mnyt @3 v € LPOTiXy), keN

with some constants c3, c3.

There exist positive numbers 4, r such that

(2.15) if HukHLp(O’T;Xk) < ¢4 then |[C’k(uk), Z/H SCZ HVHLP(O}T;W/;"_‘S(QT)) with
some constant ¢; (depending on cy).
Finally, there exists C': LP(0,T; X) — L%(0,T; X') such that
du

(2.16) if (Ngyuy) — u weakly in LP(0,T; X) ditk is bounded in L7(0, T'; X},) then

~

(Ck (ug)) — C(u) weakly in L9(0,T; X").
Theorem 4. Let operators By, B be defined in A) and assume (2.13)-
(2.16). Then operators Ay = By + C, A= B+ C satisfy II-IV.

Proof. Conditions II, IIT easily follow from (2.1), (2.2), (2.4) and
(2.13), (2.14). Further, assume that (Npup) — w weakly in LP(0,T;X),

d
’ Tk is bounded and

dt || Lago,rix1)
(2.17) lim sup[Ay (ur), ur, — Mg(pru)] < 0.
Then

||ukl - Mkl (@klu)||Lp(o7T;W;”*5(QT)) —0

for a subsequence (see e.g. [3]), hence by (2.15)

(2.18) lim [Ck (ukl)7 Uy, — Mkl (‘Pkl u)] =0

l—o00 l

and by (2.16)

~

(2.19) (Cr, (ug)) — C(u) weakly in  L9(0,T; X').
(2.17), (2.18) imply

lifnsup [Bkl (ukl ), Uy, — Mlcl (Spkl u)] <0.
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Thus, from Theorem 3 we obtain that

B, (u,)— B(u) weakly in L%0,T;X’),
whence by (2.19) we find

Akz( kz)_)A( u) weakly in L9(0,7T; X").

Since AT;C (ug) is bounded in L4(0,T; X’), thus we have also

~

Ag (ug) — A(u) weakly in  L9(0,T; X").

FEzxzamples
1. Let operators C} be defined by

T

[Ck(u), v] = Z / /gﬁ(t, Z, Uy ...,D]u,.. )DSvdx| dt+

|

Iorl<

[a|<m—17

r

t

/ / (t, 1, z,u(r,x),.., DIu(t,z),..) Dov(t,z)dx | dr p dt,
0

r

where |y| < m — 1, the functions g¥, hE satisfy the Carathéodory conditions
and

lgh(t,mim)| < lnlP~" + ks(t, ), |hE(t 72, m)| < cynlP~" + ks(t, x)

with some constant ¢ and k3 € LY(Q%);
finally

glocz(tvxan) - ga(taxan)7 hg(taﬂ%ﬂ) - hfx(t77—7x7n)

as k — oo uniformly in n € G for any bounded G C RM and a.e. (t,) resp.
(t,7,2). (Such functional differentional operators have been considered in [9].)

Then it is easy to show that operators Cj, satisfy (2.13)-(2.15) with 6 =1
and by using Vitali’s theorem we find (2.16) with C' defined by

Z / /ga tyx,u,...,Dlu,...)Divdz| dt+

laj<m—17
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t

T
Z / / / (t, 1, z,u(r,x),.., DIu(t,z),..)Divdx | dr ; dt.
al<m—17

r

2. Assume that m = 1 and the boundary of €, 9 is bounded and
continuously differentiable. Let operators C}, be defined by

(2.20) (Ch (), 1] =
O/T / (t, @, uvdoy | di+ O/T 0/ é WE(t 7, @, u(r, @)t @) doy | dr b dt,

where the functions ¢g*, h* satisfy the Carathéodory conditions and

(221) [g"(t.z, ) < i~ +ka(toz), [R5 7 2,m)| < nlP~ + ka(t, 2)
with some constant ¢4 and k4 € L9((0,T") x 09); further

(2.22) g (t,z,n) — g(t,z,n), hEt, 1,2,m) = h(t,T,2,7)

as k — oo uniformly in n € G for any bounded G € R and a.e. (¢,x) resp.
(t7 T7 m)'

We shall show that these operators Cj, satisfy (2.13), (2.16) with C' defined
by

[C(u),v] =
O/T / (t,z,u)vdo, dt+0/T O/t gh(t,T,x,u(T,x))y(t,x)d% dr S dt.

The solutions of problems (1.1), (1.2) with Ay, = By +Cj, A = B+C (operators
By, B are defined in A), m = 1) are weak solutions of second order nonlinear
parabolic equations satisfying certain third boundary condition with delay. The
existence of solutions of problems (1.1) follows e.g. from [1].

In order to prove (2.13)-(2.16) apply Holder’s inequality, assumption (2.21)

and the boundedness of the trace operator W) =°(Q,) — L;(BQ) with p=
= (p — 1)g < p, sufficiently small § > 0 and sufficiently great r > 0:

(2.23) /g (t,x,u)vdoy| + /t / (t, 7,2, u(r, z))v(t,z)doy | dr| <

P2
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1/p
< /[cﬁl|u(t,m)|p_1+k4(t,x)]qdam : /\u(t,x)\pdam +
@iY)
T 1/q 1/p
+/ /[cﬁl|u(7,x)\p’1+k4(7,:c)]qdax dr - /|1/(t,x)|pdom <
0 o0 I

< lllult, My, + sl -5 q,)+

+d /llu Mo dr + ¢ | It -0,

Thus by Holder’s inequality one obtains

|[Cr(w), ]| <
T (p—1)/p T 1/p
/ lut, Yy s / Wit Mlr-sydt ¢+
0 0
(p=1)/p T 1/p
R N AR et 4 I gty
0 0

which implies (2.13)-(2.15).

d
If (Npuy) — w weakly in LP(0,T; X) and % is bounded in L(0,7T; X},),

then for any 6 > 0 there is a subsequence of (uy) which is convergent in
LP(0,T; W3~%(2,)) and consequently (choosing sufficiently small § > 0) also in
LP(0,T; LP(02)). Thus we can choose a subsequence (u, ) for which (u,, ) — u

a.e. on (0,7) x 9Q. By using (2.22), Vitali’s theorem and estimations similar
0 (2.23) (considering measurable subsets of 0} instead of 0Q2) we find

~

(C,, (u,,)) = C(u) weakly in L(0,T;X"),

whence we obtain (2.16).
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C) Theorem 1 can be applied to nonlinear parabolic equations with third
boundary condition on Sy = {z € R" : |z| = k} when 09 is bounded. Let the
operator Dy, be defined by

T
(2.24) [Dg(u),v] = Z / /gfy(t, Z,uy. .., Dlu,...)DSvdo, | dt,

la]<m—17 A

where |y| < m — 1, the functions g* satisfy the Carathéodory conditions,
(2'25) |g§(t,l’,’l7)| < c§3|77|p_1 +k3‘5k (tax)

for a.e. (t,x) with some k3 € L9(0,T;W;(Q)) (ks|s, denotes the trace of
x — k3(t,x) on Sk which is defined for a.e. t); further

(2:26) > ekt - ghtam)| (€€ = 0.

la|<m—1

Theorem 5. Let operators By, B be defined in A) and Dy by (2.24)-
(2.26). Then operators Ay = By + Dy, A = B satisfy II-1V.

Proof. By using the transformation

/ glPdo, = / lg(ky) PRP Y do,
Sk S1

and the continuity of the trace operator W, (B \ Byjz) — LP(S1) it is not
difficult to show the inequality

(2.27) / lgPdo < const - [|glliy1 5,5, )
Sk

for any g € W; (B \ By/2), where the constant is not depending on k.
Thus by (2.24), (2.25) and Holder’s inequality we obtain

[Pk (u), V]| <

1
P

T T
é / /|(..7D;’u7..)|”da$+/|k53|daw dt / /|Dgy|pd(jz il
0 S 0

k k

Q=
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hence by using (2.27) we find

Dk (), V]| < [ehllull 2oty 7oxyy + ) IVl oo 7sx0)

which implies II.
Further, in virtue of (2.26)

[D(u) — Dy (0), u] >0,
thus by Holder’s inequality, (2.25), (2.27)
[Dr(u),u] = =|[Dk(0),u]| = —cgllullzro,:x,)-

Consequently, A, = By + Dy, satisfy III.
In order to show IV assume that uy € LP(0,T; Xy), (Nyug) — u weakly

in LP(0,T; X) such that dur are bounded and
La(0,T;X})

(2.28) lim sup[Ay (uk), we — Mi(pru)] <O0.

First we show that

(2.29) lim inf[ Dy (ug), ur — My (oru)] > 0.

Assumption (2.26) implies

(2.30) [Dr(ur) — Di(My(pru)), ur — My (pru)] >0,

further,

(2.31) [Di (M (pru)), up — My (oru)] — 0

for a subsequence because My (pru) = 0 on Sk and so by Holder’s inequality
and (2.25), (2.27)

I[Dr (M (oru)), up — Mi(oru)]] = |[De(Mr(pru)), ug]| <

< Ikl Lago, 7w B\ By o)) 1k || Lo 0,7530)

where ||ug||Lr(0,7;x,) are bounded and there is a subsequence (k;) such that

jhj}o ksl Laco,rsw (Brs\ By 2)) =0
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since ks € L4(0,T; W} (Q)) and 99 is bounded. From (2.30), (2.31) we obtain

(2.29) for a subsequence. By using the above argument one easily gets (2.29)
also for the original sequence.

Inequalities (2.28), (2.29) imply
lim sup[Bg (ux), ur — My (pru)] < 0.

Since operators By, B satisfy IV, thus

~

By (ug) — B(u) weakly in  L9(0,T; X").

Clearly, ﬁk (ux) = 0 and so

~ ~

Ax (ur) = By (ug) + Dy, (ug) — B(u) weakly in L9(0,T; X'),

i.e. we have shown that Ay = By + Dy and A = B satisfy IV.

D) Now we formulate sufficient conditions for IV.
Assume that we have operators

(2.32) Ap: LP(0,T; Xg) — LO(0, T W (%))

(i.e. operators defined in IT are such that for any u; € X the linear
continuous functional Ay (uy) on LP(0,T; X}) has a linear continuous extension
to LP(0,T; W (%))

Then we may define

[Ar(ur), 2] = [Ax(ur), Mgz, z € LP(0,T; X)

and Ay (u) € L9(0,T; X").

Further, assume that there exists a hemicontinuous operator

A: LP(0,T;X)— L90,T;X’') such that for each u € LP(0,T;X)

(239 Tim | Ay (Mi(40)) — A(w) g0,y = 0.
(Hemicontinuity of A means that for any fixed u, v, w € LP(0,T; X)

Jim (A=), w] = [A(u),u].
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(See e.g. [3].)

Finally, for any R > 0 there is a continuous function gg : [0,400) —
[0,400) such that

(2.34) im 220 _ o ana

p—0 p

ug, vg € LP(0, 75 Xx), |ukllrorx,) < R, lvkllrorx,) < R imply

(235 [Anur) = Ax), we =) = —gr (Ilk = el om0

with some fixed » > 0.

Theorem 6. Assume II and (2.32)-(2.55). Then operators Ay, A satisfy
V.

Proof. Suppose that ug, € LP(0,T; Xy),

d

(2.36) (Npug) — u weakly in LP(0,T; X), ‘ Wk are bounded
dt |l Lago.rix))

and

(2.37) tim supl A (ue), s — Mi(ppu)] < 0.

By II it is sufficient to show that if /Tk (ux) tends to some z weakly in
L9(0,T; X'), then z = A(u).

First we show that
(2.38) lim([Ay (ug), ur, — My (pru)] = 0.
According to (2.35)

[Ag(ur) — Ap (M (pru)), up — My (pru)]

>
(2.39)
> —gr (||Uk - Mk(@ku)||Lp(o,T;w;L*1(Qr))) :

By (2.36) there is a subsequence such that

Jim = M, (@4, @) oo w1 () = 0
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thus (2.34) implies

(2.40) Tim gr (llu, = M, (00l ) = O
Further,

[Ar (M (o)), ue — Mi(orw)] = [Ap(Mi(oru)), Nyue — gpu] =

(2.41) )
= [Ap(My(pru)) — A(u), Nyuy —@ru] + [A(u), Nyup —@ru] — 0

because of (2.33), (2.36). From (2.37), (2.39)-(2.41) one gets

lim [Akl (ukl )7 Uy, — Mkl (<pkl u)] = 0.

l—o0

By using the above argument it is easy to show that the same holds also for
the original sequence, i.e. one has (2.38).

Now consider an arbitrary w € LP(0,T; X), by (2.35) we obtain
[Ak(ur) — Ap(My(prw)), ue — My(prw)]

>
(2.42)
> —gr (HUk - Mk(%cw)||Lp(0,T;W,;"*1(QT))) :

For the left hand side of this inequality we have

(2.43) [Ag(ur), wr — My (pru)] + [Ax(ur), Mp(oru) — My(orw)]—

—[Ak (M (prw)), g — My (prw)] = [Ar(ur), wp— M ()] +[Ag (ur), u—w]—
—[AF (M (prw)), Nyur — opw] = [z, u—w] — [A(w), u—w]
by (2.33), (2.36), (2.38) because

~

Ay (ug) — 2z weakly in  L9(0,T; X").

(2.36) and the continuity of gr imply that the limit of the right hand side in
(2.42) equals

—9R (||u - wHLp(o,T;Wg"”(QT)))

for a subsequence. Thus (2.42), (2.43) imply

(2.44) 2 — A(w), u—w] > —gg (||u — wll oo w1 (w) .
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Applying (2.44) to w = v — A\v with an arbitrary v € LP(0,T; X), A > 0 we
find

[z — Alu—Av), v] = _XgR()‘”VHLP(O’T;W;”’l(Q,‘)))’
whence by (2.34) and the hemicontinuity of A we obtain as A — +0
[z — A(u), v] > 0.

Consequently, z = A(u) which completes the proof of Theorem 6.
Example. Define operators Ay by

Z/ /f (t,2,u,..., D%, .. )Dvdz| di+

la]<m 0 .

+ Z/ /gatxu ,Du,..)DSvdx | di+

la]<m

T (¢
+ Z / / / (t,ryz,u(r,x), ..., Dlu(r,x),...)Dyv(t,x)dx | dr p dt
[a]<m

r

for u,v C LP(0,T; Xy) where |3] < m and in the last two terms |a| + |y| <
< 2m — 1; the functions f¥, g hE satisfy the Carathéodory conditions and
the following inequalities: there exists p > 2 such that

(2.45) |f§(t,x,§)| < c1\§|p71 + k1(t,x) with some ki € LY(Qr);
(2.46) IRt €) — it 2, E))(6a — &) = ol — €
la|<m

with some constant co > 0 and there exists a number p with 1 < p < p such
that

|g§(t,$,§)| < C3‘§|p71 + kB(tax)7 |hlg‘(t77'7x,£)| < C3|§|p71 + kB(tvx)ﬂ
where ks € LY(Qr) and

oh k
€,

9

1,6 < el + ka(t ),

@rxeﬁs@mv2+muw»



340 L. Simon

where k4 € LP/P=2(Qr) (in the case p = 2, ks € L>®(Qr)). Finally, assume
that for a.e. (¢,z), each £

fEt 2,8 — fat,2,8), gE(t,2,€) — galt,2,€), RE(t,T,2,6) = ha(t, T, 2,8).

Then operators Ay, satisfy II-1V if operator A is defined by f,, ga, ha similarly
to Ak

The conditions II, III easily follow from our assumptions by using argu-
ments of Example 1 of B). The condition IV follows from Theorem 6 by Young’s
and Holder’s inequalities (see [11]).

Remark 4. In the special case g¥ = 0, h® = 0 the assumption (2.46)
implies that the solution of problem (1.2) is unique and for the solution uy of
(1.1) we have

JimJu — M (orw)l| e (0,7:x,) = 0.
Since by (2.46)
[Ak(ur) — Ae(Mi(pru)), ux — Mi(prw)] = cyllue — My ()7, 0 7.x,)

with some constant ¢§ > 0 and (2.38), (2.41) imply the left hand side of this
inequality converges to 0.
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