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I. Introduction. The author has introduced the following method of
interpolation. Let be given an arbitrary system of real nodal points

(1) —0 <L <2< <L << Ty < Ty < +00,

which generates the polynomial

n

(2) w(z) = wp(z) = H(.‘L‘—CL‘L-).

k=1

The roots of
n-1
, dw(z .
) == =n [lie -

are interscaled between the roots of wy,(z) and so

—0 < <2} <Ly << xp KB < By < -

(4)

e By < 2h_y < Tp < +00.
He has proved, that if
(5) {wedpoy  and  {yi}il)
are two systems of given real numbers then there exists a polynomial P(z) =
= Pap_1(z) of deg (2n — 1) satisfying the interpolation properties
P(zy) =y (k=1,2,---,n),

(6) ! * /
P(xk):yk (lc:l)?!""n_l)
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and he gave the explicit formula of this polynomial [1].

In order to insure the uniqueness of its polynomial he had introduced an
additional nodal point a # 3 (k = 1,2, --, n) and required one more condition

P(a) =0 for it.

Later many authors have dealt with the above method of interpolation.
S.A.N. Eneduanya investigated that special case when in (2)

T

w,,(a;):—n(n-—l)/ a—1(t)dt = ( 1—.1.) _1(2),

-1

where P,_i(z) is the (n — 1)-th Legendre polynomlal and P,-1(1) = 1 ([2]).
L. Szili has considered the method when wy(z) = Hn(z) is the n- th Hermite
polynomial [3]. In every paper (2] and [3] were introduced additional nodal
points zo with respect to the value P(zy) = yo or 2§ with respect to P'(z§) = yg
in order to insure the uniqueness. For the same reason in [3] was a necessary
restriction on the order n of H,(z), namely n must be an even number. In [4]

the authors considered the case when w, (z) = P,(.a’ﬁ)(:c) the n-th Jacobi poly-
nomial having any pair of indexes a # 3, or if @ = 3 then n is an odd number.
They introduced two additional nodal points zo = +1 and z,4; = —1. It was
rather surprising that in the construction of their fundamental polynomials of
second kind was used only the fact that under the above mentioned restriction

(*#)(1) # P{*P)(~1). This result suggested me that in the original method
in [l] would be uaeful to introduce not only one but two additional nodal points
zg and z,,41 to the system (1) satisfying the inequalities 2o < 2 < zn41 (k =
=1,2,---,n). More precisely we have the following

II. Basic problem. Let be given a finite system of nodal points (1).
Without loosing the generality we may suppose that
(M ~l<zp<ep << <<y <

and let us consider the polynomial

(8) Quyalz) = (1 -2 H (2 —z) = (1 = 29)wa(z)
of order (n + 2), where w,(z) = [ (2 — 2x) is the polynomial of order n. So
k=1
n+1
the roots of Quy2(z) = [] (¢ — xk) and wi () give us the following system of
k=0

nodal points:

9 “l=rg<yy<2]<22< - <2y <2Zh_| < Ty <Zpyp =1



A general lacunary (0;0, 1) interpolation process 293

If there are given two systems

(10) {w)ido=Y and  {yi}}5 =Y’

of arbilrarily chosen real numbers how can we construct an algebraical polyno-

mial P(z) of lowest possible degree for which the interpolation properties
P(zy) = u (k=0,1,2,---,n,n+1),

(11)
Pl(lz)zylL (Ic:l,‘2,~~-,n—l)

are valid.

In order to give an answer firstly we prove two lemmas.

Lemma 1. If we suppose that

wn(+1) #wn(-1)

i our basic problem, then there exists a system {B(x) ’L';ll of polynomaals of

order 2n satisfying the conditions

(1°)  Br(z:) = 0; (k=12,---,n-1,1=0,1,2,--- ,n,n+ 1),

(12) .
(2°) Bi(z})=éj; (k=12,---,n-1;j=1,2,---,n-1),

where 6;; = {(1)' 2 ; “; s the Kronecker symbol.

Proof. We assert that Bj(z) can be given in the form
(13) Bi(z) = wn(2)qi(z),
where gi(z) is a conveniently chosen polynomial of order n that will be

determined by the conditions in (12). Really we can see at once, that from
(13) follows the validity of (1°) if gx(x) satisfies the conditions

(14) q(=1)=0 and  q(+1)=0,

that will be insured later in our proof.

Similarly from (13) we get the conditions (2°) of (12), i.e.

(15) Bi(i;) = “111(1;)(11(1';) = bi;
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I (p) — 1 "“':1(9“') ™/ _
qk(‘l') —wn(-L'Z) [ :{(IZ)(-U _ .L;)] +Ckwn(z) -

[ S .
= mlk(lf) + Crwy (),
where I} (z) is the k-th fundamental Lagrange polynomial of the nodal points
{z; };‘;11 and C} can be any constant, since w;(27) =0 (j = 1,2,---,n - 1)
which was used in (15), too.
From (16) we get the equation

xr

) / (t)dt + C {wn(z) - wa(-1)}

1
(17) q(z) = on(z)

From this last equation follows automatically the first condition gx(—1) = 0
of (14) and so our remainder task to insure the second condition gg(+1) = 0.
For this aim we can determine the value of C} from (17) and (14) by the
substitution r = 1, which yields the equation

(18) C; = Wn(lk)[wn(l l)] /IL(L

Summarizing the equations (13), (17), and (18) we have proved that the
polynomials

(19) Bi(z) =

B wn (1) -

&€ +1
wa(z) wh () wp(2) —wp(-1) wh(t)
= L d d
/ (zp)(t —23) t wn (1) = wa(-1) 4 wi(zp)(t — z3) t:|

satisfy both of the conditions (1°) and (2°) of (12), and so our lemma is proved.

Note. From the obtained formula (19) we get at once the conditions (12)
by simple substitution.

Lemuna 2. If we suppose again that w,(+1) # wn(—1) in our basic
problem, then there ezists a system {Ay(z)}i2; of polynomials of order 2n

satisfying the conditions
(3°) Ar(zn)=6br; (k=0,1,2,---,n,n+1;1=0,1,2,---,n,n+ 1),

(20) C
(4°) "k(w})z(); (k=0,1,2,---,n,n+1, j=1,2,-- - ,n-1),
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Proof. Regarding the different quality of the nodal points {z,}}_, - which
are the roots of w,(z) - and the additional ones (zy = —1 and z,4; = +1) we
give firstly the polynomials A, (x) for the indexes v =1,2,---,n.

We shall see that

=2 W (x) wa(2)

(21) A = T S S e o e @)

(V: 1,2,"',‘!1),

where g,(z) is a conveniently chosen polynomial of order n that will be
determined by help of the conditions (20). Really we can see from (21) that

Au(l'l) = by
(22) .
(v=12---mn; 1=0,12,---,n,n+1)
if g, () satisfies the equation

that will be insured later in the proof.

Since for every index j (= 1,2,---,n = 1) wy(27) = 0 so from (21) we get
at once, that

e L= (@) en(er) wn(27) “ ot e
A”(Ij) - 1- 1:‘2/ W:t(flz)w:z(xu)(x; - l'u) +“"ﬂ(zj )yl/(z]) =0
(24) (v=1,2,--n; j=12,--,n-1)
if
o Lo (E) wnls]) 1
(25) g (2}) = -——% L=

-2l [wi(e,)? (25 —2v)

w=1,2-n j=12--n-1).

In order to insure the last equations we may choose for ¢, (z) any function of
the form

(= 2t)wl(2) + dywh(z)

(1-22) wh(@)]* (& — 20)

(26) gu(x) = + Dywy ()
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where d, and D, may be any real constants.

In order to get a polynomial on the right side of (26) we choose

(1 = z})wn(zy)

"‘):1(""!/)

(27) d, = -

as a constant value. Really substituting this constant into (26) we may require
that '

(28) g (z) =

_u- 2w (@)wn (@) = (1 = 23 )wpi (2, )wy (2) + Dyl (2).
1"'1' [“"n(a‘l')] (z—=y)

Using here the notation R(xz) = (1 — 2?)w!(x), which is a polynomial of order
n, we can write instead of (28) that

v R(z)w,(2,) — R(z,)wh(z) oy
9 = o e P [ (z-2) ] + Duwn(z) =
- 1 o R(I) - R(:B,,)
(1 - 22) [wh(z )P [ (=) < z-z, ) +

+R(a,) (a2 = () “’:'("))] + Do),

r—-z,

and so there is a polynomial of order (n — 1) on the right of (28), which gives
the polynomial

(29) gu(z) =

_ (1 = 2 )wp(twn (2) = (1 = 25 )wp (s )Jwp (t)
- (l - a,,,)[w (z,)] / Zy dt+

t_.

+D, {wn(z) —wn(-1)}

of order n. This form of g, (z) insures the first equation of (23), and the second
one ¢,(+1) = 0 will be also true, if we write from (29) for the free parameter
the value

+1
1

30 D, = d
(30) [‘”n(l)_‘*’n(_l)](l—l [ n(:c")] / (®)dt,
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where ¥(t) denotes the integrand in (29).

Comparing the formulae (21), (29) and (30) we get finally that the
polynomials

(1 = z*)wp (@ )wn(2)

(1-22) [wh(@ ) (z - 2,)

(31) Ay(2) =

“’n(z /(1 t*)wp (t)wp (20) = (1 = 12/)“’:11(%)“’:1(t)dt_

—(1—.1,) t—L,,

_n() —wn(=1) T = 2l e) — (= 22ut(@ whe) |

wn(l) = wn(-1) z—2,

of order 2n - according to the equations (22) and (24) - satisfy the condititions
(3°) and (4°) in (20) for the indexes k =1,2,---,n

Secondly we will give the polynomials A¢(z) and An41(z) which have
simpler forms than (31). Really we get that Ap4(z) can be written in the
form

1+ 2 wh(z) wa(z)
2 wh(1) wn(D)

(32) Anji(z) = +wn(z)ynt1(x),

where g,4+1(2) a conveniently chosen polynomial of order n, for which the
requirements

(33) gn.+1(—'l) =0 and yﬂ+1(+1) =0

will be valid similarly to (23).
From (32) and (33) we can see that

(34) Apti(zr) = dngia, 1=0,1,2,---,n,n+1,
and by differentiation of (32) we get that

, . 1+ 27 wi(x x7) wa(z7) Ny .
At 5) = 5000 ) Ten (2] =0

(35) G=L,L2,---,n-1),
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if the polynomial g, 4+1() satisfies the equation

(1 + z)wil ()

2 (Dan(n) T Orrenle)

.(/,’1+1(-"") =

where D4, may be any constant, and so

(36) gn4a(z) =— (1 + )il (2)dt + Dyy1{wn(z) — wa(-1)}.

2wl (1)“'11 1) /

This equation insures automatically that g, 4,(z) is a polynomial of order n,
which satisfies the first condition (33), i.e. gn41(—1) = 0. In order to insure
the second condition ¢, 41(+1) = 0 we have to choose

+1
1 " . —1___
(37) Dn+1 = m (:{(1 + f)Un(I)dl) wn(l) —w,.(—l)'

which follows from (36) by the substitution z = 1.
Comparing the equations (32), (36) and (37) we could see that the
polynomial

14+ 2w, (z)wy(2)
2 wh(Dwa(l)

(38) Angi(z) =
(2) f ( ) ( 1) i
Wnll ' " wnlZ "

of order 2n satisfies the conditions (3°) and (4°) of (20) for k = n + 1.

We can prove quite similarly that

=2 wh(2) walz)
2 Wwi(—-1)wn(-1)

Wn :L) W Wn(l Wn( 1) //
2“)11( l)wn [/(1 (t)dt Wn /(l_x z)d‘t}

is a polynomial of order 2n which satisfies also the conditions (3°) and (4°) of
(20) for the index k£ = 0.

(39) Ao(z) =
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Taking into account the formulae (31), (38) and (39) and the properties
of their polynomials we could give a constructive proof of our Lemma 2.

III. Having our two lemmas we can solve the basic problem by means of

Theorem 1. For any system of nodal points (9) defined by the roots of
Qnt2(x) in (8) and by the roots of w),(z) - supposing the only condition w,(1) #
# wp(—1) - there exists a polynomial P(z) = Pa,(z) of order 2n satisfying the
interpolation properties (11) and it can be wrilten in the canonical form

n+1 n-1
(40) P(z) = Poa(2) = > yeAr(z) + Y vi Be(2),
k=0 k=1

where the polynomials B(z) and Ar(z) are given by the explicit formulae (19),
(31), (38) and (39).

Proof. The theorem is an immediate consequence of the properties
(12) and (20) which had been proved for these polynomials {Ax(z)};; and

{Bi(z)};Z} in our two lemmas.

Theorem 2. The polynomial Pa,(2) in (40) is the unique solution of our
basic problem.

Proof. Let us suppose that there exists another polynomial Q2,(z) of
degree < 2n which satisfies the same conditions (11) with respect to the system
of nodal points (9). From this follows that

(41) Rgn(lf) = P?n(x) - Q?n(r)
is a polynomial of degree < 2n satisfying the conditions

Ran(2r) =0 (k=0,1,2,---,n,n+ 1),

(42) ) . .
an(2p) =0 (k=1,2,---,n-1).

From the first group of the above conditions follows that we can write
(43) Run(z) = [( 1- l'z)wn(l')] Th-2(z)

where T,,_2(z) is a polynomial of order < n —2. By differentiation we get from
(43) the equation

1211(1') = w:,(a:) [(1 - IQ)TH—E(:E)] +w,,(2!) [(1 - IZ)TH—?(I)]’
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and so from the second conditions of (42) follows that

1

(44) Ry (z3) = wal2p) [(1 - _»L'Q)’I“n_g(;z:)]I:r; =0,

(k=1,2,---,n-1),

where we used that w; (¢}) =0 (k= 1,2,---,n—1). Since wxy(2}) # 0, from
the right hand side of the equations (44) we get that

d ° ,
(45) o [(1 = 2*)T,-a(z)] = C - wi(z)

taking into account, that on both sides of (45) is a polynomial of order (n—1),
where C is a constant. By integration of (45) we can conclude that

/[(1 =t Ta_a(t))dt = (1 = 2%)T_2(z) = C{wn(z) — wa(-1)}
-1

and so ﬁnaliy we get from (43) that
Ron(2) = wa(2) [(1 = 2*)T-a(2)] = Cwn(z){wn(z) = wn(-1)}.

If we substitute 2 = 2,47 = 1 into the last equation we find from the first
conditions of (42) the validity for k = n + 1

Ron(zn41) = Ran(+1) = Cwn(1){wan(l) —wa(=1)} =0

and so - since wy, (1) # 0 and w, (1) —wy(—1) # 0 - C must be equal to 0, and
therefore (45) yields

d .
— [(1 = 29T _a(z)] = 0.
= [(1 = 2" Tu-2(@)
At last - using the basic theorem of the elementary analysis - from the above
identity we get
(1- ’.1:2)']1,1_2(1:) = constant,
and it can be true if and only if

(46) Tpoa(z) =0

since (1 — 22) is not constant and T},,_»(z) is a polynomial of degree < n — 2.
Comparing (43) and (46) we get from (41) the identity

P?,n(-'L') = QQ”(I)
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and the theorem is proved.
Corollaries. If R(x) is a polynomial of degree < 2n then

n+1 n-1

(47) R(x) = > R(ze)As(z)+ Y R/(2})Bu(z),

k=0 k=1

i.e. R(z) is identically equal to its interpolation polynomial, where yr = R(zk)
(k=0,1,2,---,n,n+1) and y, = R'(2}) (k=1,2,---,n~1).
Specially if R(z) = | then (47) yields the identity
n+1
(48) Y Ay =1
k=0

for the sum of the polynomials Ay(z) of first kind.
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