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Abstract. We derive some new pointwise estimates for the error in

simultaneous approximation of a function f ∈ Cq[−1, 1] and its derivatives

by a polynomial of interpolation and its respective derivatives. Our

estimates incorporate the pointwise modulus of continuity and/or pointwise

second modulus of continuity, an improvement in precision over estimates

heretofore known. Our new methods of constructing error estimates are ap-

plicable to interpolation on an arbitrary set of nodes in (−1, 1), augmented

by interpolation of some derivatives of the function at ±1. Application

in particular to interpolation on the zeroes of certain Jacobi polynomials,

similarly augmented, yields error estimates which improve in precision upon

existing results of ourselves and of others.

1. Introduction

To augment the interpolation of a function f ∈ Cq[−1, 1] on some nodes in
(−1, 1) by the interpolation at or near ±1 of some derivatives of f is known to
give better rates of simultaneous convergence of the interpolating polynomial
to the function f and of the derivatives of the interpolating polynomial to the
respective derivatives of f . A tool which has been almost universally used in
investigating such phenomena is a theorem of Gopengauz [3], which we will
state in the next section. This theorem incorporates a pointwise modulus
of continuity in its statement, but the pointwise modulus of continuity has
heretofore been lost or sacrificed in the process of obtaining error estimates for
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simultaneous approximation by interpolation. Here, we obtain error estimates
which retain the pointwise modulus of continuity.

Interpolation on the zeroes of certain Jacobi polynomials permits a
concrete realization of our new methods of estimating error, and we obtain
estimates which in particular improve the results obtained in our own previous
work [4] and in Theorem 3.3 of Mastroianni [7].

2. Preliminaries and notations

Let f ∈ Cq[−1, 1] be given, where q ≥ 0. Then for a fixed r such that
q

2
< r ≤ q +1 we define a polynomial Hn,rf of degree at most n+2r−1 which

interpolates f on nodes x1, . . . , xn such that −1 < xn < . . . < x1 < 1 and
interpolates f (0), . . . , f (r−1) at ±1. The polynomial Hn,rf may be represented
as
(1.1)

Hn,rf(x) =
n∑

j=1

f(xj)

(
1− x2

1− x2
j

)r

lj(x) +
r−1∑

k=0

f (k)(1)h1,k(x) + f (k)(−1)h2,k(x),

where lj(x) =
n∏

s=1, s 6=j

x− xs

xj − xs
, and h1,k, h2,k are certain polynomials of degree

n + 2r − 1.

The approximation properties of Hn,rf will be described in terms of
weighted Lebesgue sums

Ln,s(x) =
n∑

j=1

(
1− x2

1− x2
j

)s/2

|lj(x)|.

We remark that Ln,0 is the ordinary Lebesgue sum of the Lagrange
interpolation on the nodes x1, . . . , xn. If one wishes to approximate a function
in f ∈ Cq[−1, 1] one has of course some flexibility about the choice of r. Clearly,
one cannot choose r greater than q + 1, because one cannot interpolate more
derivatives than those which exist. On the other hand, the most interesting
choices of r for our purposes are also bounded below by

q

2
. For choices of

r smaller than this, one has insufficient data to guarantee good simultaneous
approximation of f (0), . . . , f (q).
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Important for our investigations are some techniques developed in Balázs
and Kilgore [1], where among other things a new proof of the Theorem of
Gopengauz [3] is given:

Theorem. (Gopengauz [3]) Let f ∈ Cq[−1, 1]. Then there exists a
polynomial pn of degree at most n such that for k = 0, . . . , q

(1.2) |f (k)(x)− p(k)
n (x)| ≤ Mq

(√
1− x2

n

)q−k

ω

(
f (q),

√
1− x2

n

)
.

Here ω(f, h) = sup
|x−y|<h

|f(x)− f(y)|.

Also, Yu Xiang-Ming [9] has shown that the theorem of Gopengauz also
holds if the modulus of continuity ω is replaced by the second modulus,

ω2(f, h) = sup
δ<h

|f(x + δ)− 2f(x) + f(x− δ)|.

Dahlhaus [2] has shown that no higher modulus of smoothness than the second
can be used in the theorem of Gopengauz.

More recently, the theorem of Gopengauz has been generalized in another
direction. In Kilgore and Prestin [5], it is shown that:

Theorem. (Kilgore and Prestin [5]) Let Sn,j1,j2 be a set containing points

s0, . . . , sj1 in
[
−1,−1 +

1
n2

]
and points t0, . . . , tj2 in

[
1− 1

n2
, 1

]
, the count in

both cases including any multiplicity. If j1, j2 ≤ q and if f ∈ Cq[−1, 1], then
there is a polynomial Pn which interpolates f on Sn,j1,j2 and satisfies

(1.3) |f (k)(x)−P (k)
n (x)| ≤ K

(√
1− x2

n
+

1
n2

)q−k

ω

(
f (q);

√
1− x2

n
+

1
n2

)

with a constant K independent of n and f . Furthermore, if Pn is any
polynomial interpolating f on Sn,j1,j2 and satisfying (1.3) with any constant
K (whether independent of the other quantities or not), then for 0 ≤ x ≤ 1 and
with an absolute constant η,

|f(x)− Pn(x)| ≤ηK

nj2

(√
1− x2

n
+

1
n2

)q−j2

·

· min
0≤i≤j2

{√
|(x− t0) . . . (x− tj2)|

|x− ti| ω

(
f (q);min

6̀=i

√
|x− t`|

n

)}
.
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A similar inequality involving the points s0, . . . , sj1 is valid for −1 ≤ x ≤ 0.

Remark. In light of this result, all of the pointwise estimates for error
incurred in interpolation which we present here in Theorems 1 through 4 for the
modulus ω will have obvious analogues if interpolation of the function at points

within
1
n2

of the endpoints ±1 is used, instead of interpolation of derivatives

at the points ±1 only.

In what follows, the symbol C whenever used without subscript will denote
a “generic constant” whose value may not necessarily be the same each time it
appears, even if there are two appearances in one line. The quantities on which
C may depend or not depend will be listed explicitly if the context leaves the
situation unclear. Other symbols for constants have a meaning which is defined
at their first appearance.

3. Results

Theorem 1. Let f ∈ Cq[−1, 1]. Then for
q

2
< r ≤ q + 1

(1.4)
|f(x)−Hn,rf(x)| ≤Mq

(√
1− x2

n

)q

ω

(
f (q),

√
1− x2

n

)
·

· (1 + max{2Ln,2r−q−1(x), Ln,2r−q(x)}).

A similar statement holds with ω replaced by ω2. Specifically

(1.5)
|f(x)−Hn,rf(x)| ≤C

(√
1− x2

n

)q

ω2

(
f (q),

√
1− x2

n

)
·

· (1 + max{4Ln,2r−q−2(x), Ln,2r−q(x)}).

Furthermore for the derivatives of Hn,rf we obtain

Theorem 2. Let f ∈ Cq[−1, 1]. Then for
q

2
< r ≤ q + 1 and for

k = 0, . . . , q there is a constant Cq depending only upon q such that

|f (k)(x)−H(k)
n,rf(x)| ≤ Cq

(√
1− x2

n
+

1
n2

)q−k

ω

(
f (q),

√
1− x2

n
+

1
n2

)
·
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·max{‖Ln,2r−q−1(x)‖, ‖Ln,2r−q(x)‖}.
Furthermore, for 0 ≤ k < r we have

|f (k)(x)−H(k)
n,rf(x)| ≤

≤ ee Cq

(√
1− x2

n

)r−k (√
1− x2

n
+

1
n2

)q−r

ω

(
f (q),

√
1− x2

n
+

1
n2

)
·

·max{‖Ln,2r−q−1(x)‖, ‖Ln,2r−q(x)‖}.

In the special case r = q + 1, there is a constant Kq ≤ max{4eeCq, 7Cq + 7}
such that for k = 0, . . . , q we have

|f (k)(x)−H(k)
n,rf(x)| ≤ Kq

(√
1− x2

n

)q−k

ω

(
f (q),

√
1− x2

n

)
·

·max{‖Ln,2r−q−1(x)‖, ‖Ln,2r−q(x)‖}.

As a consequence of these theorems we can obtain pointwise estimates for
the quality of approximation on Jacobi nodes with added interpolation at ±1
which improve on what has been previously known (cf. Kilgore and Prestin [4]
and Mastroianni [7]) by including the pointwise modulus of continuity or the
pointwise modulus of smoothness.

Theorem 3. Let f ∈ Cq[−1, 1] and r be given such that
q

2
< r ≤ q + 1.

Then for 2r − q − 5
2
≤ α, β ≤ 2r − q − 3

2
we can choose the nodes xj as the

zeros of the ordinary Jacobi polynomial Pα,β
n , and we obtain

max{‖Ln,2r−q−1(x)‖, ‖Ln,2r−q(x)‖} ≤ C log n,

whence for these nodes

|f(x)−Hn,rf(x)| ≤ C

(√
1− x2

n

)q

ω

(
f (q),

√
1− x2

n

)
log n,

in which the constant C depends upon q, α, β. Again using the nodes generated
by P

(α,β)
n we obtain

max{‖Ln,2r−q−2(x)‖, ‖Ln,2r−q(x)‖} ≤ C log n
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if and only if α = β = 2r − q − 5
2

so that for the nodes thus determined

|f(x)−Hn,rf(x)| ≤ C

(√
1− x2

n

)q

ω2

(
f (q),

√
1− x2

n

)
log n.

Theorem 4. Let f ∈ Cq[−1, 1] and r = q + 1. Then for q − 1
2
≤ α, β ≤

≤ q +
1
2

we can choose the nodes xj as the zeros of the ordinary Jacobi

polynomial Pα,β
n , and we obtain for k = 0, . . . , q

|f (k)(x)−H(k)
n,rf(x)| ≤ C

(√
1− x2

n

)q−k

ω

(
f (q),

√
1− x2

n

)
log n,

in which the constant C depends upon q, α, β. Also, the statement

|f(x)−Hn,rf(x)| ≤ C

(√
1− x2

n

)q

ω2

(
f (q),

√
1− x2

n

)
log n

holds for α = β = q − 1
2
.

4. Proofs

Proof of Theorem 1. Using the theorem of Gopengauz and the
projection properties of Hn,r we may estimate

|f(x)−Hn,rf(x)| = |f(x)− pn(x)−Hn,r(f − pn)(x)| ≤
≤ |f(x)− pn(x)|+ |Hn,r(f − pn)(x)| ≤

≤ Mq

(√
1− x2

n

)q

ω

(
f (q),

√
1− x2

n

)
+ |Hn,r(f − pn)(x)|.

Now, inasmuch as f (k)(±1) − p
(k)
n (±1) = 0 for k = 0, . . . , q we observe that

(1.1) simplifies to

Hn,r(f − pn)(x) =
n∑

j=1

(f(xj)− pn(xj))

(
1− x2

1− x2
j

)r

lj(x).



Pointwise Gopengauz estimates for interpolation 259

Thus in turn we may estimate

|Hn,r(f − pn)(x)| ≤
n∑

j=1

|f(xj)− pn(xj)|
(

1− x2

1− x2
j

)r

|lj(x)| ≤

≤
n∑

j=1

Mq




√
1− x2

j

n




q

ω


f (q),

√
1− x2

j

n




(
1− x2

1− x2
j

)r

|lj(x)| ≤

≤ Mq

(√
1− x2

n

)q n∑

j=1

ω


f (q),

√
1− x2

j

n




(
1− x2

1− x2
j

)r− q
2

|lj(x)|.

Now, given an x ∈ [−1, 1], the set of indices {1, . . . , n} can be partitioned into
two disjoint subsets

A(x) = {j : 1− x2
j < 1− x2} and B(x) = {j : 1− x2

j ≥ 1− x2},
and the sum over each may be considered separately. For the set of indices
A(x) we obtain, using the monotonicity of ω(f (q), h),

Mq

(√
1− x2

n

)q ∑

j∈A

ω


f (q),

√
1− x2

j

n




(
1− x2

1− x2
j

)r− q
2

|lj(x)| ≤

≤ Mq

(√
1− x2

n

)q

ω

(
f (q),

√
1− x2

n

) ∑

j∈A

(
1− x2

1− x2
j

)r− q
2

|lj(x)| ≤

≤ Mq

(√
1− x2

n

)q

ω

(
f (q),

√
1− x2

n

)
Ln,2r−q(x).

If on the other hand j ∈ B(x) we obtain

n√
1− x2

j

ω


f (q),

√
1− x2

j

n


 ≤ 2n√

1− x2
ω

(
f (q),

√
1− x2

n

)

using a standard concavity argument for ω(f (q), h) (see e.g. Lorentz [6] p.44-
45). Therefore

Mq

(√
1− x2

n

)q ∑

j∈B

ω


f (q),

√
1− x2

j

n




(
1− x2

1− x2
j

)r− q
2

|lj(x)| ≤
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≤ 2Mq

(√
1− x2

n

)q

ω

(
f (q),

√
1− x2

n

) ∑

j∈B

(
1− x2

1− x2
j

)r− q+1
2

|lj(x)| ≤

≤ 2Mq

(√
1−x2

n

)q

ω
(
f (q),

√
1−x2

n

)
Ln,2r−q−1(x).

If ω is replaced by ω2, a similar argument suffices. We omit the details (the
requisite concavity property of ω2 may also be seen in Lorenz [6], on p.47).
Hence the proof is completed.

Proof of Theorem 2. Our first conclusion follows immediately from
Theorem 1 and the first theorem of Telyakovskii [8]. Turning to the second
conclusion in Theorem 2, we note first that

(f (k) −H(k)
n,rf)(±1) = 0 for k = 0, . . . , r − 1.

The first conclusion having been demonstrated, the second conclusion and also
the third, in which r takes on the particular value of q +1, follow now from the
theorem of Balázs and Kilgore [1]. The estimates of the constants in the second
and third conclusions here also follow from the proof in Balázs and Kilgore [1].

Proof of Theorem 3. A lemma from Kilgore and Prestin [4], based upon
well known properties of the Jacobi polynomials, states that

‖Ln,s‖ ≤ C log n if and only if s− 5
2
≤ α, β ≤ s− 1

2
,

when the nodes of interpolation are chosen at the zeroes of the Jacobi poly-

nomial P
(α,β)
n . If 2r − q − 5

2
≤ α, β ≤ 2r − q − 3

2
then the lemma guarantees

that ‖Ln,s‖ ≤ C log n for s = 2r − q and also for s = 2r − q − 1, and the first
assertion of Theorem 3 follows from Theorem 1. The second assertion follows
similarly from Theorem 1 and the Lemma. The Lemma must hold both for

s = 2r − q and for s = 2r − q − 2, implying that α = β = 2r − q − 5
2

is the

unique choice of α and β which gives log n (instead of some positive power of
n) in the second assertion of Theorem 4.

Proof of Theorem 4. The first part of Theorem 4 follows from Theorems
1, 2, and 3 in a straightforward manner. We note that in particular if r = q+1,
then

2r − q − 5
2

= q − 1
2
, and 2r − q − 3

2
= q +

1
2
.
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Also, the second part of the theorem follows immediately from Theorem 3.
This completes the proof of Theorem 4.
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