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ON PERTURBATIONS OF
INITIAL–BOUNDARY VALUE PROBLEMS

FOR NONLINEAR PARABOLIC EQUATIONS

L. Simon (Budapest, Hungary)

Dedicated to Professor J. Balázs on his 75-th birthday

This paper is devoted to certain nonlinear parabolic equations in un-
bounded domains of the space variable. Consider e.g. the problem

Dtu +
∑

|α|≤m

(−1)|α|Dα
x

[
fα(t, x, u, . . . , Dβ

xu, . . .)
]

= g in QT = (0, T )× Ω,

u(0, x) = 0, x ∈ Ω,

Dγ
xu(t, x) = 0, t ∈ [0, T ], x ∈ ∂Ω, |γ| ≤ m− 1,

where Ω ⊂ Rn is an unbounded domain.

There will be formulated conditions such that the weak solution of this
problem can be obtained as the limit (as k → ∞) of weak solutions uk of
problems

Dtuk +
∑

|α|≤m

(−1)|α|Dα
x

[
fk

α(t, x, uk, .., Dβ
xuk, ..)

]
= gk in Qk

T = (0, T )× Ωk,

uk(0, x) = 0 in Ωk,

Dγ
xuk(t, x) = 0, t ∈ [0, T ], x ∈ ∂Ωk, |γ| ≤ m− 1,

where Ωk ⊂ Ω is a bounded domain such that Bk ∩ Ω ⊂ Ωk, Bk = {x ∈
∈ Rn : |x| < k}.

Similar results have been proved e.g. in [4]-[8] for nonlinear elliptic
equations.

Supported by the Hungarian National Foundation for Scientific Research
under grant OTKA T4385.
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In §1 we shall prove a rather general perturbation theorem on nonlinear
evolution equations with pseudo-monotone type operators. In §2 it will be
formulated several applications of this theorem.

1. The general perturbation theorem

Let Ω ⊂ Rn be a (possibly unbounded) domain and Ωk ⊂ Ω be bounded
domains with the cone property (see [10]) such that Ωk ⊃ Ω∩Bk for sufficiently
large k ∈ N. Let p ≥ 2 and m a positive integer. Denote by Wm

p (Ω) the usual
Sobolev space of real valued functions u whose distributional derivatives of
order ≤ m belong to Lp(Ω). The norm on Wm

p (Ω) is defined by

‖u‖W m
p (Ω) =





∑

|α|≤m

∫

Ω

|Dαu|p




1/p

,

where α = (α1, . . . , αn) is a multiindex, Dα = Dα1
1 . . . Dαn

n , Dj =
∂

∂xj
. The

expression Wm
p,0(Ω) will denote the closure in ‖·‖W m

p (Ω) of C∞0 (Ω), the infinitely
differentiable functions with compact support contained in Ω.

Let X be a closed linear subspace of Wm
p (Ω), by Lp(0, T ; X) will be

denoted the Banach space of the set of measurable functions u : (0, T ) → X
such that |u|p is integrable. The dual space of Lp(0, T ;X) is Lq(0, T ;X ′) where
1/p + 1/q = 1 and X ′ is the dual space of X (see e.g. [3]).

Let ϕ ∈ C∞0 (Rn) be a fixed function with the properties

ϕ(x) = 1 if |x| ≤ 1/2, ϕ(x) = 0 if |x| ≥ 1,

and define ϕk by

ϕk(x) = ϕ(x/k)), x ∈ Rn, k ∈ N.

Further, let Xk be a closed linear subspace of Wm
p (Ωk) and define the restriction

operator Mk by Mkw = w|Ωk
, w ∈ X.

Assume that

I. For any w ∈ X Mk(ϕkw) ∈ Xk.
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Then for any u ∈ Lp(0, T ;X) we have Mk(ϕku) ∈ Lp(0, T ;Xk), where the
operator Mk is defined by

(Mkν)(t, x) = [Mkν(t, .)](x), ν ∈ Lp(0, T ;X).

Further, assume that there exist linear continuous (extension) operators
Nk : Xk → X such that Nkw|Ωk

= w a.e. and the norms of Nk are bounded
(k ∈ N). Then we have linear continuous operators

Nk : Lp(0, T ; Xk) → Lp(0, T ; X)

such that the norms of Nk are bounded, where operators Nk are defined by

(Nkν)(t, x) = [Nkν(t, .)](x), ν ∈ Lp(0, T ; Xk).

II. Let Ak : Lp(0, T ;Xk) → Lq(0, T ;X ′
k) be (nonlinear) operators such

that if
uk ∈ Lp(0, T ; Xk) and ‖uk‖Lp(0,T ;Xk)

is bounded, then ‖Ak(uk)‖Lq(0,T ;X′
k
) is bounded (k ∈ N).

III. The operators Ak satisfy the following coercivity condition: uk ∈
∈ Lp(0, T ; Xk) and

lim
k→∞

‖uk‖Lp(0,T ;Xk) = ∞ imply lim
k→∞

[Ak(uk), uk]
‖uk‖ = +∞

([Ak(uk), ν] denotes the value of the functional Ak(uk) at ν ∈ Lp(0, T ;Xk)).

IV. There exists an operator A : Lp(0, T ; X) → Lq(0, T ;X ′) such that if
uk ∈ Lp(0, T,Xk), (Nkuk) → u weakly in Lp(0, T ;X) to some u ∈ Lp(0, T ; Xk)
such that for the distributional derivatives of functions uk ∈ Lp(0, T ;Xk) we

have
duk

dt
∈ Lq(0, T ; X ′

k), the norms
∥∥∥∥

duk

dt

∥∥∥∥
Lq(0,T ;X′

k
)

are bounded and

lim sup[Ak(uk), uk −Mk(ϕku)] ≤ 0,

then ∼
Ak (uk) → A(u) weakly in Lq(0, T ; X ′),

where the ”extensions”
∼
Ak (uk) are defined by

[∼
Ak (uk), ν

]
= [Ak(uk), Mk(ϕkν)], ν ∈ Lp(0, T ;X).
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V. The functionals hk ∈ Lq(0, T,Wm
p (Ωk)′) are such that for their exten-

sions defined by
[
ĥk, ν

]
= [hk,Mkν], ν ∈ Lp(0, T ;X)

(ĥk) → h in the norm of Lq(0, T ;X ′) with some h ∈ Lq(0, T ;X ′).

Theorem 1. Assume I-V. If uk ∈ Lp(0, T ; Xk) satisfy

(1.1)
duk

dt
+ Ak(uk) = hk,

duk

dt
∈ Lq(0, T ;X ′

k),

uk(0) = 0,

then there exist a subsequence (ukl
) of (uk) and u ∈ Lp(0, T ; X) such that

(Nkl
ukl

) → u weakly in Lp(0, T ; X) and u satisfies

(1.2)
du

dt
+ A(u) = h,

du

dt
∈ Lq(0, T ;X ′),

u(0) = 0.

Remark 1. Since Xk is continuously and densely imbedded into L2(Ω)
thus Xk ⊂ L2(Ω) ⊂ X ′

k and so

uk ∈ Lp(0, T ; Xk),
duk

dt
∈ Lq(0, T ; X ′

k)

imply u ∈ C(0, T ; L2(Ω)), consequently u(0) is well defined (see e.g. [3]).

Remark 2. Existence theorems on problem (1.1) with monotone type
operators Ak can be found e.g. in [1].

Remark 3. Clearly, if the solution of (1.2) is unique then also (Nkuk)
tends weakly to u in Lp(0, T ;X).

The proof of Theorem 1. By III the norms ‖uk‖Lp(0,T ;Xk) are bounded.
Because for the solutions of (1.1) we have

[
duk

dt
, uk

]
+ [Ak(uk), uk] = [hk, uk],

where

[
duk

dt
, uk

]
=

T∫

0

〈
duk

dt
(t, .), uk(t, .)

〉
dt =

1
2

T∫

0

d

dt
〈uk(t, .), uk(t, .)〉dt =
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=
1
2

T∫

0

d

dt
(uk(t, .), uk(t, .))L2(Ωk)dt =

1
2
(uk(T, .), uk(T, .))L2(Ωk) ≥ 0

(〈w, ν〉 denotes the value of the functional w ∈ X ′ at ν ∈ X, (w, ν)L2(Ω) denotes
the scalar product of functions w, ν ∈ L2(Ω), see e.g. [3]). Thus

[Ak(uk), uk]
‖uk‖ ≤ [hk, uk]

‖uk‖ ≤ ‖ĥk‖Lq(0,T ;X′),

where the right hand side is bounded. Consequently, III implies that
‖uk‖Lp(0,T ;Xk) are bounded.

Therefore (Nkuk) is a bounded sequence in Lp(0, T ;X). By assumption
II the sequence (Akuk) is bounded in Lq(0, T ;X ′

k) and so by the definition of
∼
Ak (uk), (

∼
Ak (uk)) is a bounded sequence in Lq(0, T ; X ′). Since Lp(0, T ; X)

and Lq(0, T ; X ′) are reflexive Banach spaces, thus there exist a subsequence
(ukl

), u ∈ Lp(0, T ;X) and a ∈ Lq(0, T ; X ′) such that

(1.3) (Nkl
ukl

) → u weakly in Lp(0, T ; X)

and

(1.4) (
∼
Akl

(ukl
)) → a weakly in Lq(0, T ; X ′).

First we show that by (1.3), (1.4), V we obtain from (1.1)

(1.5)
du

dt
+ a = h,

du

dt
∈ Lq(0, T ; X ′),

u(0) = 0.

Let ν ∈ Lp(0, T ; X)∩C1(0, T ; L2(Ω)) be an arbitrary fixed function with ν(T ) =
= 0. Then from (1.1) we obtain

[
dukl

dt
, Mkl

(ϕkl
ν)

]
+ [Akl

(ukl
), Mkl

(ϕkl
ν)] = [hkl

, Mkl
(ϕkl

ν)],

i.e. by the definition of
∼
Ak (uk) and by using the definition [

∼
hk, ν] =

= [hk,Mk(ϕkν)] we have

(1.6)
[
−ukl

,
d

dt
(Mkl

(ϕkl
ν))

]
+ [

∼
Akl

(ukl
), ν] = [

∼
hkl

, ν].
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Clearly,

(1.7)

[
ukl

,
d

dt
(Mkl

(ϕkl
ν))

]
=

[
ukl

, Mkl

(
ϕkl

dν

dt

)]
=

[
Nkl

ukl
, ϕkl

dν

dt

]
=

=

T∫

0

(
Nkl

ukl
(t), ϕkl

dν

dt
(t)

)

L2(Ω)

dt.

It is easy to show that

ϕkl

dν

dt
→ dν

dt
in the norm of L2(0, T ; L2(Ω))

and by (1.3)
(Nkl

ukl
) → u weakly in L2(0, T ;L2(Ω)).

Consequently,

lim
l→∞

[
Nkl

ukl
, ϕkl

dν

dt

]
=

T∫

0

(
u(t),

dν

dt
(t)

)

L2(Ω)

dt.

Denote the last term by
(

u,
dν

dt

)

L2(0,T ;L2(Ω))

. It is easy to show that

lim
k→∞

∥∥∥ĥk−
∼
hk

∥∥∥
Lq(0,T ;X′)

= 0,

thus, by V,

lim
k→∞

[
∼
hk, ν] = [h, ν].

Consequently, by (1.4), (1.6) one obtaines as k →∞

(1.8) −
(

u,
dν

dt

)

L2(0,T ;L2(Ω))

+ [a, ν] = [h, ν].

Since the functions ν ∈ C1(0, T ;L2(Ω)) with ν(0) = ν(T ) = 0 are dense in

Lp(0, T ;X), thus we obtain that for the distributional derivative
du

dt
of u

(1.9)
du

dt
∈ Lq(0, T ; X ′) and

du

dt
+ a = h.
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Further, applying (1.8) to functions ν ∈ C1(0, T ; L2(Ω)) with ν(T ) = 0 we get

[
du

dt
, ν

]
+ (u(0), ν(0))L2(Ω) + [a, ν] = [h, ν],

thus by (1.9) we obtain

(u(0), ν(0))L2(Ω) = 0, hence u(0) = 0,

i.e. we have shown (1.5).

Now we prove that a = A(u). By IV it is sufficient to show the inequality

(1.10) lim sup
l→∞

[Akl
(ukl

), ukl
−Mkl

(ϕkl
u)] ≤ 0.

By (1.1) we have

[
dukl

dt
, ukl

−Mkl
(ϕkl

u)
]

+ [Akl
(ukl

), ukl
−Mkl

(ϕkl
u)] =

(1.11) = [hkl
, ukl

−Mkl
(ϕkl

u)] .

For the right hand side

[hkl
, ukl

−Mkl
(ϕkl

u)] = [hkl
, Mkl

(Nkl
ukl

)−Mkl
(ϕkl

u)] =

(1.12) =
[
ĥkl

, Nkl
ukl

− ϕkl
u
]
→ 0

holds since

lim
l→∞

‖ĥkl
− h‖Lq(0,T ;X′) = 0 and (Nkl

ukl
− ϕkl

u) → 0

weakly in Lp(0, T ; X) because of (1.3) and

lim
l→∞

‖ϕkl
u− u‖Lp(0,T ;X) = 0.

Further, for the first term in the left of (1.11)

[
dukl

dt
, ukl

−Mkl
(ϕkl

u)
]

=
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[
dukl

dt
− d(Mkl

(ϕkl
u))

dt
, ukl

−Mkl
(ϕkl

u)
]

+
[
dMkl

(ϕkl
u)

dt
, ukl

−Mkl
(ϕkl

u)
]

=
1
2

T∫

0

d

dt
(ukl

(t)−Mkl
(ϕkl

u)(t), ukl
(t)−Mkl

(ϕkl
u)(t))L2(Ωkl

)dt+

+
[
Mkl

(
ϕkl

du

dt

)
, u

kl
−Mkl

(ϕkl
u)

]
=

=
1
2
(ukl

(T )−Mkl
(ϕkl

u)(T ), ukl
(T )−Mkl

(ϕkl
u)(T ))+

+
[
ϕkl

du

dt
, Nkl

ukl
− ϕkl

u

]
≥

[
ϕkl

du

dt
, Nkl

ukl
− ϕkl

u

]
,

where the last term tends to 0 since

ϕkl

du

dt
→ du

dt
in the norm of Lq(0, T ; X ′) and

Nkl
ukl

− ϕkl
u → 0 weakly in Lp(0, T ; X).

Hence

lim inf
l→∞

[
dukl

dt
, ukl

−Mkl
(ϕkl

u)
]
≥ 0,

thus (1.11), (1.12) imply (1.10). So we have shown that a = A(u), thus by
(1.5) the proof of Theorem 1 is complete.

From the above proof it easily follows a modification of Theorem 1:

Theorem 2. Assume I, IV, V. If uk ∈ Lp(0, T ; Xk) satisfy (1.1), further,

(Nkuk) → u weakly in Lp(0, T ; X) and (
∼
Ak (uk)) → z weakly in Lq(0, T ;X ′)

with some z ∈ Lq(0, T ; X ′), then u satisfies (1.2).

2. Applications

It will be formulated several special cases when the conditions of Theorem
1 are satisfied.

Clearly, the assumption I is satisfied, e.g. if

a) X = Wm
p,0(Ω), Xk = Wm

p,0(Ωk);
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b) ∂Ω is bounded, Ωk = Ω∩Bk, X = Wm
p (Ω) and Xk = Wm

p (Ωk) or Xk =
= {ν ∈ Wm

p (Ωk) : Dγν|Sk
= 0 for |γ| ≤ m − 1}, where Dγν|Sk

denotes the
trace of Dγν on the sphere Sk = {x ∈ Rn : |x| = k}.

c) ∂Ω ∈ Cm is bounded, Ωk = Ω ∩ Bk, X = Wm
p,0(Ω), Xk = {ν ∈

∈ Wm
p (Ωk) : Dγν|∂Ω = 0 for |γ| ≤ m− 1}.
The following special operators Ak satisfy assumptions II-IV.

A) Let N and M be the number of multiindices β satisfying |β| ≤ m resp.
|β| ≤ m − 1. The vectors ξ ∈ Rn will also be written in the form ξ = (η, ζ),
where η ∈ RM consists of those coordinates ξβ for which |β| ≤ m − 1 and ζ
consists of coordinates ξβ with |β| = m.

Assume that
(2.1) The functions fk

α : Qk
T × RN → R, fα : QT × RN → R satisfy the

Carathéodory conditions, i.e. they are measurable in (t, x) for each fixed
ξ ∈ RN and continuous in ξ for almost all (t, x) ∈ Qk

T resp. QT .

(2.2) |fk
α(t, x, ξ)| ≤ c1|ξ|p−1 + k1(t, x) for a.e. (t, x) ∈ Qk

T , all ξ ∈ RN , k ∈ N
with some c1 > 0, k1 ∈ Lq(QT ).

(2.3)

∑

|α|=m

[
fk

α(t, x, η, ς)− fk
α(t, x, η, ς ′)

]
(ξα − ξ′α) > 0,

if ζ 6= ζ ′ for a.e. (t, x) ∈ Qk
T , all (η, ζ), (η, ζ ′) ∈ RN .

(2.4)
∑

|α|≤m

fk
α(t, x, ξ)ξα ≥ c2|ξ|p − k2(t, x)

for a.e. (t, x) ∈ Qk
T , all ξ ∈ RN , k ∈ N with some c2 > 0, k2 ∈ L1(QT ).

(2.5) fk
α(t, x, ξ) → fα(t, x, ξ) (as k → ∞) uniformly in ξ ∈ G for any bounded

G ∈ RN and a.e. (t, x) ∈ QT .

Let

[Bk(u), ν] =
∑

|α|≤m

T∫

0




∫

Ωk

fk
α((t, x, u, . . . ,Dβ

xu, . . .)Dα
x νdx


 dt,

u, ν ∈ Lp(0, T ; Xk),
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[B(u), ν] =
∑

|α|≤m

T∫

0




∫

Ω

fα(t, x, u, . . . , Dβ
xu, . . .)Dα

x νdx


 dt,

u, ν ∈ Lp(0, T ; X).

Theorem 3. Assume (2.1)-(2.5). Then operators Ak = Bk, A = B
satisfy II-IV.

Proof. Conditions II, III directly follow from (2.1), (2.2), (2.4).
In order to prove IV assume that uk ∈ Lp(0, T ; Xk),

(2.6)
(Nkuk) → u weakly in Lp(0, T ; X),

duk

dt
∈ Lq(0, T ; X ′

k),

the norms
∥∥∥∥

duk

dt

∥∥∥∥
Lq(0,T ;X′

k
)

are bounded

and

(2.7) lim sup[Bk(uk), uk −Mk(ϕku)] ≤ 0.

Since for arbitrary fixed k0 the sequence (uk) is bounded in Lp(0, T ; Wm
p (Ωk0)),(

duk

dt

)
is bounded in Lq(0, T ;Wm

p (Ωk0)
′), and Ωk0 ⊂ Rn is a bounded domain,

thus there is a subsequence of (uk) which is convergent in Lp(0, T ; Wm−1
p (Ωk0))

(see e.g. [3]), so we can choose a subsequence (uk) for which

(2.8) Dγ
x(Mkl

ukl
) → Dγ

xu a.e. in QT if |γ| ≤ m− 1.

Since
lim

k→∞
‖Mk(ϕku)− u‖Lp(0,T ;W k

p (Ωk)) = 0

and ‖Bk(uk)‖Lq(0,T ;W k
p (Ωk)′) is bounded, thus from (2.7) follows

(2.9) lim sup
∑

|α|≤m

T∫

0




∫

Ωk

fk
α(t, x, uk, . . . , Dβ

xuk, . . .)(Dα
x uk −Dα

x u)


 ≤ 0.

Define functions pk by

pk =





∑
|α|≤m

[
fk

α(t, x, uk, .., Dβ
xuk)− fk

α(t, x, u, ..,Dβ
xu, ..)

]
(Dα

x uk −Dα
x u),

(t, x) ∈ Qk
T ,

0, (t, x) ∈ QT \Qk
T .
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Then (2.9), (2.2) and (2.6) imply

lim sup
∫

QT

pk ≤ 0.

By using arguments of Lemma 9 of [6], based on the work [2] of F.E.Browder,
we obtain that there exist subsequences (ukl

) and (pkl
) of (uk) resp. (pk) such

that

(2.10) lim(pkl
) = 0 a.e. in QT

and for |δ| = m

(2.11) sup
l

∣∣∣Dδu
kl

(t, x)
∣∣∣ < +∞ for a.e. (t, x) ∈ QT .

From (2.5), (2.8), (2.10), (2.11) it follows

lim
l→∞

∑

|α|=m

[
f

kl
α (t, x, u

kl
, .., Dβ

xu
kl

, ..)− f
kl
α (t, x, u, ..,Dγ

xu, . . . ,Dδ
xu

kl
, ..)

]
×

(2.12) ×(Dα
x u

kl
−Dα

x u) = 0

a.e. in QT , where |γ| ≤ m− 1, |δ| = m (see e.g. [2], [6]).

Finally, by (2.3), (2.11), (2.12) one obtains

Dδ
x(N

kl
u

kl
) → Dδ

xu a.e. in QT .

Thus (2.5), (2.8) and Vitali’s theorem imply that

∼
Bkl

(u
kl

) → B(u) weakly in Lq(0, T ; X ′).

By virtue of II
∼
Bk (uk) is bounded in Lq(0, T ;X ′), thus from the above

argument it follows that

∼
Bk (uk) → B(u) weakly in Lq(0, T ;X ′),

i.e. we have shown IV.

B) Assume that operators Ck : Lp(0, T ; Xk) → Lq(0, T ;X ′
k) satisfy II, i.e.

(2.13) If ‖uk‖Lp(0,T ;Xk) is bounded then ‖Ck(uk)‖Lq(0,T ;X′
k
) is bounded (k ∈ N).



330 L. Simon

There is a number ρ with 1 < ρ < p such that

(2.14) |[Ck(ν), ν]| ≤ c3‖ν‖ρ
Lp(0,T ;Xk)+

∼
c3, ν ∈ Lp(0, T ; Xk), k ∈ N

with some constants c3,
∼
c3.

There exist positive numbers δ, r such that

(2.15) if ‖uk‖Lp(0,T ;Xk) ≤ c4 then |[Ck(uk), ν]| ≤∼
c4 ‖ν‖Lp(0,T ;W m−δ

ρ (Ωr)) with

some constant
∼
c4 (depending on c4).

Finally, there exists C : Lp(0, T ;X) → Lq(0, T ; X ′) such that

(2.16) if (Nkuk) → u weakly in Lp(0, T ; X),
duk

dt
is bounded in Lq(0, T ; X ′

k) then

(
∼
Ck (uk)) → C(u) weakly in Lq(0, T ; X ′).

Theorem 4. Let operators Bk, B be defined in A) and assume (2.13)-
(2.16). Then operators Ak = Bk + Ck, A = B + C satisfy II-IV.

Proof. Conditions II, III easily follow from (2.1), (2.2), (2.4) and
(2.13), (2.14). Further, assume that (Nkuk) → u weakly in Lp(0, T ; X),∥∥∥∥

duk

dt

∥∥∥∥
Lq(0,T ;X′

k
)

is bounded and

(2.17) lim sup[Ak(uk), uk −Mk(ϕku)] ≤ 0.

Then
‖u

kl
−M

kl
(ϕ

kl
u)‖Lp(0,T ;W m−δ

ρ (Ωr)) → 0

for a subsequence (see e.g. [3]), hence by (2.15)

(2.18) lim
l→∞

[C
kl

(u
kl

), u
kl
−M

kl
(ϕ

kl
u)] = 0

and by (2.16)

(2.19) (
∼
Ck (uk)) → C(u) weakly in Lq(0, T ; X ′).

(2.17), (2.18) imply

lim sup
l→∞

[B
kl

(u
kl

), u
kl
−M

kl
(ϕ

kl
u)] ≤ 0.
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Thus, from Theorem 3 we obtain that

∼
B

kl
(u

kl
) → B(u) weakly in Lq(0, T ; X ′),

whence by (2.19) we find

A
kl

(u
kl

) → A(u) weakly in Lq(0, T ; X ′).

Since
∼
Ak (uk) is bounded in Lq(0, T ;X ′), thus we have also

∼
Ak (uk) → A(u) weakly in Lq(0, T ; X ′).

Examples

1. Let operators Ck be defined by

[Ck(u), ν] =
∑

|α|≤m−1

T∫

0




∫

Ωr

gk
α(t, x, u, . . . , Dγ

xu, . . .)Dα
x νdx


 dt+

+
∑

|α|≤m−1

T∫

0





t∫

0




∫

Ωr

hk
α(t, τ, x, u(τ, x), .., Dγ

xu(τ, x), ..)Dα
x ν(t, x)dx


 dτ



 dt,

where |γ| ≤ m − 1, the functions gk
α, hk

α satisfy the Carathéodory conditions
and

|gk
α(t, x; η)| ≤ c′3|η|ρ−1 + k3(t, x), |hk

α(t, τ, x, η)| ≤ c′3|η|ρ−1 + k3(t, x)

with some constant c′3 and k3 ∈ Lq(Qr
T );

finally

gk
α(t, x, η) → gα(t, x, η), hk

α(t, τ, x, η) → hα(t, τ, x, η)

as k → ∞ uniformly in η ∈ G for any bounded G ⊂ RM and a.e. (t, x) resp.
(t, τ, x). (Such functional differentional operators have been considered in [9].)

Then it is easy to show that operators Ck satisfy (2.13)-(2.15) with δ = 1
and by using Vitali’s theorem we find (2.16) with C defined by

[C(u), ν] =
∑

|α|≤m−1

T∫

0




∫

Ωr

gα(t, x, u, . . . ,Dγ
xu, . . .)Dα

x νdx


 dt+
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+
∑

|α|≤m−1

T∫

0





t∫

0




∫

Ωr

hα(t, τ, x, u(τ, x), .., Dγ
xu(τ, x), ..)Dα

x νdx


 dτ



 dt.

2. Assume that m = 1 and the boundary of Ω, ∂Ω is bounded and
continuously differentiable. Let operators Ck be defined by

(2.20) [Ck(u), ν] =

=

T∫

0




∫

∂Ω

gk(t, x, u)νdσx


 dt+

T∫

0





t∫

0




∫

∂Ω

hk(t, τ, x, u(τ, x))ν(t, x)dσx


 dτ



 dt,

where the functions gk, hk satisfy the Carathéodory conditions and

(2.21) |gk(t, x, η)| ≤ c′4|η|ρ−1 + k4(t, x), |hk(t, τ, x, η)| ≤ c′4|η|ρ−1 + k4(t, x)

with some constant c′4 and k4 ∈ Lq((0, T )× ∂Ω); further

(2.22) gk(t, x, η) → g(t, x, η), hk(t, τ, x, η) → h(t, τ, x, η)

as k → ∞ uniformly in η ∈ G for any bounded G ∈ R and a.e. (t, x) resp.
(t, τ, x).

We shall show that these operators Ck satisfy (2.13), (2.16) with C defined
by

[C(u), ν] =

=

T∫

0




∫

∂Ω

g(t, x, u)νdσx


 dt +

T∫

0





t∫

0




∫

∂Ω

h(t, τ, x, u(τ, x))ν(t, x)dσx


 dτ



 dt.

The solutions of problems (1.1), (1.2) with Ak = Bk+Ck, A = B+C (operators
Bk, B are defined in A), m = 1) are weak solutions of second order nonlinear
parabolic equations satisfying certain third boundary condition with delay. The
existence of solutions of problems (1.1) follows e.g. from [1].

In order to prove (2.13)-(2.16) apply Hölder’s inequality, assumption (2.21)

and the boundedness of the trace operator W 1−δ
p (Ωr) → L

∼
p(∂Ω) with

∼
p=

= (ρ− 1)q < p, sufficiently small δ > 0 and sufficiently great r > 0:

(2.23)

∣∣∣∣∣∣

∫

∂Ω

gk(t, x, u)νdσx

∣∣∣∣∣∣
+

∣∣∣∣∣∣

t∫

0




∫

∂Ω

hk(t, τ, x, u(τ, x))ν(t, x)dσx


 dτ

∣∣∣∣∣∣
≤
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≤




∫

∂Ω

[
c′4|u(t, x)|ρ−1 + k4(t, x)

]q
dσx





1/q

·




∫

∂Ω

|ν(t, x)|pdσx





1/p

+

+

T∫

0





∫

∂Ω

[
c′4|u(τ, x)|ρ−1 + k4(τ, x)

]q
dσx





1/q

dτ ·




∫

∂Ω

|ν(t, x)|pdσx





1/p

≤

≤ c′5[‖u(t, .)‖ρ−1
W 1

p (Ωk) + c′6]‖ν(t, .)‖W 1−δ
p (Ωr)+

+ c′5




T∫

0

‖u(τ, .)‖ρ−1
W 1

p (Ωk)dτ + c′6


 ‖ν(t, .)‖W 1−δ

p (Ωr).

Thus by Hölder’s inequality one obtains

|[Ck(u), ν]| ≤

≤ c′7








T∫

0

‖u(t, .)‖p
W 1

p (Ωk)dt




(ρ−1)/p

+ c′8




·




T∫

0

‖ν(t, .)‖W 1−δ
p (Ωr)dt





1/p

+

+ c′7








T∫

0

‖u(τ, .)‖p
W 1

p (Ωk)dτ




(ρ−1)/p

+ c′8




·




T∫

0

‖ν(t, .)‖W 1−δ
p (Ωr)dt





1/p

,

which implies (2.13)-(2.15).

If (Nkuk) → u weakly in Lp(0, T ;X) and
duk

dt
is bounded in Lq(0, T ; X ′

k),

then for any δ > 0 there is a subsequence of (uk) which is convergent in
Lp(0, T ;W 1−δ

p (Ωr)) and consequently (choosing sufficiently small δ > 0) also in
Lp(0, T ;Lp(∂Ω)). Thus we can choose a subsequence (u

kl
) for which (u

kl
) → u

a.e. on (0, T )× ∂Ω. By using (2.22), Vitali’s theorem and estimations similar
to (2.23) (considering measurable subsets of ∂Ω instead of ∂Ω) we find

(
∼

C
kl

(u
kl

)) → C(u) weakly in Lq(0, T ; X ′),

whence we obtain (2.16).
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C) Theorem 1 can be applied to nonlinear parabolic equations with third
boundary condition on Sk = {x ∈ Rn : |x| = k} when ∂Ω is bounded. Let the
operator Dk be defined by

(2.24) [Dk(u), ν] =
∑

|α|≤m−1

T∫

0




∫

Sk

gk
α(t, x, u, . . . , Dγ

xu, . . .)Dα
x νdσx


 dt,

where |γ| ≤ m− 1, the functions gk
α satisfy the Carathéodory conditions,

(2.25) |gk
α(t, x, η)| ≤ c′3|η|p−1 + k3|Sk

(t, x)

for a.e. (t, x) with some k3 ∈ Lq(0, T ; W 1
q (Ω)) (k3|Sk

denotes the trace of
x → k3(t, x) on Sk which is defined for a.e. t); further

(2.26)
∑

|α|≤m−1

[
gk

α(t, x, η)− gk
α(t, x, η′)

]
(ξα − ξ′α) ≥ 0.

Theorem 5. Let operators Bk, B be defined in A) and Dk by (2.24)-
(2.26). Then operators Ak = Bk + Dk, A = B satisfy II-IV.

Proof. By using the transformation

∫

Sk

|g|pdσx =
∫

S1

|g(ky)|pkp−1dσy

and the continuity of the trace operator W 1
p (B1 \ B1/2) → Lp(S1) it is not

difficult to show the inequality

(2.27)
∫

Sk

|g|pdσ ≤ const · ‖g‖p
W 1

p (Bk\Bk/2)

for any g ∈ W 1
p (Bk \Bk/2), where the constant is not depending on k.

Thus by (2.24), (2.25) and Hölder’s inequality we obtain

|[Dk(u), ν]| ≤

c′3





T∫

0




∫

Sk

|(.., Dγ
xu, ..)|pdσx +

∫

Sk

|k3|dσx


 dt





1
q





T∫

0




∫

Sk

|Dα
x ν|pdσx


 dt





1
p

,
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hence by using (2.27) we find

|[Dk(u), ν]| ≤ [
c′4‖u‖p/q

Lp(0,T ;Xk) + c′5
]‖ν‖Lp(0,T ;Xk),

which implies II.

Further, in virtue of (2.26)

[Dk(u)−Dk(0), u] ≥ 0,

thus by Hölder’s inequality, (2.25), (2.27)

[Dk(u), u] ≥ −|[Dk(0), u]| ≥ −c′6‖u‖Lp(0,T ;Xk).

Consequently, Ak = Bk + Dk satisfy III.

In order to show IV assume that uk ∈ Lp(0, T ; Xk), (Nkuk) → u weakly

in Lp(0, T ;X) such that
∥∥∥∥

duk

dt

∥∥∥∥
Lq(0,T ;X′

k
)

are bounded and

(2.28) lim sup[Ak(uk), uk −Mk(ϕku)] ≤ 0.

First we show that

(2.29) lim inf[Dk(uk), uk −Mk(ϕku)] ≥ 0.

Assumption (2.26) implies

(2.30) [Dk(uk)−Dk(Mk(ϕku)), uk −Mk(ϕku)] ≥ 0,

further,

(2.31) [Dk(Mk(ϕku)), uk −Mk(ϕku)] → 0

for a subsequence because Mk(ϕku) = 0 on Sk and so by Hölder’s inequality
and (2.25), (2.27)

|[Dk(Mk(ϕku)), uk −Mk(ϕku)]| = |[Dk(Mk(ϕku)), uk]| ≤

≤ c′7‖k3‖Lq(0,T ;W 1
q (Bk\Bk/2))‖uk‖Lp(0,T ;Xk),

where ‖uk‖Lp(0,T ;Xk) are bounded and there is a subsequence (kj) such that

lim
j→∞

‖k3‖Lq(0,T ;W 1
q (Bkj\Bkj/2)) = 0
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since k3 ∈ Lq(0, T ; W 1
q (Ω)) and ∂Ω is bounded. From (2.30), (2.31) we obtain

(2.29) for a subsequence. By using the above argument one easily gets (2.29)
also for the original sequence.

Inequalities (2.28), (2.29) imply

lim sup[Bk(uk), uk −Mk(ϕku)] ≤ 0.

Since operators Bk, B satisfy IV, thus

∼
Bk (uk) → B(u) weakly in Lq(0, T ;X ′).

Clearly,
∼

Dk (uk) = 0 and so

∼
Ak (uk) =

∼
Bk (uk) +

∼
Dk (uk) → B(u) weakly in Lq(0, T ;X ′),

i.e. we have shown that Ak = Bk + Dk and A = B satisfy IV.

D) Now we formulate sufficient conditions for IV.
Assume that we have operators

(2.32) Ak : Lp(0, T ; Xk) → Lq(0, T ;Wm
p (Ωk)′)

(i.e. operators defined in II are such that for any uk ∈ Xk the linear
continuous functional Ak(uk) on Lp(0, T ; Xk) has a linear continuous extension
to Lp(0, T ; Wm

p (Ωk)).

Then we may define

[Âk(uk), z] = [Ak(uk), Mkz], z ∈ Lp(0, T ; X)

and Âk(uk) ∈ Lq(0, T ; X ′).

Further, assume that there exists a hemicontinuous operator

A : Lp(0, T ;X) → Lq(0, T ; X ′) such that for each u ∈ Lp(0, T ; X)

(2.33) lim
k→∞

‖Âk(Mk(ϕku))−A(u)‖Lq(0,T ;X′) = 0.

(Hemicontinuity of A means that for any fixed u, ν, w ∈ Lp(0, T ; X)

lim
λ→+0

[A(u− λν), w] = [A(u), w].
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(See e.g. [3].)

Finally, for any R > 0 there is a continuous function gR : [0,+∞) →
[0,+∞) such that

(2.34) lim
ρ→0

gR(ρ)
ρ

= 0 and

uk, νk ∈ Lp(0, T ;Xk), ‖uk‖Lp(0,T ;Xk) ≤ R, ‖νk‖Lp(0,T ;Xk) ≤ R imply

(2.35) [Ak(uk)−Ak(νk), uk − νk] ≥ −gR

(
‖uk − νk‖Lp(0,T ;W m−1

p (Ωr))

)

with some fixed r > 0.

Theorem 6. Assume II and (2.32)-(2.35). Then operators Ak, A satisfy
IV.

Proof. Suppose that uk ∈ Lp(0, T ; Xk),

(2.36) (Nkuk) → u weakly in Lp(0, T ;X),
∥∥∥∥

duk

dt

∥∥∥∥
Lq(0,T ;X′

k
)

are bounded

and

(2.37) lim sup[Ak(uk), uk −Mk(ϕku)] ≤ 0.

By II it is sufficient to show that if
∼
Ak (uk) tends to some z weakly in

Lq(0, T ; X ′), then z = A(u).

First we show that

(2.38) lim[Ak(uk), uk −Mk(ϕku)] = 0.

According to (2.35)

(2.39)
[Ak(uk)−Ak(Mk(ϕku)), uk −Mk(ϕku)] ≥
≥ −gR

(
‖uk −Mk(ϕku)‖Lp(0,T ;W m−1

p (Ωr))

)
.

By (2.36) there is a subsequence such that

lim
l→∞

‖u
kl
−M

kl
(ϕ

kl
u)‖Lp(0,T ;W m−1

ρ (Ωr)) = 0,
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thus (2.34) implies

(2.40) lim
l→∞

gR

(
‖u

kl
−M

kl
(ϕ

kl
u)‖Lp(0,T ;W m−1

p (Ωr))

)
= 0.

Further,

(2.41)
[Ak(Mk(ϕku)), uk −Mk(ϕku)] = [Âk(Mk(ϕku)), Nkuk − ϕku] =

= [Âk(Mk(ϕku))−A(u), Nkuk − ϕku] + [A(u), Nkuk − ϕku] → 0

because of (2.33), (2.36). From (2.37), (2.39)-(2.41) one gets

lim
l→∞

[A
kl

(u
kl

), u
kl
−M

kl
(ϕ

kl
u)] = 0.

By using the above argument it is easy to show that the same holds also for
the original sequence, i.e. one has (2.38).

Now consider an arbitrary w ∈ Lp(0, T ;X), by (2.35) we obtain

(2.42)
[Ak(uk)−Ak(Mk(ϕkw)), uk −Mk(ϕkw)] ≥
≥ −gR

(
‖uk −Mk(ϕkw)‖Lp(0,T ;W m−1

ρ (Ωr))

)
.

For the left hand side of this inequality we have

(2.43) [Ak(uk), uk −Mk(ϕku)] + [Ak(uk), Mk(ϕku)−Mk(ϕkw)]−

−[Ak(Mk(ϕkw)), uk−Mk(ϕkw)] = [Ak(uk), uk−Mk(ϕku)]+[
∼
Ak (uk), u−w]−

−[Âk(Mk(ϕkw)), Nkuk − ϕkw] → [z, u− w]− [A(w), u− w]

by (2.33), (2.36), (2.38) because

∼
Ak (uk) → z weakly in Lq(0, T ; X ′).

(2.36) and the continuity of gR imply that the limit of the right hand side in
(2.42) equals

−gR

(
‖u− w‖Lp(0,T ;W m−1

ρ (Ωr))

)

for a subsequence. Thus (2.42), (2.43) imply

(2.44) [z −A(w), u− w] ≥ −gR

(
‖u− w‖Lp(0,T ;W m−1

ρ (Ωr))

)
.
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Applying (2.44) to w = u − λν with an arbitrary ν ∈ Lp(0, T ; X), λ > 0 we
find

[z −A(u− λν), ν] ≥ − 1
λ

gR(λ‖ν‖Lp(0,T ;W m−1
ρ (Ωr))),

whence by (2.34) and the hemicontinuity of A we obtain as λ → +0

[z −A(u), ν] ≥ 0.

Consequently, z = A(u) which completes the proof of Theorem 6.

Example. Define operators Ak by

[Ak(u), ν] =
∑

|α|≤m

T∫

0




∫

Ωk

fk
α(t, x, u, . . . , Dβ

xu, . . .)Dα
x νdx


 dt+

+
∑

|α|≤m

T∫

0




∫

Ωr

gk
α(t, x, u, . . . ,Dγ

xu, . . .)Dα
x νdx


 dt+

+
∑

|α|≤m

T∫

0





t∫

0




∫

Ωr

hα(t, τ, x, u(τ, x), . . . , Dγ
xu(τ, x), . . .)Dα

x ν(t, x)dx


 dτ



 dt

for u, ν ⊂ Lp(0, T ; Xk) where |β| ≤ m and in the last two terms |α| + |γ| ≤
≤ 2m − 1; the functions fk

α, gk
α, hk

α satisfy the Carathéodory conditions and
the following inequalities: there exists p ≥ 2 such that

(2.45) |fk
α(t, x, ξ)| ≤ c1|ξ|p−1 + k1(t, x) with some k1 ∈ Lq(QT );

(2.46)
∑

|α|≤m

[fk
α(t, x, ξ)− fk

α(t, x, ξ′)](ξα − ξ′α) ≥ c2|ξ − ξ′|p

with some constant c2 > 0 and there exists a number ρ with 1 < ρ < p such
that

|gk
α(t, x, ξ)| ≤ c3|ξ|ρ−1 + k3(t, x), |hk

α(t, τ, x, ξ)| ≤ c3|ξ|ρ−1 + k3(t, x),

where k3 ∈ Lq(QT ) and

∣∣∣∣
∂gk

α

∂ξγ
(t, x, ξ)

∣∣∣∣ ≤ c4|ξ|ρ−2 + k4(t, x),
∣∣∣∣
∂hk

α

∂ξγ
(t, τ, x, ξ)

∣∣∣∣ ≤ c4|ξ|ρ−2 + k4(t, x),
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where k4 ∈ Lp/p−2(QT ) (in the case p = 2, k4 ∈ L∞(QT )). Finally, assume
that for a.e. (t, x), each ξ

fk
α(t, x, ξ) → fα(t, x, ξ), gk

α(t, x, ξ) → gα(t, x, ξ), hk
α(t, τ, x, ξ) → hα(t, τ, x, ξ).

Then operators Ak satisfy II-IV if operator A is defined by fα, gα, hα similarly
to Ak.

The conditions II, III easily follow from our assumptions by using argu-
ments of Example 1 of B). The condition IV follows from Theorem 6 by Young’s
and Hölder’s inequalities (see [11]).

Remark 4. In the special case gk
α = 0, hk

α = 0 the assumption (2.46)
implies that the solution of problem (1.2) is unique and for the solution uk of
(1.1) we have

lim
k→∞

‖uk −Mk(ϕku)‖Lp(0,T ;Xk) = 0.

Since by (2.46)

[Ak(uk)−Ak(Mk(ϕku)), uk −Mk(ϕku)] ≥ c′2‖uk −Mk(ϕku)‖p
Lp(0,T ;Xk)

with some constant c′2 > 0 and (2.38), (2.41) imply the left hand side of this
inequality converges to 0.
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