RESEARCH PROBLEMS IN NUMBER THEORY II.

I. Kátai (Budapest/Pécs, Hungary)

Dedicated to Professor J. Balázs on his 75-th birthday

1. Number systems and fractal geometry

1.1. Let us fix an integer $N \ (\neq 0, \pm 1)$ and a set $\mathcal{A} = \{a_0 = 0, a_1, \dots, a_{t-1}\}$ $(\subseteq \mathbb{Z})$, which is a complete residue system $mod\ N$. Then t = |N|. For every $n \in \mathbb{Z}$ there is a unique $b \in \mathcal{A}$ and a unique $n_1 \in \mathbb{Z}$, such that $n = b + Nn_1$.

Let $\mathcal{I}: \mathbb{Z} \to \mathbb{Z}$ defined by $\mathcal{J}(n) = n_1$. Let

$$L = \frac{\max_{a \in \mathcal{A}} |a|}{|N| - 1}.$$

One can see immediately that

$$|\mathcal{J}(n)| < |n| \quad \text{if} \quad |n| > L,$$

and

b)
$$\mathcal{J}(n) \in [-L, L]$$
 if $n \in [-L, L]$.

Consequently the sequence n, $\mathcal{J}(n)$, $\mathcal{J}^2(n)$,... defined by iterating \mathcal{J} is eventually periodic. An integer π is said to be periodic if $\mathcal{J}^k(\pi) = \pi$ holds for some k > 0. The set \mathcal{P} of periodic elements is finite, moreover $\mathcal{P} \subseteq [-L, L]$.

We say that (A, N) is a number system (NS) if every integer n can be written as

$$n = b_0 + b_1 N + \ldots + b_k N^k \quad (b_j \in \mathcal{A})$$

The research has been supported by the GO WEST grant and by the Hungarian National Foundation for Scientific Research under grant OTKA T017412.

in a finite form. (The uniqueness of the representation holds automatically.) It is clear that (A, N) is a number system if and only if $\mathcal{P} = \{0\}$.

Let $G(\mathcal{P})$ be the directed graph over \mathcal{P} (as the set of nodes) getting by drawing the vertices $\pi \to \mathcal{J}(\pi)$. Then $G(\mathcal{P})$ is a disjoint union of circles (and loops).

Let $H \subseteq \mathbb{R}$ be defined as those x which can be expanded as

$$x = \sum_{\nu=1}^{\infty} \frac{b_{\nu}}{N^{\nu}}, \qquad b_{\nu} \in \mathcal{A}.$$

By using the terminology of Hutchinson (see Barnsley [1]) we say that H is the attractor of the iterated function system $\{f_b \mid b \in \mathcal{A}\}$, where $f_b(z) = \frac{z+b}{N}$. The relation

$$H = \bigcup_{b \in A} \left\{ \frac{1}{N} H + \frac{b}{N} \right\}$$

clearly holds.

In a paper written jointly by Indlekofer, Racskó [2,3] we proved, in a more general setting, that

$$\lambda(H + n_1 \cap H + n_2) = 0$$

(λ is the Lebesgue measure) holds for some pairs of distinct integers n_1 , n_2 , if and only if $n_1 - n_2 \in \mathcal{M}$, where \mathcal{M} denotes the set of those integers m, which can be written as

$$m = \sum_{\nu=0}^{k} c_{\nu} \cdot N^{\nu}, \qquad (c_{\nu} \in \mathcal{B}),$$

where $\mathcal{B} := \mathcal{A} - \mathcal{A}$. Thus \mathcal{M} is the smallest subset X of \mathbb{Z} containing 0 for which

(1.2)
$$X = \bigcup_{b \in \mathcal{B}} (N \cdot X + b)$$

is valid.

One can prove furthermore that

$$\bigcup_{n\in\mathbb{Z}}\left(H+n\right)=\mathbb{R}.$$

The base N with the given coefficient set \mathcal{A} is said to be a just touching covering system (JTSC for shorthand) if $\lambda(H + n_1 \cap H + n_2) = 0$ holds for every $n_1 \neq n_2 \in \mathbb{Z}$. According to our cited theorem, (\mathcal{A}, N) is a JTCS if and only if $\mathcal{M} = \mathbb{Z}$.

Similar notions can be introduced in the group \mathbb{Z}_k of integer-vectorials substituting the base N with a subgroup $M\mathbb{Z}_k$ where M ($\mathbb{Z}_k \to \mathbb{Z}_k$) is an expansive linear mapping and by choosing a complete coset-representative set of $\mathbb{Z}_k/M\mathbb{Z}_k$ (as a coefficient set).

We shall formulate some open problems in the simplest (non-trivial) case, when k = 1 and N = 3.

1.2. Assume that N = 3, $A = \{0, a_1, a_2\}$, where $a_i \equiv i \pmod{3}$, i = 1, 2. We would like to give necessary and sufficient conditions for A, which guarantees that (A, 3) is a JTCS.

If $(a_1, a_2) = e$, $|e| \neq 1$, then \mathcal{M} contains only multiples of e, it is a proper subset of \mathbb{Z} , thus $(\mathcal{A}, 3)$ is not a JTCS.

Conjecture 1.1. If $(a_1, a_2) = 1$, $a_i \equiv i \pmod{3}$, then (A, 3) is a JTCS.

This assertion has been proved for all the correspondin values a_1 , a_2 in [1,900] by Dr.A.Járai on a SUN S10 workstation in Paderborn.

We can pose the above conjecture in the following equivalent form.

Let $\epsilon_k(n)$ denote the digits of the ternary symmetric expansion of n, i.e.

$$n = \sum_{k=0}^{K} \epsilon_k(n) \cdot 3^k, \qquad \epsilon_k(n) \in \{-1, 0, 1\}.$$

Conjecture 1.1'. Assume that $(a_1, a_2) = 1$, $a_i \equiv i \pmod{3}$ (i = 1, 2). Then for every $n \in \mathbb{Z}$ there exist suitable $x, y \in \mathbb{Z}$ such that $n = a_1x - a_2y$ and

$$\begin{bmatrix} \epsilon_{\nu}(x) \\ \epsilon_{\nu}(y) \end{bmatrix} \neq \begin{bmatrix} +1 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ +1 \end{bmatrix}$$

holds for every ν .

For each fixed set \mathcal{A} one can decide easily that $\mathcal{M} = \mathbb{Z}$ or not. Since each integer n can be expanded in the symmetric ternary system, and $\{0, b, -b\} \subseteq \mathcal{B}$ if $b \in \mathcal{B}$, thus $b\mathbb{Z} \subseteq \mathcal{M}$ for each $b \in \mathcal{B}$. Furthermore $\mathcal{M} = -\mathcal{M}$, since $\mathcal{B} = -\mathcal{B}$.

Assume that \mathcal{M} is a proper subset of \mathbb{Z} and n_0 is the smallest positive integer which does not belong to \mathcal{M} . Observe that

(1.3)
$$n_0 \le \frac{1}{2} \min(|a_1|, |a_2|, |d|).$$

Indeed, $3 \not| n_0$, consequently for every $0 \neq b \in \mathcal{B}$ one of $n_0 + b$, $n_0 - b$ is a multiple of 3, consequently $\frac{n_0 \pm b}{3} \notin \mathcal{M}$ (for at least one sign), whence $\left| \frac{n_0 \pm b}{3} \right| \geq n_0$, which proves (1.3).

Theorem 1.1. Let $(a_1, a_2) = 1$, $a_1 \equiv i \pmod{3}$, $d = a_2 - a_1 = 4$ or 7 or 10. Then (A, 3) is a JTCS.

Proof. We have to check only that the integers $n \in \left[1, \frac{d}{2}\right]$ belong to \mathcal{M} . Let $G(\mathbb{Z})$ be the graph getting by directing an arrow from n to n_1 if $n = b+3 \cdot n_1$ with some $b \in \mathcal{B}$. We shall label this arrow by b. If $n \notin \mathcal{M}$, then $n_1 \notin \mathcal{M}$.

Case d=4. a_1 is odd. Thus $\mu:=\frac{1-a_1}{3}$ is even, consequently either μ or $2-\mu$ is a multiple of 4, furthermore

$$\begin{array}{ccc}
\boxed{1} & \xrightarrow{(a_1)} & \boxed{\mu} \\
\downarrow (-a_2) & \\
\boxed{2-\mu}
\end{array}$$

thus $1 \in \mathcal{M}$, and so $-1 \in \mathcal{M}$.

Let $A_0 = \{0, 4, -4\}$ $(\subseteq \mathcal{B})$. The function \mathcal{J} with respect to $(A_0, 3)$ maps odd numbers into odd numbers, thus for every odd n, $\mathcal{J}_k(n) \in \{-1, 1\}$ if k is large enough. Thus every odd integer belongs to \mathcal{M} . Furthermore, $2 = a_2 + 3 \cdot \frac{2 - a_2}{3}$, $\frac{2 - a_2}{3}$ is odd, thus $2 \in \mathcal{M}$, consequently $-2 \in \mathcal{M}$. Due to (1.3), we are ready.

Case d=7. Now $\mathcal{B} = \{0, \pm 7, \pm a_1, \pm a_2\}$. Let $\mathcal{A}_0 = \{-7, 0, 7\}$. For the expansion $(\mathcal{A}_0, 3)$ the nonzero periodic elements form a circle

Due to (1.3) it is enough to prove that at least one of the elements -2, -1, 1, 2 belong to \mathcal{M} .

The numbers in $7\mathbb{Z}$ have finite expansions in $(\mathcal{A}_0, 3)$. Thus $7\mathbb{Z} \subseteq \mathcal{M}$, consequently $b + 21\mathbb{Z} \subseteq \mathcal{M}$ if $b \in \mathcal{B}$.

Let $a_1 = l + 21A$, $l \in \{1, 4, 10, 13, 16, 19\}$. l = 7 implies $7|a_1$, so it is excluded.

Let
$$\mu := \frac{1-a_1}{3}$$
. Then $\frac{1+a_2}{3} = 3 - \mu$. Thus

To prove that $\mathcal{M} = \mathbb{Z}$, it is enough to show that one of μ , $\mu-1$, $\mu-2$, $\mu-3$ is either a multiple of 7 or belongs to the set $\bigcup_{b \in \mathcal{B}} (b+21\mathbb{Z})$.

We can find a multiple of 7 if l = 1, 13, 16, 19. For the remaining cases l = 4, 10, let $A_0 = \epsilon + 3A_1$, $\epsilon_0 \in \{-1, 0, 1\}$.

Let l=4. Then the arithmetic progressions $n=4,10,11,17 \pmod{21}$ belong to \mathcal{M} . Furthermore $\mu-\delta\equiv -1-\delta-7\epsilon_0 \pmod{21}$.

If $\epsilon_0 = 0$, the $\mu - 3 \equiv 17 \pmod{21}$, if $\epsilon_0 = 1$, then $\mu - 2 \equiv 11 \pmod{21}$, if $\epsilon_0 = -1$, then $\mu - 2 \equiv 4 \pmod{21}$.

Finally, let l=10. Then $n\equiv 4,10,11,17\pmod{21}$ belong to \mathcal{M} . Furthermore, $\mu\equiv 11\pmod{21}$ if $\epsilon_0=1$; $\mu-1\equiv 17\pmod{21}$, if $\epsilon_0=0$; $\mu\equiv 4\pmod{21}$, if $\epsilon_0=-1$.

Case d=10. Let $A_0 = \{0, 10, -10\}$. Then the graph $\mathcal{G}(\mathcal{P})$ to the expansion $(A_0, 3)$ consists of three circles G_1 , G_2 , G_3 and the loop $0 \to 0$, where

$$G_1 = \{1 \rightarrow -3 \rightarrow -1 \rightarrow 3 (\rightarrow 1)\},$$

$$G_2 = \{2 \rightarrow 4 \rightarrow (-2) \rightarrow (-4) (\rightarrow 2)\},$$

$$G_3 = \{5 \rightarrow -5 \rightarrow (5)\}.$$

Observe that under the mapping \mathcal{J} the orbit $n, \mathcal{J}(n), \ldots$ goes to C_1 if $(\mu, 10) = 1$; to C_2 if (n, 5) = 1 and $2|\mu$; to C_3 if $(\mu, 2) = 1$ and 5|n; and to 0 if 10|n.

Let us consider now the whole graph consisting of \mathbb{Z} as nodes, and the edges of which are determined by $n \stackrel{(b)}{\longrightarrow} n_1$ for $n = b + 3n_1$ for all possible values $b \in \mathcal{B}$. We shall prove that the components C_1 , C_2 , C_3 are strongly connected. Since

$$\boxed{5} \stackrel{(-a_1)}{\longrightarrow} \boxed{\frac{5+a_1}{3}}$$

is even, and it is not a multiple of 5, thus $C_3 \to \ldots \to C_2$. Furthermore, since

$$\begin{array}{ccc}
\boxed{2} & \xrightarrow{(-a_1)} & \boxed{\frac{2+a_1}{3}} \\
\downarrow (a_2) & & \\
\boxed{\frac{2-a_2}{3}} & & \\
\end{array}$$

and one of the odd numbers $\frac{2+a_1}{3}$, $\frac{2-a_2}{3}$ is not a multiple of 5, thus

$$C_2 \longrightarrow \cdots \longrightarrow C_1$$

Since 5 $/a_1$, therefore one of $2 + a_1$, $2 - a_2$, $4 - a_1$, $4 + a_2$ is a multiple of 5 and odd, furthermore

therefore we can reach C_3 from C_2 :

$$C_2 \longrightarrow \cdots \longrightarrow C_3$$

Let
$$\mu = \frac{1-a_1}{3}$$
, we have

$$\begin{array}{ccc}
1 & \xrightarrow{(a_1)} & \mu \\
\downarrow (-a_2) & & \\
\hline
4-\mu & & & \\
\end{array}$$

Since μ is even, one of μ , $4 - \mu$ is coprime to 5, thus

$$C_1 \longrightarrow \cdots \longrightarrow C_2$$

Consequently, it is enough to prove that at least one of the elements of $C_1 \cup C_2 \cup C_3$ can be transformed to 0.

Let $a_1 = l + 30A$, $1 \le l \le 30$, $l \equiv \pmod{3}$, (l, 10) = 1. Then $n \in \mathcal{M}$, if $n \equiv \pm l$, $\pm (l + 10) \pmod{30}$. Since $10|\mu$ for l = 1, $10|4 - \mu$ for l = 19, we have to consider only the cases l = 7, 13.

The case l=13. Then $n \in \mathcal{M}$ if $n=\pm 7, \pm 13 \pmod{30}$. Assume that $A=\epsilon_0+3A_1, \epsilon_0\in\{-1,0,1\}$. Then $a_1=13+30\epsilon_0+3\cdot 30A_1$. We have

$$\mu + 1 = -3 - 10\epsilon_0 - 30A_1$$
 and $\mu + 1 \in \mathcal{M}$ if $\epsilon_0 = 1$ or $\epsilon_0 = -1$, $\mu - 3 = -7 - 10\epsilon_0 - 30A_1$ and $\mu - 3 \in \mathcal{M}$ if $\epsilon_0 = 0$.

Since $\mu + 1$ or $\mu - 3 \in \mathcal{M}$, therefore $4 \in \mathcal{M}$ and we are ready.

The case l=7. We have $n \in \mathcal{M}$, if $n \equiv \pm 7$, $\pm 13 \pmod{30}$. Let $a_1=7+30\epsilon_0-30A_1$. Then $\mu=-2-10\epsilon_0-30A_1$.

If
$$\epsilon_0 = -1$$
, then $\mu - 1 \equiv 7 \pmod{30}$, $\mu - 1 \in \mathcal{M}$.
If $\epsilon_0 = 1$, then $\mu - 5 = -7 - 10 - 30A_1$, $\mu - 5 \in \mathcal{M}$.
If $\epsilon_0 = 0$, then $\mu - 5 \equiv -7 \pmod{30}$, $\mu - 5 \in \mathcal{M}$.

Since $4 = -a_2 + 3 \cdot (5 - \mu)$, therefore $4 \in \mathcal{M}$, we are ready. The proof is completed.

1.3. To explain the background of our conjecture let us consider the structure of $G(\mathcal{P})$ for $\mathcal{A}_{\mathcal{D}} = \{0, \mathcal{D}, -\mathcal{D}\}$ with N = 3. Let $\operatorname{ord}(\mathcal{D})$ denote the smallest positive t for which $3^t \equiv 1 \pmod{\mathcal{D}}$ holds. From the Euler-Fermat theorem $\operatorname{ord}(\mathcal{D})|\varphi(\mathcal{D})$. Let $\mathcal{F}_{\mathcal{D}}$ denote the set of integers $k \in \left(-\frac{\mathcal{D}}{2}, \frac{\mathcal{D}}{2}\right]$ coprime to \mathcal{D} . If $k_0 \in \mathcal{F}_{\mathcal{D}}$, $k_0 = \epsilon_0 \mathcal{D} + 3k_1$, $\epsilon_0 = 1$ or -1, then $k_1 \in \mathcal{F}_{\mathcal{D}}$. Its value can be computed from the cogruence relation $k \equiv 3k_1 \pmod{\mathcal{D}}$. Repeating this, we get $k_j \equiv 3k_{j-1} \pmod{\mathcal{D}}$ ($j = 1, 2, \ldots, \operatorname{ord}(\mathcal{D})$), $k_{\operatorname{ord}(\mathcal{D})-1} = k_0$. On $G(\mathcal{P})$ they are located on a circle, $k_0 \to k_1 \to \ldots \to k_{\operatorname{ord}(\mathcal{D})-1} (\to k_0)$.

Thus the elements of $\mathcal{F}_{\mathcal{D}}$ are subdivided on $G(\mathcal{P})$ into $\frac{\varphi(\mathcal{D})}{\operatorname{ord}(\mathcal{D})}$ disjoint circles, each of which has $\operatorname{ord}(\mathcal{D})$ elements.

Let $\mathcal{D} = \mathcal{D}_1 \cdot \mathcal{D}_2$. If $= \epsilon_0 \mathcal{D} + 3n_1$, then $\mathcal{D}_1 | n$ implies that $\mathcal{D}_1 | n_1$ and vice versa, furthermore $\left(\frac{n}{\mathcal{D}_1}, \mathcal{D}_2\right) = \left(\frac{n_1}{\mathcal{D}_1}, \mathcal{D}_2\right)$.

Hence we obtain that, if \mathcal{D}_1 is a unitary divisor of n then it is a unitary divisor of $\mathcal{J}^k(n)$ for every k.

Let $\mathcal{D}_1 l \in \left[-\frac{\mathcal{D}}{2}, \frac{\mathcal{D}}{2}\right]$, $(l, \mathcal{D}_2) = 1$. Let $\mathcal{J}(\mathcal{D}_1 l) = \mathcal{D}_1 l_1$, $\mathcal{D}_1 l = \epsilon \mathcal{D} + 3 \mathcal{D}_1 l_1$, whence $l = \epsilon \mathcal{D}_2 + 3 l_1$. Thus $l \equiv 3 l_1 \pmod{\mathcal{D}}$. Repeating the argument used above we get that $\varphi(\mathcal{D}_2)$ elements $\mathcal{D}_1 l$ are located on $G(\mathcal{P})$ on $\frac{\varphi(\mathcal{D}_2)}{\operatorname{ord}(\mathcal{D}_2)}$ disjoint circles each of which is of length $\operatorname{ord}(\mathcal{D}_2)$. By this we determined completely $G(\mathcal{P})$ for $\mathcal{A}_{\mathcal{D}}$. The structure of $G(\mathcal{P})$ is very simple if \mathcal{D} =prime and 3 is a primitive root mod 3. Then it consists of a loop

and a circle of length $\mathcal{D}-1$. The following theorem is clear.

Theorem 1.2. If a_1 (or a_2) is a prime and 3 is a primitive root mod a_1 (or mod a_2), then for $|d| < \frac{|a_1|}{2} \left(|d| < \frac{|a_2|}{2} \right)$ ($\{0, a_1, a_2\}, 3$) is a JTCS.

Proof. Since d can be reached from each $0 \neq \nu$, $|\nu| < \frac{|a_1|}{2}$ on the graph $G(\mathcal{P})$ contructed with \mathcal{A}_{a_1} , and $d \in \mathcal{M}$, thus $\nu \in \mathcal{M}$, and by (1.3) we are ready.

1.4. Let K be a finite extension field of \mathbb{Q} , I be the ring of integers in K. Let $\alpha \in I$ and $A = \{a_0 = 0, a_1, \dots, a_{t-1}\}$ ($\subseteq I$) be a complete residue system

mod α . We say that (A, α) is a NS in I, if each $\beta \in I$ can be written in finite form

$$\beta = b_0 + b_1 \alpha + \ldots + b_k \alpha^k \qquad (b_{\nu} \in \mathcal{A}).$$

(The unicity of the expansion is a consequence of the assumption that each residue class mod α contains a unique element in \mathcal{A} (see our paper [4])). One can easily see that α can be a candidate for a base of a NS only if all the conjugates α_j of α satisfy $|\alpha_j| > 1$, and furthermore, if $1 - \alpha$ is not a unit. The sufficiency of these conditions has been proved for K = Gaussian integers by G.Steidl [5] and for each imaginary quadratic extension field by the author in [6].

Theorem 1.3. Let K be a quadratic imaginary extension field of \mathbb{Q} , $\alpha \in I$, $|\alpha| > 1$, $|1 - \alpha| > 1$. Then there is a suitable coefficient set A such that (A, α) is a NS.

 \mathcal{A} was given explicitly in [6].

Conjecture 1.2. If K is a real quadratic extension field, $\alpha \in K$ is an algebraic integer, furthermore $|\alpha_j| > 1$, $|1 - \alpha_j| > 1$ holds for $\alpha = \alpha_1$ and for the conjugate α_2 , then (\mathcal{A}, α) is a NS with a suitable coefficient set \mathcal{A} .

The conjecture has been tested for several values of α for which min($|\alpha|$, $|1--\alpha|$, $|\alpha_2|$, $|1-\alpha_2|$) is not too close to 1.

I do not know how to extend this conjecture for higher degree extension fields.

2. Characterization of arithmetical functions

For an arbitrary additively written Abelian group G let \mathcal{A}_G , resp. \mathcal{A}_G^* denote the classes of additive, resp. completely additive functions. A function $f: \mathbb{N} \to G$ belongs to \mathcal{A}_G if f(mn) = f(m) + f(n) holds for each coprime m, n and it belongs to \mathcal{A}_G^* if the above equation holds for all pairs $m, n \in \mathbb{N}$. If G is written multiplicatively, then we write \mathcal{M}_G , \mathcal{M}_G^* instead of \mathcal{A}_G , \mathcal{A}_G^* and the corresponding functions are called multiplicative, completely multiplicative ones. If $G = \mathbb{R}$, then we write \mathcal{A} , \mathcal{A}^* instead of \mathcal{A}_G , \mathcal{A}_G^* , and for $G + \mathbb{C}$ we write \mathcal{M} , \mathcal{M}^* instead of \mathcal{M}_G , \mathcal{M}_G^* .

Let S be an R-module, containing at least two elements, defined over an integral domain R which has an identity. In the set of all doubly infinite sequences $(\ldots, s_{-1}, s_0, s_1, \ldots)$ of elements of S we define the shift operator E

whose action takes a typical sequence $\{s_n\}$ to the new sequence $\{s_{n+1}\}$. For an arbitrary polynomial $P(x) = \sum_{j=0}^{r} c_j x^j$, $P(E)\{s_n\}$ is defined as

$$P(E)s_n = \sum_{j=0}^r c_j s_{n+j}.$$

In this way we define a ring of operators which is isomorphic to the ring of polynomials over \mathbb{R} . Let I be the identity operator, and $\Delta := E - I$.

Let \mathbb{Q}_x , resp. \mathbb{R}_x be the multiplicative group of positive rationals and positive reals.

If $f: R_x \to G$ satisfies the Cauchy equation f(xy) = f(x) + f(y), then restricting the domain to N, f is a completely additive function.

If $f \in \mathcal{A}_G^*$ $(\mathbb{N} \to G)$, then its domain can be extended to \mathbb{Q}_x by $f\left(\frac{m}{n}\right) := := f(m) - f(n)$. If f is continuous in \mathbb{Q}_x (it is enough to require the continuity at the point 1), then it can be continuously extended to \mathbb{R}_x .

Our main question is the following: what further properties along with (complete) additivity will ensure that an arithmetic function f is in fact a restriction of a continuous homomorphism $R_x \to G$?

The first result of this type was found by P.Erdős [7] in 1946: If $f \in \mathcal{A}$ and $\Delta f(n) \geq 0$ for all n, or $f(n) \to 0$ $(n \to \infty)$, then f(n) is a constant multiple of $\log n$.

A survey paper on this topic was written recently [8]. The book of Elliott [9] contains a lot of important results. We are concentrating on unsolved problems.

2.1. Additive functions: $G = \mathbb{R}$

232

Conjecture 2.1. If $f_1, \ldots, f_k \in \mathcal{A}$, and

$$(2.1) l_n := f_1(n+1) + f_2(n+2) + \ldots + f_k(n+k) \to 0$$

as $n \to \infty$, then there exist suitable contants c_1, \ldots, c_k and additive functions v_1, \ldots, v_k of finite support such that $f_i(n) = c_i \log n + v_i(n)$,

$$\sum_{i=1}^{k} c_i = 0,$$

$$\sum_{i=1}^{K} v_i(n+i) = 0 \qquad (n = 0, 1, 2, ...).$$

We say that $f \in \mathcal{A}$ ($\in \mathcal{A}_G$) is of finite support, if it vanishes on the set of prime powers p^{α} for all but at most finitely many primes p.

Assuming that each $f_i(n)$ has the special form $f_i(n) = \lambda_i f(n)$ (i = 1, ..., k) with some constants λ_i , the conjecture was proved by Elliott [11], and by myself [10], independently.

An infinite sequence $\{U_n\}_{n\in\mathbb{N}}$ of real (or complex) numbers is called a tight sequence if for every $\delta>0$ there exists a number $c<\infty$, such that

$$\sup_{n\geq 1} x^{-1} \sharp \{n \leq x \mid |U_n| > c\} < \delta.$$

Let \mathcal{T} be the set of tight sequences.

Let T' denote the set of those sequences $\{U_n\}_{n\in\mathbb{N}}$ for which the relation

$$\sup_{x\geq 1} x^{-1} \sharp \{n \leq x \mid |U_n - \alpha(x)| > c\} < \delta$$

holds for every $\delta > 0$ with a suitable constant $c = c(\delta)$ and with a suitable function $\alpha(x)$.

It would be important to characterize those $f_i \in \mathcal{A}$ (i = 1, ..., k) for which the sequence l_n defined in (2.1) belongs to \mathcal{T} or \mathcal{T}' . Perhaps the following assertion is true.

Conjecture 2.2. If $f_1, \ldots, f_k \in A$ such $\{l_n\} \in T$, then there exist constants $\lambda_1, \ldots, \lambda_k$ such that $\sum_{j=1}^k \lambda_j = 0$, furthermore for the functions $h_j(n) := f_j(n) - \lambda_j \log n$ the conditions hold

(2.2)
$$\sum_{j=1}^{k} \sum_{\substack{|h_j(p)| \leq 1 \\ p \leq x}} h_j(p) \quad is \ bounded \ in \ x,$$

(2.3)
$$\sum_{j=1}^{k} \sum_{p} \frac{\min(1, h_j^2(p))}{p} < \infty.$$

Remarks.

1. If (2.2), (2.3) are satisfied, then $\{l_n\} \in \mathcal{T}$. This can be proved in a routine way.

2. A.Hildebrand made an important step [12] by showing that $\{l_n := \Delta f(n)\} \in \mathcal{T}$ implies that f has the decomposition $f = \lambda \log + h$, where h is finitely distributed.

3. Some further results have been proved in [13].

234

2.2. Characterization of n^s as a multiplicative function $\mathbb{N} \to \mathbb{C}$

In a series of papers [14-19] I considered functions $f \in \mathcal{M}$ under the conditions that $\Delta f(n)$ tends to zero in some sense. There were determined all the functions $f, g \in \mathcal{M}$ for which the relation

(2.4)
$$\sum_{n=1}^{\infty} \frac{1}{n} |g(n+k) - f(n)| < \infty$$

with some fixed $k \in \mathbb{N}$ holds. In the special case $k = 1, f, g \in \mathcal{M}^*$ implies that either

$$\sum_{n=1}^{\infty} \frac{|f(n)|}{n} < \infty, \qquad \sum_{n=1}^{\infty} \frac{|g(n)|}{n} < \infty,$$

or
$$f(n) = g(n) = n^{\sigma + i\tau}$$
, $\sigma, \tau \in \mathbb{R}$, $0 \le \sigma < 1$.

Hence it follows especially that

$$\sum_{n=1}^{\infty} \frac{|\lambda(n+1) - \lambda(n)|}{n} = \infty,$$

where λ is the Liouville function, which shows that the size of integers n for which $\lambda(n+1) \neq \lambda(n)$ is not too small.

A more explicit estimation from below for

$$\sharp \{n \le x \mid f(n+1) \ne f(n)\},\$$

where $f \in \mathcal{M}$, $f(n) \in \{-1, 1\}$ was given by A.Hildebrand [20].

In our joint papers written together with K.-H.Indlekofer [21-24] we deduced: if $f, g \in \mathcal{M}^*$ and

$$\sum_{n \le x} |g(n+1) - f(n)| = O(x),$$

then either
$$\sum_{n \le x} |f(n)| = O(x)$$
, $\sum_{n \le x} |g(n)| = O(x)$, or

$$f(n) = g(n) = n^s$$
, $0 \le \text{Re } s \le 1$.

Conjecture 2.3. Let $f, g \in \mathcal{M}, k \in \mathbb{N}$ such that $\liminf \frac{1}{x} \sum_{n \le x} |f(n)| > 0$,

and

$$\frac{1}{x}\sum_{n\leq x}|g(n+k)-f(n)|\to 0.$$

Then there exists $U, V \in \mathcal{M}$ and $s \in C$ with $0 \leq \text{Re } s < 1$ such that $f(n) = U(n)n^s$, $g(n) = V(n)n^s$, and

$$(2.5) V(n+k) = U(n) (n = 1, 2, ...)$$

holds.

Even a complete characterization of the couples $U, V \in \mathcal{M}$ satisfying (2.5) seems to be hard. One can assume always that $U(p^{\alpha}) = V(p^{\alpha}) = 0$ for p|k. If $U, V \in \mathcal{M}^*$ is assumed, then all the solutions are Dirichlet characters (see [14-19]).

Assume only the multiplicativity, and let us restrict ourselves to the case $U(n) \in \{0,1\}$ $(n=1,2,\ldots)$. As the example k=3, U(2)=V(5)=1, U(4)=V(7)=1, U(32)=V(35)=1 and $U(p^{\beta})=0$ for all the prime powers $p^{\beta} \notin \{2,2^2,2^5\}$ shows, there could be other solutions which are expected: U(n)=1 for every n coprime to k.

Conjecture 2.4. Let $U, V \in \mathcal{M}$, $U(\mathbb{N}), V(\mathbb{N}) \subseteq \{0, 1\}$ such that U(n) = V(n+k) $(n=1, 2, \ldots)$, and U(1) = 1 and $U(p^{\alpha}) = V(p^{\alpha}) = 0$ for all primes p|k. Let $N_0 = \{n \mid U(n) = 0\}$, $N_1 = \{n \mid U(n) = 1\}$. If N_0 contains an n, (n, k) = 1, then N_1 is a finite set.

This conjecture has been proved, and all the solutions of V(n+k) = U(n) were given for all the odd values k in the interval $1 \le k \le 201$ by R.Styer. He observed furthermore that N_1 was a set consisting only some of powers of a unique prime. Perhaps it is always true.

I think furthermore that the existence of a prime power p^{β} with the property p|k+1, $U(p^{\beta})=1$ implies that U(n)=1 for (n,k)=1. Perhaps the more general assertion is true: if there exists a prime q, and positive exponents α, β such that $U(q^{\alpha})=V(q^{\beta})=1$, then U(n)=1 holds for all n coprime to k.

In 1984 E.Wirsing proved that $f \in \mathcal{M}$, $\Delta f(n) \to 0$ implies that either $f(n) \to 0$ or $f(n) = n^s$, $0 \le \text{Re } s < 1$ [25]. As an immediate consequence we get that if $F(n) \in \mathcal{A}$, then $||\Delta F(n)|| \to 0$ implies that either $||F(n)|| \to 0$ or $F(n) - \tau \log n \equiv 0 \pmod{1}$ for every n, with a suitable $\tau \in \mathbb{R}$.

Assume we would like to find all couples $f, g \in \mathcal{M}$ for which $g(n+k)-f(n) \to 0$ $(n \to \infty)$, where k is a fixed integer. Trying to reduce this problem to Wirsing's case (k=1, f=g), the first problem is to determine the set of those integers n for which f(n) = 0 (or g(n) = 0). Excluding the case $f(n) \to 0$

(which implies $g(n) \to 0$) one can deduce that (f,g) is a solution if $g(n) = n^s$, $f(n) = n^s U(n)$, (2.5) holds and $0 \le \text{Re } s < 1$. The proof of this assertion is not quite easy, it can be done by the method which was used in a joint paper of N.L. Bassily and the author [26]. Namely in [26] the following theorem was proved:

Let $f, g \in \mathcal{M}$, $c \neq 0$ such that $g(2n+1) - cf(n) \to 0$ $(n \to \infty)$. Assume that $f(n) \neq 0$ $(n \to \infty)$. Then $f(n) = n^s$ 0 < Re s < and g(n) = f(n) for odd n.

2.3. Additive functions mod 1

T is considered here as the additive group \mathbb{R}/\mathbb{Z} .

We say that $F \in \mathcal{A}_T$ is of finite support if $F(p^{\alpha}) = 0$ for every large prime p.

For
$$F_{\nu} \in A_T$$
 ((= 0, 1, ..., $k-1$) let

$$(2.6) L_n(F_0,\ldots,F_{k-1}) := F_0(n) + \ldots + F_{k-1}(n+k-1).$$

Conjecture 2.5. Let \mathcal{L}_0 be the space of those k-tuples (F_0, \ldots, F_{k-1}) , $F_{\nu} \in \mathcal{A}_T$ $(\nu = 0, 1, \ldots, k-1)$ for which

(2.7)
$$L_n(F_0, ..., F_{k-1}) = 0 \qquad (n \in \mathbb{N})$$

holds. Then each F is of finite support, and \mathcal{L}_0 is a finite dimensional \mathbb{Z} module.

The domain of the functions $F(n) := \tau \log n \pmod{1}$ can be extended to \mathbb{R}_x continuously, where \mathbb{R}_x is the multiplicative group of positive reals. Thus F(n) are called restrictions of continuous homomorphisms from \mathbb{R}_x to T.

It is clear that for each choice of $\tau_0, \ldots, \tau_{k-1}$ such that $\tau_0 + \ldots + \tau_{k-1} = 0$ we have

$$L_n(\tau_0 \log ., \tau_1 \log ., \ldots, \tau_{k-1} \log .) \to 0 \qquad (n \to \infty).$$

Conjecture 2.6. If $F_{\nu} \in A_T \ (\nu = 0, \dots, k-1)$,

$$L_n(F_0,\ldots,F_{k-1})\to 0 \qquad (n\to\infty),$$

then there exist suitable real numbers $\tau_0, \ldots, \tau_{k-1}$ such that $\tau_0 + \ldots + \tau_{k-1} = 0$, and if $H_j(n) := F_j(n) - \tau_j \log n$, then

$$L_n(H_0,\ldots,H_{k-1})=0$$
 $(n=1,2,\ldots).$

Remarks.

- (1) Conjecture 2.6 for k = 1 can be deduced easily from Wirsing's theorem.
- (2) Conjecture 2.5 was proved under the more strict assumption that F_{ν} are completely additive for k=3 [27].
- (3) Conjecture 2.5 for k = 2 has been proved by R.Styer [28].
- (4) Marijke van Rossum-Wijsmuller treated similar problems for functions defined on the set of Gaussian integers. See [29], [30].

Let K be the closure of the set $\{L_n(F_0,\ldots,F_{k-1})\mid n\in\mathbb{N}\}.$

Conjecture 2.7. If $F_0, \ldots, F_{k-1} \in \mathcal{A}_T^*$ and K contains an element of infinite order, then K=T.

Remarks.

- (1) This assertion is clearly true for k = 1.
- (2) The conjecture fails for the wider class $F_0 \in A_T$ even in the case k = 1.
- 2.4. Characterizations of continuous homomorphisms as elements of A_G for compact groups G

We investigated this topic in a series of papers written jointly by Z.Daróczy [31-36].

Assume in this section that G is a metrically compact Abelian group supplied with some translation invariant metric ρ . An infinite sequence $\{x_n\}_{n=1}^{\infty}$ in G is said to belong to $\mathcal{E}_{\mathcal{D}}$, if for every convergent subsequence x_{n_1}, x_{n_2}, \ldots the "shifted subsequence" $x_{n_1+1}, x_{n_1+2}, \ldots$ is convergent, too. Let \mathcal{E}_{Δ} be the set of those sequences $\{x_n\}_{n=1}^{\infty}$ for which $\Delta x_n \to 0 \ (n \to \infty)$ holds. Then $\mathcal{E}_{\Delta} \subseteq \mathcal{E}_{\mathcal{D}}$. We say that $f \in \mathcal{A}_G^*$ belongs to $\mathcal{A}_G^*(\Delta)$ (resp. $\mathcal{A}_G^*(\mathcal{D})$) if the sequence $\{f(n)\}_{n=1}^{\infty}$ belongs to \mathcal{E}_{Δ} (resp. $\mathcal{E}_{\mathcal{D}}$).

We proved the following results:

- $(1) \ \mathcal{A}_G^*(\Delta) = \mathcal{A}_G^*(\mathcal{D}).$
- (2) If $f \in \mathcal{A}_G^*(\mathcal{D})$, then there exists a continuous homomorphism $\Phi : \mathbb{R}_x \to G$ such that $f(n) = \Phi(n)$ for every $n \in \mathbb{N}$.

The proof of (2) was based upon the theorem of Wirsing in [25].

The set of all limit points of $\{f(n)\}_{n=1}^{\infty}$ form a compact subgroup in G which is denoted by S_f .

(3) $f \in \mathcal{A}_G^*(\mathcal{D})$ if and only if there exists a continuous function $H: S_f \to S_f$ such that $f(n+1) - H(f(n)) \to 0$ as $n \to \infty$.

The main problem we are interested in is the following one:

Let $f_j \in \mathcal{A}_{G_j}$ (j = 0, 1, ..., k - 1), and consider the sequence $e_n := \{f_0(n), f_1(n+1), ..., f_{k-1}(n+k-1)\}$.

Then $e_n \in S_{f_0} \times \ldots \times S_{f_{k-1}}$. What can we say about the functions f_j , if the set of the limit points of e_n is not everywhere dense in U? We shall formulate our guesses only for special cases.

Conjecture 2.8. Let $f \in \mathcal{A}_T^*$, $S_f = T$, $e_n := (f(n), \ldots, f(n+k-1))$. Then either $\{e_n \mid n \in N\}$ is everywhere dense in $T_k = T \times \ldots \times T$, or $f(n) = \lambda \log n \pmod{\mathbb{Z}}$ with some $\lambda \in \mathbb{R}$.

Conjecture 2.9. Let $f, g \in \mathcal{A}_T^*$, $S_f = S_g = T$, $e_n := (f(n), g(n+1))$. If e_n is not everywhere dense in T^2 , then f and g are rationally dependent continuous characters, i.e. there exists $\lambda \in \mathbb{R}$, $s \in \mathbb{Q}$ such that $g(n) = sf(n) \pmod{\mathbb{Z}}$, $f(n) = \lambda \log n \pmod{\mathbb{Z}}$.

3. On prime divisors

3.1. Let P(n) be the largest and p(n) be the smallest prime divisor of n.

Conjecture 3.1. For every integer $k (\geq 1)$ there always exists a constant c_k such that for every prime p greater than c_k

$$\min_{\substack{1 \le j \\ P(j) \le p}} \max_{\substack{l = -k, \dots, k \\ l \ne 0}} P(jp+l) < p$$

holds.

Some heuristical arguments support my opinion that this assertion is true. Hence it would follow that the dimension of the space \mathcal{L}_0 defined in Conjecture 2.5 is finite.

The problem is unsolved even for k = 2.

3.2. We say that p^{α} is a unitary prime-power factor of n if $p^{\alpha} \mid n$, and $\left(\frac{n}{p^{\alpha}}, p^{\alpha}\right) = 1$. We use the notation $p^{\alpha} || n$. Let furthermore (a, b) = the greatest common divisor of a and b.

Conjecture 3.2. Let a be an odd positive integer and $\mathcal{M}(\subseteq \mathbb{N})$ be defined by the following properties:

- (1) $\{1, 2, 2^2, 2^3, \ldots\} \subseteq \mathcal{M}$.
- (2) If $P_0 \in \mathcal{M}$, then $P_1 := 4P_0 + a \in \mathcal{M}$.
- (3) If $Q_1, Q_2 \in \mathcal{M}$ and $(Q_1, Q_2) = 1$, then $Q_1Q_2 \in \mathcal{M}$.
- (4) If $Q \in \mathcal{M}$ and $p^{\alpha}||Q$, then $p^{\alpha} \in \mathcal{M}$.
- (5) If (n, a) > 1, then $n \notin \mathcal{M}$.

Then $\mathcal{M} = \{ n \mid (n, a) = 1 \}.$

Remarks.

- (1) The conjecture is true for small positive integers a.
- (2) Let $a = p_1^{\alpha_1} \dots p_r^{\alpha_r}$. One can give a function L_a explicitly, L_a depends only on the primes p_1, \dots, p_r , such that if $\{n \leq L_a \land (n, a) = 1\} \subseteq \mathcal{M}$, the $\mathcal{M} = \{n, (n, a) = 1\}$.
- (3) J. Fehér proved the conjecture for a = prime.
- **3.3.** Let ϑ be a completely multiplicative function, taking values on \mathbb{N} . Let ϑ_k denote the k-fold iterates of it. We define a directed graph called G_{ϑ} on the set of primes by leading an edge from p to q, if $q|\vartheta(p)$. For each p let E_p denote the set of those primes q which can be reached from p walking on G_{ϑ} . Let furthermore K be the set of that primes which are located on some circles.

The properties of K and E_p were investigated in [37], [38], [39] for the case $\vartheta(p) = p + a$, where a is a constant. It was proved that K is a finite set, and that for every prime p there is a k such that all the prime factors of $\vartheta_k(p)$ belong to K.

Conjecture 3.3. Let $\vartheta \in \mathcal{M}^*$ be defined at prime places p by $\vartheta(p) = ap + b$, where $a \geq 2$, $2a + b \geq 1$, a, b integers, (a, b) = 1. Then

- (1) E_p is a finite set for every prime p.
- (2) K is an infinite set.

Conjecture 3.4. If ϑ is defined by $\vartheta(p) = p^2 + 1$, then there is a prime q for which E_q is an infinite set.

Perhaps E_2 is infinite, and then E_q is infinite for every prime q.

3.4. We are interested in to estimate the longest interval on which a suitable multiplicative function taking values ± 1 does not change its sign.

For an integer x let L_x be the largest integer for which there exists $f \in \mathcal{M}^*$, $f(n) \in \{+1, -1\}$, f(2) = -1 such that f(x+j) = 1 $(j = 1, ..., L_x)$. It is clear that $L_x < \min_{2m^2 > x} \{2m^2 - x\}$; since $f(2m^2) = -1$ always holds, therefore

$$L_x < 2\left(\left[\sqrt{\frac{x}{2}}\right] + 1\right) - x \le 2\sqrt{2}\sqrt{x} + 1$$
. Furthermore, $L_{2m^2} = 0$, $L_{2m^2-1} = 1$.

On the other hand, if for all the integers x+j $(j=0,\ldots,k)$ one can find prime divisors $p_j|x+j$ such that $p_j>k$ and $p_j^2|x+j$, the $L_x\geq k$. In a paper written jointly with Erdős [40] we proved that for a suitable sequence of $x=x_\nu$ can be found such a $k=k_\nu$ for which

$$k_{\nu} > \exp\left(\left(\frac{1}{2} - \epsilon\right) \frac{(\log x_{\nu}) \log \log \log x_{\nu}}{\log \log x_{\nu}}\right),$$

more exactly, from our Theorem 3, in [40], it comes out immediately from the following

Conjecture 3.5. $L_x/\sqrt{x} \to 0$ as $x \to \infty$.

Probably $\log L_x/\log x \to 0$ is true as well.

- 4. Values of multiplicative functions on some special subsequences of integers
- **4.1.** Let \mathcal{P}_k be the set of integers $n \geq 2$ the number of distinct prime factors of which is $\leq k$. Let furthermore $\mathcal{P}_{k,+1} := \mathcal{P}_k + 1$; $\mathcal{P}_1 = \mathcal{P}$. Let furthermore \mathcal{M}_0 be the class of those complex valued (completely) multiplicative functions which are nowhere zero.

Several years ago, in [41] I formulated the conjecture that $\lambda(p+1)$ takes on both the values 1 and -1 infinitely often, if p runs over \mathcal{P} . Here λ is the Liouville-function. If the equation p-2q=1 has infinitely many solutions in primes, then the same is true for p+1=2(q+1). Since $\lambda(p+1)=\lambda(2)\lambda(q+1)=-\lambda(q+1)$, the conjecture hence it would follow.

By using this simple observation and Chen's method in sieve (see [42]) one can prove the following assertion: For every $a \in \mathbb{N}$ there exists an infinite sequence of pairs of integers $P_2^{(\nu)} + 1$, $Q_2^{(\nu)} + 1 \in \mathcal{P}_{2,+1}$ ($\nu = 1, 2, \ldots$), such that

(4.1)
$$P_2^{(\nu)} + 1 = a(Q_2^{(\nu)} + 1)$$

holds true.

This implies the following assertion, evidently.

If $f \in \mathcal{M}_0$, then either f(a) = 1 identically, or it takes on at least two distinct values on the set $\mathcal{P}_{2,+1} \cap [t,\infty)$ for every t > 0.

Conjecture 4.1. If $f \in \widetilde{\mathcal{M}}_0$ and f is not identically 1, then f(p+1) $(p \in \mathcal{P})$ takes on at least two distinct values.

4.2. In [41] we mentioned that $\lambda(n^2+1)$ $(n \in \mathbb{N})$ changes its value infinitely often, which is a straightforward consequence of the fact that the Pell-equation $n^2+1=2(m^2+1)$ has infinitely many solutions. This elementary observation can be extended to n^2+a , and for more general quadratic polynomials.

Let $F(n):=n^2+An+B$, A, B integers, F be irreducible over $\mathbb Q$. Since $F(n+x)=F(n)+F'(n)x+\frac{F''(n)}{2}x^2$, $F(n+x)=F(n)+(2n+A)x+x^2$, therefore

$$(4.2) F(n+tF(n)) = \Phi(n,t)F(n),$$

where

$$\Phi(n,t) := 1 + (2n + A)t + t^2(n^2 + An + B).$$

Let us observe that

$$\Phi(n,-1) = F(n-1), \qquad \Phi(n,1) = F(n+1),$$

which, by (4.2), leads to the equations

(4.3)
$$F(n+F(n)) = F(n+1)F(n),$$

$$(4.4) F(n-F(n)) = F(n-1)F(n).$$

Let η_F be the smallest positive integer for which F(x) > 0 for all $x \ge \eta_F$. Let

$$M^{(s)} = MF^{s} := \{F(n) \mid n = s, s + 1, \ldots\}.$$

Theorem 4.1. Let $f \in \mathcal{M}_0$. Then either $f[M^{(\eta_F)}] = 1$ or $f[M^{(s)}]$ contains at least two elements for every $s \geq \eta_F$.

Proof. Assume that there exists an s for which $f[M^{(s)}]$ contains only one element. We denote it by c. From (4.3) we have

(4.5)
$$f(F(n+F(n))) = f(F(n+1))f(F(n)),$$

which implies that c=1. Consequently, if $f[M^{(\eta_F)}]$ is a singleton, then $f[M^{(\eta_F)}]=1$.

Assume that our theorem is not true. Then there exists a largest integer $n = n_0 \ (\geq \eta_F)$ such that $f(F(n)) \neq f(F(n+1))$. Then from (4.5) we have

$$1 = f(F(n_0 + 1)) = f(F(n_0 + 2)) = \ldots,$$

 $f(F(n_0)) = d$, $d \neq 1$. Consider now (4.3) for $n = n_0$. Since $F(n_0) > 0$, therefore $n_0 + F(n_0) > n_0$, $f(F(n_0 + F(n_0))) = 1$, $f(F(n_0 + 1)) = 1$, whence d = 1 follows. This contradicts to our assumption. The proof is finished.

Let especially $F(n) = P_a(n) = n^2 + a$, $a \in \mathbb{N}$. Then $\eta_F = 1$. We can rewrite $\Phi(n,t)$ in the form

(4.6)
$$\Phi(n,t) = (1+tn)^2 + at^2.$$

Corollary 1. Let $f \in \mathcal{M}_0^*$ such that $f(\Phi(n_0, t_0)) \neq 1$ for a suitable choice of $n_0 \in \mathbb{N}$, $t_0 \in \mathbb{Z}$. Then

$$f(P_a(n)) \neq f(P_a(n+1))$$

holds for infinitely many $n \in \mathbb{N}$.

Proof. From (4.2) we deduce that $\{f(F(n)) \mid n=0,\pm 1,\pm 2,\ldots\}$ contains at least two distinct values. Observe that F(-n)=F(n). If there is an $n_0>0$ such that $f(F(n_0+1))\neq f(F(n_0))$, then we can apply Theorem 4.1 directly. Assume that f(F(0))=d, f(F(n))=c=1 $(n\in\mathbb{N}), d\neq 1$. From (4.3) we get that f(F(0))=1. Consequently $\{f(F(n))\mid n=0,\pm 1,\ldots\}=\{1\}$, which is a contradiction. It is clear that

$${F(n) \mid = 0, 1, 2, ...} \subseteq {\Phi(n, 1) \mid n \in \mathbb{N}} \cup {\Phi(n, -1) \mid n \in \mathbb{N}}.$$

So we have

Corollary 2. Let $a \in \mathbb{N}$. If $\lambda(n^2 + a) = -1$ has at least one solution $n \in \mathbb{Z}$, then $\lambda(n^2 + a)$ $(n \in \mathbb{Z})$ takes on both values +1, -1 infinitely often.

We can prove a similar result for a < 0.

Corollary 3. Let a < 0, where -a is not a square number. Assume that $\lambda(n^2 + a) = -1$ holds for some $n = n_0$ satisfying $n_0^2 + a > 0$. Then $\lambda(n^2 + a)$ takes on both the values +1, -1 infinitely often.

Conjecture 4.2. Assume that $a \in \mathbb{Z}$ and -a is not a square. If $f \in \mathcal{M}_0$ satisfies $f(n^2 + a) = 1$ $(n \in \mathbb{Z})$, then $f(u^2 + av^2) = 1$ holds for every $u, v \in \mathbb{Z}$ for which $u^2 + av^2 > 0$.

5. q-additive and q-multiplicative functions

Let $q \geq 2$, $q \in \mathbb{N}$, $A = \{0, 1, \dots, q-1\}$, the digits in the q-ary expansion of a nonnegative integer $n \in \mathbb{N} \cup \{0\}$ are denoted by $e_j(n)$,

(5.1)
$$n = \sum_{j=0}^{\infty} e_j(n)q^j, \qquad e_j(n) \in A.$$

A function $f: \mathbb{N} \cup \{0\} \to \mathbb{R}$ is said to be q-additive function, if f(0) = 0 and

(5.2)
$$f(n) = \sum_{j=0}^{\infty} f(e_j(n)q^j)$$

holds for every $n \in \mathbb{N}$. A function $g : \mathbb{N} \cup \{0\} \to \mathbb{C}$ is q-multiplicative, if g(0) = 1 and

(5.3)
$$g(n) = \prod_{j=0}^{\infty} g(e_j(n)q^j).$$

Let \mathcal{A}_q , resp. \mathcal{M}_q be the sets of q-additive and q-multiplicative functions. The sum of digit function $\alpha(n) := \sum_{j=0}^{\infty} e_j(n)$ is a typical q-additive function.

It is clear furthermore, that if $f \in \mathcal{A}q$ and $z \in \mathbb{C}$, then $g(n) := z^{f(n)}$ belongs to \mathcal{M}_q . Thus e^{inx} as a function in n belongs to \mathcal{M}_q for every $x \in \mathbb{R}$, and the sequence $w_n(x) = g(n)$, w_n is the n-th Walsh function, belongs to \mathcal{M}_2 .

Questions for the value distributions of q-additive functions are somewhat easier to solve than in the case of additive functions. Nevertheless this field is rich in nice and important open problems.

5.1. Distribution of q-additive functions

As H.Delange proved [43], $g \in \mathcal{M}_q$ under the condition $|g(n)| \leq 1$ has a nonzero mean value M(g), i.e.

$$\frac{1}{x}\sum_{n\leq x}g(n)\to M(g),$$

if and only if $\sum_{j=0}^{\infty} \sum_{a \in \mathcal{A}} (g(aq^j) - 1)$ is convergent, $\sum_{a \in \mathcal{A}} g(aq^j) \neq q$ (j = 0, 1, ...), and then

$$M(g) = \prod_{j=0}^{\infty} \left\{ \sum_{j=0}^{q-1} (g(aq^{j}) - 1) \right\}.$$

As a consequence he deduced that a function $f \in A_q$ has a limit distribution, if and only if

(5.4)
$$\sum_{j=0}^{\infty} \left(\sum_{a \in \mathcal{A}} f(aq^j) \right) \text{ is convergent,}$$

and

$$(5.5) \qquad \sum_{j=0}^{\infty} \sum_{a \in \mathcal{A}} f^2(aq^j) < \infty.$$

In [44] the following assertion is proved.

Theorem 5.1. Let $f \in A_q$. Assume that there is a suitable function $\alpha(x)$ such that

(5.6)
$$\lim_{x \to \infty} \frac{1}{\pi(x)} \sharp \{ p \le x, \ f(p) - \alpha(x) < y \} = F(y),$$

where F is a distribution function. Then (5.5) is convergent.

Let
$$N = N_x = \left\lceil \frac{\log x}{\log q} \right\rceil$$
,

(5.7)
$$\mu(x) := \sum_{j=0}^{N} \sum_{a \in A} f(aq^{j}).$$

Then $\alpha(x) - \mu(x)$ tends to a finite limit as $x \to \infty$. Especially, if $\alpha(x) = 0$ identically, then (5.4) is convergent.

On the other hand, the convergence of (5.4), (5.5) are sufficient for the existence of the limit distribution F with $\alpha(x) \equiv 0$; the fulfilment of (5.5) implies the existence of $\alpha(x)$ ($\alpha(x) = \mu(x)$ is suitable) by which (5.6) holds true.

The proof goes back to nontrivial estimates of exponential sums with prime variables.

5.2. Mean values of q-multiplicative functions over the set P of primes

Conjecture 5.1. If $g \in \mathcal{M}_q$, $|g(n)| \leq 1$ and

$$\lim_{x \to \infty} \frac{1}{\pi(x)} \sum_{p \le x} g(p) \ (=: M_g)$$

exists, then

$$\sum_{j} \sum_{a \in A} (g(aq^{j}) - 1)$$

is convergent.

Remark. The opposite assertion, the sufficiency is proved in [44]. Assume from now on that $g \in \mathcal{M}_q$, |g(n)| = 1 for $n \in \mathbb{N} \cup \{0\}$. Let

(5.8)
$$S(x|\alpha) := \sum_{\substack{l < x \\ (l,q)=1}} g(l)e(\alpha l), \quad e(\beta) := \exp(2\pi i \beta),$$

(5.9)
$$P(x) := \sum_{p \le x} g(p).$$

We are interested in to give necessary and sufficient conditions for g to satisfy

$$\frac{P(x)}{\pi(x)} \to 0 \qquad (x \to \infty).$$

Conjecture 5.2. (5.10) holds if and only if

$$(5.11) x^{-1}S(x|r) \to 0 (x \to \infty)$$

for every $r \in \mathbb{Q}$.

Remark. In [44] we proved that (5.10) implies the fulfilment of (5.11). Let

(5.12)
$$T_{l_1,l_2}^{(M)} = T_{l_1,l_2} =$$

$$= \sharp \{ p_1, p_2 \in \mathcal{P}, \ p_2 - p_1 = l_2 - l_1, \ p_1 \equiv l_1 \ (\text{mod } q^M), \ p_1 \leq x \}.$$

Conjecture 5.3. There exists a constant $0 < \delta < 1/2$ such that for $M = [\delta N], N = \left[\frac{\log x}{\log q}\right]$ we have

(5.13)
$$\sum_{\substack{l_1, l_2 < q^M \\ (l_1, q) = 1 \\ l_1 \neq l_2}} \left| T_{l_1, l_2}^{(M)} - \frac{x}{\varphi(q^M) \log^2 x} H(l_2 - l_1) \right| < \frac{\epsilon(x) x q^M}{\log^2 x},$$

with a suitable function $\epsilon(x) \to 0 \ (x \to \infty)$, where

(5.14)
$$H(d) := \prod_{\substack{p \mid d \\ p \nmid b}} \left(1 + \frac{1}{p-2} \right).$$

In [44] we proved that Conjecture 5.3 implies the fulfilment of Conjecture 5.2.

Let Y(x) be a monotically increasing function such that $Y(x) \to \infty$ and $\frac{\log Y(x)}{\log x} \to 0$ as $x \to \infty$. Let $\mathcal{N}_x := \{n \in [0,x], \ p(n) > Y(x)\}$, where p(n) is the smallest prime factor of n. Let $N(x) = \operatorname{card} \mathcal{N}_x$. Let L be the strongly multiplicative function defined on primes p with the relation

$$L(p) = \begin{cases} \frac{1}{p-2} & \text{if } p > 2 \text{ and } p \not | q, \\ 0 & \text{otherwise.} \end{cases}$$

In [44] we proved the following assertion:

If
$$g \in \mathcal{M}_q$$
, $|g(n)| = 1$ for $n \in \mathbb{N} \cup \{0\}$,

(5.15)
$$U(x) := \sum_{n \in \mathcal{N}_{\tau}} g(n),$$

then

$$\left|\frac{U(x)}{N(x)}\right|^2 \le \sum_{d \in \mathcal{D}} \frac{L(d)}{d} \sum_{a=0}^{d-1} \left| q^{-M} S\left(q^M \mid \frac{a}{d}\right) \right|^2 + \frac{c_1}{\mathcal{D}} + o_x(1),$$

where M is an arbitrary integer in the interval $q^{-1}x^{1/4} \leq q^M < qx^{1/4}$, c_1 is a positive constant which depends only on q, the constant standing implicitly in $o_x(1)$ depends only on the choice of Y(x) (and does not depend on g), furthermore $\mathcal{D} \geq 1$ is an arbitrary real number.

Remark. As a consequence of the above assertion we have that (5.11) implies that U(x) = o(1)N(x) as $x \to \infty$.

5.3. The distribution of q-ary digits on some subsets of integers

Let \mathcal{B} be an infinite subset of $\mathbb{N} \cup \{0\}$ with cardinality function $B(x) = \emptyset$ and $\{b \leq x, b \in \mathcal{B}\}$. For $0 \leq l_1 < l_2 < \ldots l_h (\leq n), b_1, \ldots, b_h \in A$ let $A_{\mathcal{B}}\left(x \mid b \mid b\right)$ be the size of the set of integers $n \leq x$ for which $n \in \mathcal{B}$, and $e_{l_j}(n) = b_j \ (j = 1, \ldots, h)$ simultaneously hold.

Conjecture 5.4. For each choice of $(1 \le) l_1 < \ldots < l_h$ and $b_1, \ldots, b_h \in A$, such that $h \le c_1 \log N$, we have

(5.17)
$$\sup_{1 \leq h \leq c_1 \log N} \sup_{\substack{l_1, \dots, l_h \\ b_1, \dots, b_h}} \left| \frac{q^h A_{\mathcal{P}} \left(x \mid \frac{l}{b} \right)}{\pi(x)} - 1 \right| \to 0$$

as $x \to \infty$. Here \mathcal{P} is the set of primes.

Remark. Perhaps (5.17) remains valid extending the supremum for $h < \frac{1}{3}N$, say. It is known to be true for both of the extremal cases $l_h < N/3$, $l_l > N - N/3$. The first assertion is proved by R. Heath-Brown, the second follows from the prime-number theorem for short intervals.

5.4. Distribution of integers with missing digits in arithmetical progressions

Let \mathcal{H} denote the set of those integers n the digits $e_j(n)$ of which belong to $\{0,1\}$ in their ternary expansions. How they are distributed in arithmetical progressions?

Let $g \in \mathcal{M}_3$ be defined by $g(0) = g(1 \cdot 3^j) = 1$, $g(2 \cdot 3^j) = 0$ (j = 0, 1, 2, ...). Then g(n) = 1 or 0 according to $n \in \mathcal{H}$ or not.

Let

$$E(x,d,l) = \sum_{\substack{n < x \\ n \equiv l \pmod{d}}} g(n), \qquad E(x) = \sum_{n < x} g(n),$$

$$U(x;d,f) = \sum_{n < x} g(n)e\left(\frac{fn}{d}\right).$$

Then

$$E(x,d,l) - \frac{E(x)}{d} = \frac{1}{d} \sum_{f=1}^{d-1} e\left(-\frac{fl}{d}\right) U(x,d,f).$$

Let us restrict ourselves to the subsequence $x = 3^N$ (N = 1, 2, ...). Then

$$\left| \frac{E(3^N, d, l)}{2^N} - \frac{1}{d} \right| \le \frac{1}{d} \sum_{t=1}^{d-1} T_t,$$

where

$$T_f = \prod_{i=0}^{N-1} \frac{\left| 1 + \epsilon \left(\frac{f \cdot 3^j}{d} \right) \right|}{2}.$$

Assume that (d,3) = 1. Let $\frac{f}{d} = \frac{F}{\mathcal{D}}$, $(F,\mathcal{D}) = 1$. If $\left\| \frac{F \cdot 3^j}{\mathcal{D}} \right\| < \frac{1}{6}$, then $\left\| \frac{F \cdot 3^{j+1}}{\mathcal{D}} \right\| = 3 \cdot \left\| \frac{F \cdot 3^j}{\mathcal{D}} \right\|$. Hence it follows that

$$\max_{j=t,\ldots,t+s-1}\left\|\frac{F\cdot 3^{j}}{\mathcal{D}}\right\| > \frac{1}{6},$$

where $s = \left[\frac{\log d}{\log 3}\right] + 1$, and t is an arbitrary integer. Since $\frac{|1 + e(\alpha)|}{2} \le \frac{1}{\sqrt{2}}$ if $||\alpha|| \ge \frac{1}{6}$, therefore

$$|T_f| \le \left(\frac{1}{\sqrt{2}}\right)^{[N/s]}$$

Hence

$$\left| \frac{E(3^N, d, l)}{2^N} - \frac{1}{d} \right| \le \frac{c_1}{d} \cdot \left(\frac{1}{2}\right)^{\frac{1}{2} \frac{N \log 3}{\log d} - \frac{\log d}{\log 2}}$$

The exponent on the right hand side is positive if d is not too large, i.e. if

$$\log d < \left(\frac{(\log 2) \cdot (\log 3)}{2}\right)^{1/2} N^{1/2}$$

Conjecture 5.5. Let $\epsilon_x \to 0$ arbitrarily, d be an arbitrary positive integer coprime to 3, $d \le x^{\epsilon_x}$. Then

$$\max_{l \pmod{d}} \left| \frac{dE(x,d,l)}{E(x)} - 1 \right| \to 0$$

uniformly as $x \to \infty$.

Conjecture 5.6. For a given $q \geq 3$ let $\mathbb{B} = \{b_0, \ldots, b_{k-1}\}$ be a proper subset of A, $b_0 = 0$. Let $k \geq 2$. Let \mathcal{H} be the set of those integers n the q-ary digits of which belong to \mathbb{B} . Let

$$E(x, d, l) = \sharp \{n \le x, n \equiv l \pmod{d}, n \in \mathcal{H}\},$$

$$E(x) = \sharp \{n \le x, n \in \mathcal{H}\}.$$

Let $\epsilon_x \to 0$ arbitrarily, d run over those integers up to x^{ϵ_x} , for which (d,q)=1, and $fb_l \not\equiv 0 \pmod{d}$ holds for at least one $b_l \in \mathbb{B}$ for each $f \in \{1, \ldots, d-1\}$. Then

$$\max_{l \pmod{d}} \left| \frac{dE(x,d,l)}{E(x)} - 1 \right| \to 0$$

uniformly as $x \to \infty$.

References

- [1] Barnsley H., Fractals everywhere, Academic Press, 1988.
- [2] Indlekofer K.-H., Kátai I. and Racskó P., Number systems and fractal geometry, *Probability theory and applications*, eds. J.Galambos and I.Kátai, Kluwer, 1992, 319-334.
- [3] Indlekofer K.-H., Kátai I. and Racskó P., Some remarks on generalized number systems, Acta Sci. Math., 57 (1993), 543-553.
- [4] Kátai I. and Környei I., On number systems in algebraic fields, Publ. Math. Debrecen, 41 (1992), 289-294.
- [5] Steidl G., On symmetric representation of Gaussian integers, BIT, 29 (1989), 563-571.
- [6] Kátai I., Number systems in imaginary quadratic fields, Annales Univ. Sci. Bud. Sect. Comp., 14 (1994), 91-103.
- [7] Erdős P., On the distribution function of additive functions, Annals of Math., 47 (1946), 1-20.
- [8] Kátai I., Characterization of arithmetical functions, some problems and results, *Proc. of Number Theory Conference held at Université Laval in 1987*, W.Gruyter Co., 1987, 544-545.
- [9] Elliott P.D.T.A., Probabilistic number theory I-II., Springer, 1979.
- [10] Kátai I., Characterization of log n, Studies in Pure Math., To the memory of P. Turán, Akadémiai Kiadó, 1984, 415-421.
- [11] Elliott P.D.T.A., On sums of an additive arithmetic function with shifted arguments, J. London Math. Soc., 22 (1980), 25-38.
- [12] Hildebrand A., An Erdős-Wintner theorem for differences of additive functions, Trans. Amer. Math. Soc., 310 (1988), 257-276.
- [13] Indlekofer K.H. and Kátai I., On the distribution of translates of additive functions, Acta Math. Hungar., 61 (1993), 343-356.

- [14-19] Kátai I., Multiplicative functions with regularity properties I-VI., Acta Math. Hungar., 42 (1983), 295-308, 43 (1984), 105-130, 43 (1984) 259-272, 44 (1984), 125-132, 45 (1985), 379-380, 58 (1991), 343-350.
 - [20] Hildebrand A., Multiplicative functions at consecutive integers I-II., Math. Proc. Cambridge Phil. Soc., 100 (1986), 229-236, 103 (1988), 389-398.
- [21-24] Indlekofer K.-H. and Kátai I., Multiplicative functions with small increments I-III., Acta Math. Hungar., 55 (1990), 97-101, 56 (1990), 159-164, 58 (1991), 121-132.
 - [25] Wirsing E., The proof was presented in a Number Theory meeting in Oberwolfach, 1984.
 - [26] Bassily N.L. and Kátai I., On the pairs of multiplicative functions satisfying some relations (manuscript)
 - [27] Kátai I., On additive functions satisfying a congruence, Acta Sci. Math., 47 (1984), 85-92.
 - [28] Styer R., A problem of Kátai on sums of additive functions, Acta Sci. Math., 55 (1991), 269-286.
 - [29] van Rossum-Wijsmuller M., Additive functions on the Gaussian integers, Publ. Math. Debrecen, 38 (3-4) (1991), 255-262.
 - [30] Kátai I. and van Rossum-Wijsmuller M., Additive functions satisfying congruences, Acta Sci. Math., 56 (1992), 63-72.
 - [31] Daróczy Z. and Kátai I., On additive numbertheoretical functions with values in a compact Abelian group, Aequationes Math., 28 (1985), 288-292.
 - [32] Daróczy Z. and Kátai I., On additive arithmetical functions with values in the circle group, Publ. Math. Debrecen, 34 (1984), 307-312.
- [33-34] Daróczy Z. and Kátai I., On additive arithmetical functions with values in topological groups I-II., Publ. Math. Debrecen, 33 (1986), 287-292, 34 (1987), 65-68.
 - [35] Daróczy Z. and Kátai I., On additive functions taking values from a compact group, Acta Sci. Math., 53 (1989), 59-65.
 - [36] Daróczy Z. and Kátai I., Characterization of additive functions with values in the circle group, Publ. Math. Debrecen, 36 (1991), 1-7.
 - [37] Kátai I., Some problems on the iteration of multiplicative numbertheoretical functions, Acta Math. Acad. Sci. Hungar., 19 (1968), 441-450.
 - [38] Pollack R.M., Shapiro H.N. and Sparer G.H., On the graphs of I.Kátai, Communicators on Pure and Applied Math., 27 (1974), 669-713.
 - [39] Kátai I., On the iteration of multiplicative functions, Publ. Math. Debrecen, 36 (1989), 129-134.
 - [40] Erdős P. and Kátai I., On the growth of some additive functions on small intervals, Acta Math. Acad. Sci. Hungar., 33 (1979), 345-359.

- [41] Kátai I., Research problems in number theory, Publ. Math. Debrecen, 24 (1977), 263-276.
- [42] Halberstam H. and Richert H., Sieve methods, Academic Press, 1974.
- [43] **Delange H.,** Sur les fonctions q-additives ou q-multiplicatives, Acta Arithm., 21 (1972), 285-298.
- [44] Kátai I., Distribution of q-additive functions, Probability theory and applications, eds. J.Galambos and I.Kátai, Kluwer, 1992, 309-318.

Department of Computer Algebra Eötvös Loránd University VIII. Múzeum krt. 6-8. H-1088 Budapest, Hungary Department of Applied Mathematics Janus Pannonius University Ifjúság u. 6. H-7624 Pécs, Hungary