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1. Introduction

Weights satisfying the so-called A,-condition introduced by R.Hunt,
B.Muckenhoupt and R.Wheeden [2] play important role in many fields of math-
ematical analysis, e.g. in Fourier analysis, theory of operators, approximation
theory and differential equations (see [1-4]). In order to generalize a Riesz

theorem concerning the trigonometric conjugate operator T f :; H.Helson and
G.Szegd [1] have found that T is bounded in a weighted space L2[2n] if and
only if

(1) v(z) = exp{uy(z)+ U2 (2)},

where u; and ug are 2w-periodic functions, whose sup-norms satisfy ||u;|| < oo
and ||ug|| < m/2. Later it turns out that weights given by (1) coincide with the
weights satisfying the As-condition, a special case of A,-condition (1 < p < o)
introduced by [2]. We remember here the definition of A,-condition. Weights
(in this paper) mean arbitrary functions defined on a finite or infinite interval
(a,b) which are positive and finite a.e. on (a¢,b). Let 1 < p < co. We say that
a weight m(t) satisfies the A,-condition on (a,b) if the inequality

d p-l

d
1 1 L
T c/m(t)(lt T /[m(t)] 7=1dt <M

c

(2)

holds for all finite subintervals (c,d) of (a,b), M is a constant depending only
on p. The class of such weights will be denoted by 4%,(a,b).
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The aim of this paper is to characterize the A,-weights by using some
fundamental quantities of mechanics. Our result shows that the Ap-condition

mv2

has close connection with the fundamental law of mechanics L = —.

2

2. Ap-weights and mechanical systems

All preliminaries on the Hamilton-principle used in the future can be found
for example in [5].

Let m(t) be a weight on (a,b) and let 1 < p < co. Assume that for any
finite subinterval (c, d) of (a,b)

d

(3) /m-#‘n(t)dt < .

c

Let a < tp < b be a given number. Consider the mechanical system

4) {L,q}
given by
t ’ '
G an= [l e e s te),
to
and the Lagrange function
(6) L= L(q,9,t) = | 4 (¢)]Pm(t).

Using the Holder inequality, from (3) we have that the integral on the right-
hand side of (5) is finite.

In order to see that (4) with (5) and (6) is really a mechanical system we
have to show that it satisfies the Hamilton principle, which means in this case
that for any a < t; <ty < b

min
gEAC(t),t2], g(t1)=y(t1). y(t2)=q(tz

123 ty
) / |9 (OF m(t)de = / |2 QP m()dt,
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where AC[t;,ts] denotes the class of all functions absolutely continuous on
[t1,t2]). In other words, the function ¢(t) is a solution of the min-problem given
on the left-hand side of (7). We shall show that ¢(t) is the unique solution of

(7).
Indeed, let ¢y € AC'[t,, 2] be an arbitrary function satisfying g(t1) = g(¢1)
and ¢(t2) = ¢(t2). We prove if g Z ¢, i.e. there exists a t* € (¢1,12) such that

(8) g(t™) #q(t™),

then
(9) lg @)Pm(t) > [ | ()Pm(t)dt.
Jirorme |

As we shall see, from (8) follows the existence of a set E C (¢1,t2) having
Lebesgue-measure |E| > 0 such that

(10) g(t)#4(t) (t€E).

Indeed, suppose that

(11) g (t) =9 (1) for almost all t € (t1,t2).

Then from
t

g(t)z/y(z)dzu (€ [t ta]),

t

q(t) = / G()dz+p (€ [t ta))

t)

with some constants A and y, we have

gty —qt)=r—p  (t€[t1,ta])

Setting ¢ = t; and using the condition g(t;) = ¢(t;) we get A = pu, hence
g(t) = q(2) for all t € [t1,12), which contradicts to (8). We have proved (10).
Now by (5) using the Holder equality (see [7]) we have

ta L

q(t2) —q(ty) = / q (t)m”"(t)m_1/p(t)dt = /nfpl/”u(t)m—l/p(t)dt =

t) t)
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ta 1/p to \ 1/.'"

(12) = /711_7”/”(1)(0 ‘77'1“"’/"’(1)(11 \l
/ )

Ly Ly /

to 1/p ¢ 1/p’
/[(1 ()" m(t)dt (/m'pl/”(t)dt)
t t

t)

We estimate the analogous integral of g. For this purpose let us introduce
h(t) = |9 (1)Im/P(t), k(1) = m ().

From (5) and (10) for some £’ C [t1,12], |E'| > 0, we have

(13) WP(t) # k() (t€E)

Hence by the Holder inequality (the case of strict inequality) we get

t2

(14) attz) — qlt1) = g(t2) — g(er) = [ 9 () <
ts ta ts p /4, 1/p’'
< /|y (t)|dt = /h.(t)/c(t)dt < /h."(t)dz /kP'(t)dt =
ta 1/p’

ta 1/p
= /I g (t)|Pm(t)dt (/m'p’/p(t)dt
i ¢

1

Combining (12) and (14) we have (9).

Remark. When m(t) is continuously differentiable on (a,b) we can prove
(7) by using Euler’s method. If m(t) is not differentiable, then the min-problem
on left side of (7), as we showed above, has also solution, but there is no
Euler’s equation. In this case (4) with (5) and (6) may also be considered as a
mechanical system in the sense of the Hamilton principle.

Now let us turn to the main problem. We want to answer the question:
what does Ap-condition mean in mechanics?
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aj Consider first the simple case when m(t) = mo/2, p = 2, where mq is
a positive constant. Remark that in this case m(t) satisfies the Ay-condition.
Here we use the notation {Ly,qo} instead of {L,¢}. By (5) we have

(15) 4y (t) = constant (:=v)
and

. 2
(16) Lo = Lgo,t) = 2"

The equality (16) states a fundamental law of mechanics.
b) The general case

Put

t2

(17) S(tl,tg) = /L(q,t)dt

t)
Let furthermore
S(ty,t) fort >ty,
(18) S(t) =
S5(t,t;) fort<t.

We introduce the following average quantities

S(t+h) - 5()

Sh(t) = h )
t4h
(19) § mn(t) = % / m(z)dz,
t
L = 2R =gl

(t€(a,b), h>0, h+te€(ab)).

The Ap-weights can be characterized by using the physical quantities (19).
Since the following statement is a generalization of the fundamental law
presented in Part a), it may be called an Ap-law.
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Theorem (A,-law). Assume that m(t) salisfies the condition (3). Let
{L,q} be the mechanical system given by (5) and (6). Then the following
statements are equivalent:

(7) m € Ah,(a.b);

(ii) For anyt € (a,b), h > 0,t+ h € (a,b)

(20) Sa(t) > M~ ma(tyd (1),
Specially, m € A? iff

(21) Su(t) > ma(t)vi(t).

Proof. By (5), (6) and (19)

t+h
(22) S;.(t)_—.% / m~?' 12 (t)dt.
t

Therefore (20) is equivalent to
(23)

| t+h ) t+h | t+h P
- /m“”/”(z)dz >M™ | = [ m(z)dz - /[m(z)]“"/”z‘l/”dz
h h h
t t t

By (12) we get

t+h t+h

(24) /[m(z)]—p'/p’_l/pdz — /[m(z)]—pl/pdz.

t t

This implies that (23) is equivalent to

-1

) t+h 1 t+h L4
-
(E / m(:)dz) (E /[m(z)] = dz) <M,
t

t

which is just the inequality defining A,-conditian. We have proved our theorem.
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