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RESEARCH PROBLEMS IN NUMBER THEORY II.

I. Katai (Budapest/Pécs, Hungary)

Dedicated to Professor J. Baldzs on his 75-th birthday

1. Number systems and fractal geometry

1.1. Let us fix an integer N (# 0,+1) and aset A = {ap = 0,a1,...,a:-1}
(C Z), which is a complete residue system mod N. Then ¢t = |N|. For every
n € Z there is a unique b € A and a unique n; € Z, such that n = b+ Nn;.
Let 7 : Z — Z defined by J(n) = n;. Let

max |a|
L = acA
IN|-1"
One can see immediately that
a) |7 ()| < In| if |n|> L,
and
b) Jn)e([-L,L] if ne[-L,L).

Consequently the sequence n, J(n), J%(n),... defined by iterating J is
eventually periodic. An integer 7 is said to be periodic if J*(r) = = holds
for some k > 0. The set P of periodic elements is finite, moreover P C [—L, L].

We say that (A, N) is a number system (NS) if every integer n can be
written as

n=bo+bN+.. +bNt (b €A
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in a finite form. (The uniqueness of the representation holds automatically.) It
is clear that (A, N) is a number system if and only if P = {0}.

Let G(P) be the directed graph over P (as the set of nodes) getting by
drawing the vertices 7 — J(m). Then G(P) is a disjoint union of circles (and
loops).

Let H C R be defined as those £ which can be expanded as

By using the terminology of Hutchinson (see Barnsley [1]) we say that H is the
z+b
N

attractor of the iterated function system {fy | b € A}, where f3(z) =

H={J {%H+%}

The relation

clearly holds.
In a paper written jointly by Indlekofer, Racské [2,3] we proved, in a more
general setting, that

(1.1) AMH+n NH+ny)=0

(A 1s the Lebesgue measure) holds for some pairs of distinct integers ny, na, if
and only if ny — ny € M, where M denotes the set of those integers m, which
can be written as

k
17’1226”'/\,”, (CVGB)I
v=0

where B := A — A. Thus M is the smallest subset X of Z containing 0 for
which

(1.2) X={J W -X+b)
beB

is valid.

One can prove furthermore that

U (H+n) =R

nez
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The base N with the given coefficient set A is said to be a just touching
covering system (JTSC for shorthand) if A(H + n; N H + ny) = 0 holds for
every ny # na € Z. According to our cited theorem, (A, N) is a JTCS if and
only if M =1Z.

Similar notions can be introduced in the group Z; of integer-vectorials
substituting the base N with a subgroup MZ; where M (Z; — Z;) is an
expansive linear mapping and by choosing a complete coset-representative set

of Zi/MZy (as a coefficient set).

We shall formulate some open problems in the simplest (non-trivial) case,
when k =1and N = 3.

1.2. Assume that N = 3, A = {0,a,,a2}, where a; = ¢ (mod 3), 7 =
= 1,2. We would like to give necessary and sufficient conditions for A, which
guarantees that (A, 3) is a JTCS.

If (a1,a2) = e, |e| # 1, then M contains only multiples of e, it is a proper
subset of Z, thus (A, 3) is not a JTCS.

Conjecture 1.1. If(a1,a2) =1, a; =i (mod 3), then (A,3) is a JTCS.

This assertion has been proved for all the correspondig values a;, a; in
[1,900] by Dr.A.Jarai on a SUN S10 workstation in Paderborn.

We can pose the above conjecture in the following equivalent form.

Let €x(n) denote the digits of the ternary symmetric expansion of n, i.e.

K

n=Y e(n)-3°,  a(n)e{-1,0,1}

k=0

Conjecture 1.1'. Assume that (a;, az) = 1, ¢; =i (mod 3) (z = 1,2).
Then for every n € Z there exist suitable z,y € Z such that n = ayz —asy and

@+ [3] [3]

For each fixed set A one can decide easily that M = Z or not. Since each
integer n can be expanded in the symmetric ternary system, and {0,b, -6} C B
if b € B, thus bZ C M for each b € B. Furthermore M = —M, since B = —-B.

holds for every v.

Assume that M is a proper subset of Z and ng is the smallest positive
integer which does not belong to M. Observe that

1
(1.3) no < 5 min(jai, lag, Id))
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Indeed, 3 Jno, consequently for every 0 # b € B one of ng+b, ng—b is a multiple
Nno +b no +b
3

of 3, consequently g M (for at least one sign), whence ' > ng,

which proves (1.3).
Theorem 1.1. Let (a1,a2)=1,ay =i (mod 3),d=az —a; =4 or 7 or
10. Then (A,3) is a JTCS.

d
Proof. We have to check only that the integers n € [1, 5] belong to M.

Let G(Z) be the graph getting by directing an arrow from n to n; if n = b+3-n,
with some b € B. We shall label this arrow by b. If n € M, then n; € M.

. 1-a; . .
Case d=4. ay is odd. Thus p := Lis even, consequently either u or

2 — p is a multiple of 4, furthermore

thus 1 € M, and so —1 € M.

Let Ap = {0,4,-4} (C B). The function J with respect to (Ao, 3)
maps odd numbers into odd numbers, thus for every odd n, Jx(n) € {-1,1}
if k£ 1s large enough. Thus every odd integer belongs to M. Furthermore,
2—as 2-aq

30“, 30" 1s odd, thus 2 € M, consequently —2 € M. Due to
(1.3), we are ready.

Case d=7. Now B = {0,+£7,+a;,xas}. Let Ay = {-7,0,7}. For the
expansion (Ag, 3) the nonzero periodic elements form a circle

1 — 2] — [3
3 — [ —

2‘—‘02+3'
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Due to (1.3) it is enough to prove that at least one of the elements —2,
-1, 1, 2 belong to M.

The numbers in 7Z have finite expansions in (Ag,3). Thus 7Z C M,
consequently b+ 21Z C M if b € B.
Let ay = | +21A, 1 € {1,4,10,13,16,19}. [ = 7 implies 7|a;, so it is

excluded.

1+4ay

- 3 - =3 — p. Thus

. Then

Let p:=

ﬂ SR

(—a2) (—a1)
3-p 1-p

To prove that M = Z, it is enough to show that oneof u, u—1, p—2, p—3
is either a multiple of 7 or belongs to the set bLéJB (b +21Z).

We can find a multiple of 7 if [ = 1,13,16,19. For the remaining cases
=410, let Ao = ¢+ 34;, €0 € {—1,0,1}.

Let | = 4. Then the arithmetic progressions n = 4,10,11,17 (mod 21)
belong to M. Furthermore p — 6 = =1 — é — Teg (mod 21).

If e = 0, the p — 3 =17 (mod 21), if o = 1, then p — 2 = 11 (mod 21), if
€o = —1, then p — 2 =4 (mod 21).

Finally, let { = 10. Then n = 4,10,11,17 (mod 21) belong to M.
Furthermore, g = 11 (mod 21) if ¢ = 1; p — 1 = 17 (mod 21), if ¢¢ =
=0; p=4 (mod 21), if ¢ = 1.

Case d=10. Let Ap = {0,10,--10}. Then the graph G(P) to the expansion
(Ao, 3) consists of three circles Gy, G2, G3 and the loop 0 — 0, where
G1:{1 - =3 = -1 =3 (= 1)}1
Go={2 = 4 — (-2) — (-49) (— 2)},
Gs=1{5 — =5 — (5)}.

Observe that under the mapping 7 the orbit n, J(n), ... goes to C; if (g, 10) =
=1;to C2 if (n,5) = 1 and 2|y; to Cs if (1,2) = 1 and 5|n; and to 0 if 10|n.
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Let us consider now the whole graph consisting of Z as nodes, and the

. . (b .
edges of which are determined by n 5 ny for n = b+ 3n, for all possible values
b € B. We shall prove that the components C;, C3, C3 are strongly connected.
Since

E (_al) 2 R -
—
3

is even, and it is not a multiple of 5, thus C3 — ... — Cs. Furthermore,
since

(—a1) 2+ a;
sy (2t
1(42)

2—ag

y 2 - a9
and one of the odd numbers 2 -gal , 3a_ is not a multiple of 5, thus

Since 5 fa;, therefore one of 2 + a;, 2 — a2, 4 — a;, 4 + a3 is a multiple of
5 and odd, furthermore

4—(11

- 5 [
| l
4+ a9

2—ag
3 3

therefore we can reach Cz from Cy:
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1
, we have

Letp,_—_

I

(=a2)

Since p is even, one of i, 4 — p is coprime to 5, thus

Cl ——)-‘--——r

Consequently, it is enough to prove that at least one of the elements of
C, UC, U C3 can be transformed to 0.

Let a; =1+ 304, 1 <1<30,!=(mod 3), (1,10) = 1. Then n € M, if
n = +l, (I +10) (mod 30). Since 10|u for { = 1, 10|4 — u for I = 19, we have
to consider only the cases [ = 7, 13.

The case | = 13. Then n € M if n = £7, £13 (mod 30). Assume that
A=¢o+3A;, 0 € {-1,0,1}. Then a; = 13+ 30¢o + 3 - 30A;. We have

p+1=-3-1060—304; andp+1eMife=10re = -1,
p—3=-7-1060 — 304A; and p —3 € M if ¢¢ = 0.

Since p + 1 or p — 3 € M, therefore 4 € M and we are ready.
The case |l = 7. We have n € M, if n = 27, £13 (mod 30). Let a; =
=7+ 30¢g — 30A4;. Then p = -2 — 10¢p — 30A4,.
If ¢ = —1, then p—1=7 (mod 30), p— 1€ M.
Ifeo= 1, then pu—5=-7-10—304;, p—5€ M.
If = 0, then p — 5= —7 (mod 30), p —5 € M.

Since 4 = —az + 3 - (5 — p), therefore 4 € M, we are ready.
The proof is completed.
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1.3. To explain the background of our conjecture let us consider the
structure of G(P) for Ap = {0,D,-D} with N = 3. Let ord(D) denote the
smallest positive t for which 3 = 1 (imod D) holds. From the Euler-Fermat
D .
7 —2-] coprime
to D. If ko € Fp, ko = gD + 3ky, €0 = 1 or -1, then k; € Fp. Its value can
be computed from the cogruence relation £ = 3k; (mod D). Repeating this,
we get kj = 3kj_.1 (mod D) (j = 1,2,..., ord(D)), kord(‘D)—l = ko. On G(P)
they are located on a circle, ko — ky — ... — korq(D)-1 (— ko).

theorem ord(D)|p(D). Let Fp denote the set of integers k € (—

(D)

Thus the elements of Fp are subdivided on G(P) into —o‘rpd('D)

disjoint
circles, each of which has ord(D) elements.
Let D = D, - Dy. If = €D + 3n;, then Dy|n implies that D;|n; and vice

versa, furthermore (Dl 'Dg) = (;gil, 'Dg).

Hence we obtain that, if D, is a unitary divisor of n then it is a unitary
divisor of J"(n) for every k.

Let Dyl € [ ] (I,D2) = 1. Let ._7('D11) = D1lh, D1l = €D + 3D 1,
whence | = €Dy + 311 Thus | = 3!; (mod D). Repeating the argument used
above we get that ¢(D3) elements D;! are located on G(P) on Sog(DDZ)) disjoint

or 2

circles each of which is of length ord(D;). By this we determined completely
G(P) for Ap. The structure of G(P) is very simple if D =prime and 3 is a
primitive root mod 3. Then it consists of a loop

Ol

and a circle of length D — 1. The following theorem is clear.

Theorem 1.2. Ifa, (or az) is a prime and 3 is a primitive root mod a;

(or mod a3). then for |d| < — Iall ([d| Iazl) ({0,ay,a2},3) is a JTCS.

Proof. Since d can be reached from each 0 # v, |v| < |—2-|
G(P) costructed with A,,, and d € M, thus v € M, and by (1.3) we are ready.

on the graph

1.4. Let K be a finite extension field of Q, I be the ring of integers in K.
Let a € I and A = {ap = 0,a;,...,a¢—1} (C I) be a complete residue system
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mod a. We say that (A,«a) is a NS in I, if each 8 € I can be written in finite
form
B=bo+ba+.. . +bat (b, € A).

(The unicity of the expansion is a consequence of the assumption that each
residue class mod « contains a unique element in A (see our paper [4])). One
can easily see that o can be a candidate for a base of a NS only if all the
conjugates a; of a satisfy |a;| > 1, and furthermore, if 1 — a is not a unit. The
sufficiency of these conditions has been proved for X' = Gaussian integers by
G .Steidl [5] and for each imaginary quadratic extension field by the author in

(6]-

Theorem 1.3. Let K be a quadratic imaginary ertension field of Q, a € I,
la] > 1, |1 —a| > 1. Then there is a suitable coefficient set A such that (A, a)
is a NS.

A was given explicitly in [6].

Conjecture 1.2. If K is a real quadratic eztension field, « € K is an
algebraic integer, furthermore |aj| > 1, |1 — aj| > 1 holds for a = a; and for
the conjugate ay, then (A, «) 1s a NS with a suitable coefficient set A.

The conjecture has been tested for several values of a for which min(|a|, |1-
—al, |az|, |1 — az]) is not too close to 1.

I do not know how to extend this conjecture for higher degree extension
fields.

2. Characterization of arithmetical functions

For an arbitrary additively written Abelian group G let Ag, resp. Ag
denote the classes of additive, resp. completely additive functions. A function
f: N — G belongs to Ag if f(mn) = f(m) + f(n) holds for each coprime
m, n and it belongs to A7, if the above equation holds for all pairs m,n € N. If
G is written multiplicatively, then we write Mg, Mg instead of Ag, Ag and
the corresponding functions are called multiplicative, completely multiplicative
ones. If G = R, then we write A, A* instead of Ag, Ay, and for G + C we
write M, M* instead of Mg, Mg;.

Let S be an R-module, containing at least two elements, defined over
an integral domain R which has an identity. In the set of all doubly infinite
sequences (...,S_j,Sg, S1,...) of elements of S we define the shift operator E
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whose action takes a typical sequence {s,} to the new sequence {sn4+1}. For
r

an arbitrary polynomial P(z) = 3" ¢;z7, P(E){sn} is defined as
j=0

P(E)s, = Z CjSn4j-

j=0

In this way we define a ring of operators which is isomorphic to the ring of
polynomials over R. Let I be the identity operator, and A := E — I.

Let Q, resp. R, be the multiplicative group of positive rationals and
positive reals.

If f: R; — G satisfies the Cauchy equation f(zy) = f(z) + f(y), then
restricting the domain to N, f is a completely additive function.

. . m
If f € Az (N — G), then its domain can be extended to Q; by f (—) =
n
:= f(m)— f(n). If f is continuous in Q, (it is enough to require the continuity
at the point 1), then it can be continuously extended to R,.

Our main question is the following: what further properties along with
(complete) additivity will ensure that an arithmetic function f is in fact a
restriction of a continuous homomorphism R; — G?

The first result of this type was found by P.Erdés [7] in 1946: If f € A and
Af(n) > 0 for all n, or f(n) — 0 (n — o00), then f(n) is a constant multiple of
logn.

A survey paper on this topic was written recently [8]. The book of Elliott
[9] contains a lot of important results. We are concentrating on unsolved
problems.

2.1. Additive functions: G = R
Conjecture 2.1. If f1,..., fr € A, and

(2.1) la:=filn+ 1)+ fo(n+2)+ ...+ fei(n+k) —0

as n — oo, then there exzist suitable contants cy,...,c; and additive functions
v1,..., U of finite support such that fi(n) = c;logn + vi(n),

Zc,' :0,

i=1

\

vi(n+1) =0 (n=0,1,2,...).

i=1



Research problems in number theory II. 233

We say that f € A (€ Ag) is of finite support, if it vanishes on the set of prime
powers p* for all but at most finitely many primes p.

Assuming that each fi(n) has the special form fi(n) = A\ f(n) (i =
=1,..., k) with some constants J;, the conjecture was proved by Elliott [11],
and by myself [10], independently.

An infinite sequence {U,}nen of real (or complex) numbers is called a
tight sequence if for every é > 0 there exists a number ¢ < oo, such that

supz'f{n <z | |Us| > c} < 6.
n>1

Let 7 be the set of tight sequences.

Let 7' denote the set of those sequences {U,,},,GN for which the relation

supz” ' {n <z | |Us—a(z)|>c}<$
21

holds for every 6 > 0 with a suitable constant ¢ = ¢(é) and with a suitable
function a(x).

It would be important to characterize those f; € A (i = 1,..., k) for which
the sequence [, defined in (2.1) belongs to T or 7’'. Perhaps the following
assertion is true.

Conjecture 2.2. If fi,...,fr € A such {l,} € T, then there ezist

k

constants Ay,...,Ax such that Y Aj = 0, furthermore for the funclions
Jj=1

hj(n) := fj(n) — Aj logn the conditions hold

k
(2.2) Z Z hj(p) 1is bounded in z,
j=1 Ih(pIgt
p<=x

k 2
(2.3) ZZ min(1, h? (p))
P

j=1

Remarks.

1. If (2.2), (2.3) are satisfied, then {l,} € T. This can be proved in a routine
way.
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2. A Hildebrand made an important step [12] by showing that {l, :=
:= Af(n)} € T implies that f has the decomposition f = Alog +h, where
h is finitely distributed.

3. Some further results have been proved in [13].
2.2, Charactlerization of n* as a multiplicative function N — C

In a series of papers [14-19] I considered functions f € M under the
conditions that A f(n) tends to zero in some sense. There were determined all
the functions f, g € M for which the relation

oo

1 .

(2.4) Z ~lg(n + k) = f(n)] < oo
with some fixed £ € N holds. In the special case k = 1, f,g € M" implies that
either ,

S, sl

n n

n=1 n=1

or f(n) =g(n)=n°*", o r€ER, 0<0o<1.

Hence it follows especially that

)

SRt Dol _
n=1 )

where A is the Liouville function, which shows that the size of integers n for
which A(n + 1) # A(n) is not too small.

A more explicit estimation from below for

Hn<z | fin+1)# f(n)},

where f € M, f(n) € {-1,1} was given by A.Hildebrand [20].
In our joint papers written together with K.-H.Indlekofer [21-24] we
deduced: if f,g € M* and

Y lgtn+1) - f(n)| = O(z),

n<r

then either ) |f(n)| = O(z), Y |g(n)] = O(z), or
n<r n<z

f(n) = g(n) =n°, 0<Res<l
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Conjecture 2.3. Let f.g € M, k € N such that liminfl Z |f(n)] >0,
T
n<z
and .
z Z lg(n+ k) = f(n)| — 0.
n<r
Then there exists U,V € M and s € C with 0 < Re s < 1 such that f(n) =
=U(n)n*, g(n) = V(n)n®, and

(2.5) V(n+ k) =U(n) (n=1,2,..)

holds.

Even a complete characterization of the couples U, V € M satisfying (2.5)
seems to be hard. One can assume always that U(p®) = V(p*) = 0 for p|k.
If U,V € M" is assumed, then all the solutions are Dirichlet characters (see
[14-19]).

Assume only the multiplicativity, and let us restrict ourselves to the case
U(n) € {0,1} (n = 1,2,...). As the example k¥ = 3, U(2) = V(5) = 1,
U4)=V(7)=1,U(32) = V(35) = 1 and U(p?) = 0 for all the prime powers
p® ¢ {2,22,2%} shows, there could be other solutions which are expected:
U(n) = 1 for every n coprime to k.

Conjecture 2.4. Let U,V € M, U(N),V(N) C {0,1} such that U(n) =
=Vn+k)(n=1,2,...), and U(1) = 1 and U(p®) = V(p®) = 0 for all primes
plk. Let No = {n | U (n) =0}, Ni = {n | U(n) = 1}. If Ng contains an n,
(n,k) =1, then Ny is a finite sel.

This conjecture has been proved, and all the solutions of V(n+k) = U(n)
were given for all the odd values k in the interval 1 < k < 201 by R.Styer. He
observed furthermore that N, was a set consisting only some of powers of a
unique prime. Perhaps it is always true.

I think furthermore that the existence of a prime power p? with the
property plk + 1, U(p®) = 1 implies that U(n) = 1 for (n, k) = 1. Perhaps the
more general assertion is true: if there exists a prime ¢, and positive exponents
a, B such that U(¢®) = V(¢”) = 1, then U(n) = 1 holds for all n coprime to k.

In 1984 E.Wirsing proved that f € M, Af(n) — 0 implies that either
f(n) = 0or f(n) = n* 0 < Res < 1[25]. As an immediate consequence we
get that if F(n) € A, then [|AF(n)|| — 0 implies that either ||F(n)|| — 0 or
F(n) — tlogn = 0 (mod 1) for every n, with a suitable 7 € R.

Assume we would like to find all couples f,g € M for which g(n + k)—
—f(n) — 0 (n — 00), where k is a fixed integer. Trying to reduce this problem
to Wirsing’s case (k = 1, f = g), the first problem is to determine the set of
those integers n for which f(n) = 0 (or g(n) = 0). Excluding the case f(n) — 0
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(which implies g(n) — 0) one can deduce that (f,g) is a solution if g(n) = n’,
f(n) = n*U(n), (2.5) holds and 0 < Re s < 1. The proof of this assertion is
not quite easy, it can be done by the method which was used in a joint paper
of N.L. Bassily and the author [26]. Namely in [26] the following theorem was
proved:

Let f,g € M, ¢ # 0 such that g(2n + 1) — cf(n) — 0 (n — 00). Assume
that f(n) /0 (n — 00). Then f(n) =n® 0 < Re s < and g(n) = f(n) for odd

n.
2.3. Additwve functions mod 1

T is considered here as the additive group R/Z.
We say that F' € Ar is of finite support if F(p*) = 0 for every large prime

For F, € Ar ((=0,1,...,k—1) let

(2.6) L,(Fo,...,Fr_1):=Fo(n)+ ...+ Feoa(n+ k= 1).

Conjecture 2.5. Let Lo be the space of those k-tuples (Fy,..., Fr_1),
F,e Ar (v=0,1,...,k—1) for which

(2.7) Lo(Fo....,Fie) =0  (n€N)

holds. Then each F s of finite support, and Lo s a finite dimensional Z module.

The domain of the functions F(n) := 7logn (mod 1) can be extended to
R, continuously, where R, is the multiplicative group of positive reals. Thus
F(n) are called restrictions of continuous homomorphisms from R, to T

It is clear that for each choice of 7, ..., 7,_; such that o +... +7_; =0
we have
L.(rolog., mlog.,...,7k—1log.) — 0 (n — o0).

Conjecture 2.6. IfF, € Ar (v=0,...,k=1),
LH<F‘O|"':FL'—I)_'O (nﬁoo)Y

then there exist suitable real numbers 7o, ..., Th_1 such that o+...+ 11 = 0,

and if H;(n) := Fj(n) — 7j logn, then

Lo(Ho,...,Hio1) =0 (n=1,2,...).

Remarks.
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(1) Conjecture 2.6 for £ = 1 can be deduced easily from Wirsing’s theorem.

(2) Conjecture 2.5 was proved under the more strict assumption that F, are
completely additive for k = 3 [27].

(3) Conjecture 2.5 for k = 2 has been proved by R.Styer [28].

(4) Marijke van Rossum-Wijsmuller treated similar problems for functions
defined on the set of Gaussian integers. See [29], [30].

Let K be the closure of the set {L,(Fo,..., Fix—1) | n € N}.

Conjecture 2.7. If Fy,...,Fr_y € A} and K contains an element of
mfinite order, then K=T.

Remarks.
(1) This assertion is clearly true for £ = 1.
(2) The conjecture fails for the wider class Fy € At even in the case k = 1.

2.4. Characterizations of continuous homomorphisms as elements of Ag for
compact groups G

We investigated this topic in a series of papers written jointly by Z.Dardczy
[31-36].

Assume in this section that G is a metrically compact Abelian group
supplied with some translation invariant metric p. An infinite sequence
{zn}52, in G is said to belong to &p, if for every convergent subsequence
T, Tn,, - . . the "shifted subsequence” 2, 41, Zn,42,. .. is convergent, too. Let
Ea be the set of those sequences {z,}5%, for which Az, — 0 (n — o) holds.
Then €5 C Ep. We say that f € Ay belongs to A (A) (resp. Ag (D)) if the
sequence {f(n)}3%, belongs to £4 (resp. &p).

We proved the following results:

(1) A5(A) = AG(D).
(2) If f € A (D), then there exists a continuous homomorphism ¢ : R, — G

such that f(n) = ®(n) for every n € N.

The proof of (2) was based upon the theorem of Wirsing in [25].

The set of all limit points of {f(n)}5%, form a compact subgroup in G
which is denoted by S;.

(3) f € AL (D) if and only if there exists a continuous function H : Sy — Sy
such that f(n + 1) — H(f(n)) — 0 as n — oo.
The main problem we are interested in is the following one:

Let f; € Ag; (j = 0,1,...,k — 1), and consider the sequence e, :=
= {fo(n), iln+1),..., fici(n+ k—=1)}.
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Then e,, € Sy, x ... x S;,_,. What can we say about the functions fj,
if the set of the limit points of e, is not everywhere dense in U? We shall
formulate our guesses only for special cases.

Conjecture 2.8. Let f € AL, Sy =T, e := (f(n),....f(n+ k- 1)).
Then either {e, | n € N} is everywhere dense in Ty, =T x ... x T, or f(n) =
= Alogn (mod Z) with some A € R.

Conjecture 2.9. Let f,g € A%, Sy =S, =T, en :=(f(n),g(n+1)). If
en is not everywhere dense in T?, then f and g are rationally dependent continu-
ous characters, i.e. there exists A € R, s € Q such that g(n) = sf(n) (mod Z),
f(n) = Alogn (mod Z).

3. On prime divisors

3.1. Let P(n) be the largest and p(n) be the smallest prime divisor of n.

Conjecture 3.1. For every integer k (> 1) there always ezists a constant
¢ such that for every prime p greater than c;

min | _max, POp+l)<p
P(O)<P 10

holds.

Some heuristical arguments support my opinion that this assertion is true.
Hence it would follow that the dimension of the space £ defined in Conjecture
2.5 is finite.

The problem is unsolved even for k = 2.

3.2. We say that p® is a unitary prime-power factor of n if p* | n,
and (%, p") = 1. We use the notation p*||n. Let furthermore (a,b) = the
greatest common divisor of a and b.

Conjecture 3.2. Let a be an odd positive integer and M(C N) be defined
by the following properties:

(1) {1,2,22,23,..} C M.
(2) If Po € M, then P, := 4Py +a € M.
(3) If Q1,Q2 € M and (Q1,Q3) = 1, then Q:Q> € M.

(4) If Q € M and p®||Q, then p* € M.
(5) If (n,a) > 1, then n g M.
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Then M = {n | (n,a) = 1}.
Remarks.

(1) The conjecture is true for small positive integers a.

(2) Let ¢ = p{*...p2". One can give a function L, explicitly, L, depends
only on the primes py, ..., p,, such that if {n < L, A(n,a) = 1} C M, the
M = {n, (n,a) = 1}.

(3) J. Fehér proved the conjecture for a =prime.

3.3. Let Y be a completely multiplicative function, taking values on N.
Let ¥ denote the k-fold iterates of it. We define a directed graph called Gy
on the set of primes by leading an edge from p to ¢, if ¢|9(p). For each p let E,
denote the set of those primes ¢ which can be reached from p walking on Gy.
Let furthermore K be the set of that primes which are located on some circles.

The properties of K and E, were investigated in [37], [38], [39] for the
case J(p) = p + a, where a is a constant. It was proved that K is a finite set,
and that for every prime p there is a k such that all the prime factors of 9;(p)
belong to K.

Conjecture 3.3. Let 9 € M* be defined at prime places p by 9(p) = ap+9,
where a > 2, 2a+b > 1, a, b integers, (a,b) = 1. Then
(1) Ep is a finite set for every prime p.
(2) K 1s an infinite set.

Conjecture 3.4. If U is defined by 9(p) = p? + 1, then there is a prime ¢
for which Eg is an infinite sel.

Perhaps E, is infinite, and then E, is infinite for every prime g.

3.4. We are interested in to estimate the longest interval on which a
suitable multiplicative function taking values +1 does not change its sign.

For an integer 2 let L, be the largest integer for which there exists f € M*,
f(n) € {+1,-1}, f(2) = —1 such that f(z+j) =1 (i =1,...,Lg). Itis

clear that L, < min {2m? — z}; since f(2m?) = —1 always holds, therefore
2m2>u

L, <2 ([\/%] + 1) -z < 2\/5\/5+ 1. Furthermore, Loz =0, Lama_; = 1.
On the other hand, if for all the integers z+j (j = 0, ..., k) one can find prime
divisors pj |z + j such that p; > k and pf Jz+j,the L; > k. In a paper written

jointly with Erdds [40] we proved that for a suitable sequence of z = z, can be
found such a k£ = k, for which

by > exp (L= ) Uoszy)logloglogz, )
2 loglog z,
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more exactly, from our Theorem 3, in [40], it comes out immediately from the
following

Conjecture 3.5. L,//x — 0 as v — oc.
Probably log L. /logx — 0 is true as well.

4. Values of multiplicative functions on some special subsequences
of integers

4.1. Let P; be the set of integers n > 2 the number of distinct prime
factors of which is < k. Let furthermore Py 4 := Pr + 1; Py = P. Let fur-

thermore /\:io be the class of those complex valued (completely) multiplicative
functions which are nowhere zero.

Several years ago, in [41] I formulated the conjecture that A(p+1) takes on
both the values 1 and -1 infinitely often, if p runs over P. Here ) is the Liouville-
function. If the equation p—2¢ = 1 has infinitely many solutions in primes, then
the same is true for p+1 = 2(¢+1). Since A(p+1) = AM(2)A(¢+1) = =A(g+1),
the conjecture hence it would follow.

By using this simple observation and Chen’s method in sieve ‘(see [42])
one can prove the following assertion: For every a € N there exists an infinite

sequence of pairs of integers Pz(") +1, Qg") +1€ P41 (v=1,2,...),such that

(4.1) M 1= a(@QY) +1)

holds true.
This implies the following assertion, evidently.

If f E.A‘:to, then either f(a) = 1 identically, or it takes on at least two
distinct values on the set Py 41 N[t,00) for every t > 0.

Conjecture 4.1. If f e/\jio and f is not identically 1, then f(p + 1)
(p € P) takes on at least two distinct values.

4.2. In [41] we mentioned that A(n?+1) (n € N) changes its value infinitely
often, which is a straightforward consequence of the fact that the Pell-equation
n? 4+ 1 = 2(m? + 1) has infinitely many solutions. This elementary observation
can be extended to n? + a, and for more general quadratic polynomials.
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Let F(n):=n%+ An+ B, A, B integers, F be irreducible over Q. Since
Il(n)

Fn+z)= F(n)+ F/(n)a + ——=2°, F(n+2) = F(n) + (2n + A)z + 22,
therefore

(4.2) F(n+tF(n)) = ®(n,t)F(n),

where

®(n,t) =1+ (2n + At +t*(n* + An + B).
Let us observe that

®(n,—-1)= F(n-1), ®(n,1)= F(n+1),
which, by (4.2), leads to the equations

(4.3) F(n+ F(n)) = F(n+ 1)F(n),

(4.4) F(n— F(n)) = F(n-1)F(n)
Let np be the smallest positive integer for which F(z) > 0 for all z > np. Let

M®) = MF* .= {F(n) |n=s,5+1,...}.

Theorem 4.1. Let f EMo. Then either f{M"F)] = 1 or f[M*)] contains

at least two elements for every s > nF.

Proof. Assume that there exists an s for which f[M(*)] contains only one
element. We denote it by ¢. From (4.3) we have

(4.5) f(F(n + F(n))) = f(F(n+ 1))f(F(n)),

which implies that ¢ = 1. Consequently, if f[M("#)] is a singleton, then
fIMOF)) = 1.

Assume that our theorem is not true. Then there exists a largest integer
n = ny (> nr) such that f(F(n)) # f(F(n + 1)). Then from (4.5) we have

L= f(F(no+ 1)) = f(Fno+2)) = ...,
f(F(ng)) = d, d # 1. Consider now (4.3) for n = ng. Since F(ng) > 0,

therefore ng + F(ng) > no, f(F(no + F(no))) = 1, f(F(no + 1)) = 1, whence
d = 1 follows. This contradicts to our assumption. The proof is finished.
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Let especially F(n) = Py(n) = n° 4+ a, « € N. Then g = 1. We can
rewrite ®(n,t) in the form

(4.6) ®(n,t) = (1 +tn)* + at”.

Corollary 1. Let f € M} such that f(®(no,to)) # 1 for a suitable choice
of ng €N, tg € Z. Then

f(Pa(n)) # f(Pa(n + 1))

holds for infinitely many n € N.

Proof. From (4.2) we deduce that {f(F(n)) | n = 0,%1,+2,...} contains
at least two distinct values. Observe that F/(—n) = F(n). If there is an ng > 0
such that f(F(no + 1)) # f(F(no)), then we can apply Theorem 4.1 directly.
Assume that f(F(0)) =d, f(F(n)) =c=1(n €N),d# 1. From (4.3) we get
that f(F(0)) = 1. Consequently {f(F(n)) | n =0,%1,...} = {1}, which is a
contradiction. It is clear that

{F(n)] =0,1,2,...} C{®(n,1) | n € N}JU{®(n,—1) | n € N}.

So we have
Corollary 2. Let a € N. If A\(n? + a) = —1 has at least one solution
n € Z, then A(n? + a) (n € Z) takes on both values +1, —1 infinitely often.

We can prove a similar result for a < 0.

Corollary 3. Let a < 0, where —a is not a square number. Assume that
A(n® +a) = =1 holds for some n = ng satisfying n3 +a > 0. Then A(n? + a)
lakes on both the values +1, —1 infinitely often.

Conjecture 4.2. Assume that a € Z and —a 1is not a square. If f EXAQ
satisfies f(n? +a) =1 (n € Z), then f(u? + av?) = 1 holds for every u,v € Z
for which u® + av? > 0.

5. g-additive and ¢-multiplicative functions

Let ¢ >2,¢ €N, 4 ={0,1,...¢ — 1}, the digits in the g-ary expansion of
a nonnegative integer n € WU {0} are denoted by e;j(n),

(5.1) n= ej(n)¢, ej(n) € A.

i
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A function f: MU {0} — I is said to be g-additive function, if f(0) = 0 and

(5.2) f(n) =

~e

<
I}
o

flej(n)¢’)

holds for every n € N. A function ¢ : NU {0} — C is ¢g-multiplicative, if
g9(0) =1 and

(5.3) g(n) = [T gtej (n)e).

0

<.
]

Let Ag, resp. M, be the sets of ¢-additive and ¢g-multiplicative functions. The
o0

sum of digit function a(n) := )_ e;(n) is a typical ¢g-additive function.
7=0

It is clear furthermore, that if f € Aq and z € C, then g(n) := 2/(")
belongs to M,. Thus e'"* as a function in n belongs to M, for every z € R,
and the sequence wn(z) = g(n), wy 1s the n-th Walsh function, belongs to M.

Questions for the value distributions of ¢g-additive functions are somewhat
easier to solve than in the case of additive functions. Nevertheless this field is
rich in nice and important open problems.

5.1. Distribution of ¢-additive functions

As H.Delange proved [43], ¢ € M, under the condition |g(n)| < 1 has a
nonzero mean value M (g), i.e.

23 oln) — Mg),

n<rc

if and only if 3 3 (g(ag’) — 1) is convergent, Y g(ag’) #¢ (j =0,1,...),
j=0a€A acA

and then

o g—1
M(g) = [[§ D (etag’) - 1)
j=0 | j=0

As a consequence he deduced that a function f € A, has a limit distribution,
if and only if

(5.4) >

Jj=0

<Z flag’ )) is convergent,

aEA
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(5.5) Y fagd) < 0.
j=0acA

In [44] the following assertion is proved.

Theorem 5.1. Let f € A,. Assume that there 1s a suitable function o(z)
such that

(5.6) Dim =ty <z, f(p) - e(z) < v} = F(),

oo T(z)

where F is a distribution function. Then (5.5) is convergent.

Let N= N, = [10“],
log q

N

(5.7) plx) =YY flag).

j=0a€A

Then a(z) — p(z) tends to a finite limit as 2 — oo. Especially, if a(z) = 0
identically, then (5.4) is convergent.

On the other hand, the convergence of (5.4), (5.5) are sufficient for the
existence of the limit distribution F with a(z) = 0, the fulfilment of (5.5)
implies the existence of a(z) (a(z) = p(x) s suitable) by which (5.6) holds
true.

The proof goes back to nontrivial estimates of exponential sums with prime

variables.

5.2. Mean values of g-multiplicative functions over the set P of primes

Conjecture 5.1. Ifg € Mg, |g(n)| <1 and
lim —— Z 9(p) (= My)
L=—00 7r(1;) bt '}

exists, then

YD (s(ag’) - 1)

Jj a€A

s convergent.



Research problems in number theory II. 245

Remark. The opposite assertion, the sufficiency is proved in [44]. Assume
from now on that g € My, |g(n)] = 1 for n € NU {0}. Let

(5.8) S(z|a) = Z g(De(al), e(B) := exp(27if),
(l,.:)x=l
(5.9) P(z):= Zg(p).
p<e

(5.10)

Conjecture 5.2. (5.10) holds if and only if
(5.11) 271S(z|r) =0 (z— o0)

for every r € Q.
Remark. In [44] we proved that (5.10) implies the fulfilment of (5.11).
Let

(5.12) M) =T, =

=#{p1,p2 €P, pa—p1=la =11, p1 =l (mod ¢™), p1 <z}

Conjecture 5.3. There eaists a constant 0 < § < 1/2 such that for

M =[6N], N = [loga:} we have
logq
513 TM) _ ____‘-L'_Hl -1 l C(I)Iq ‘
(5.13) ,1,.§,<qn hle T M) g 2 (l2 - &) g z
(t,.9)=1
Li#t2

with a suitable function e(z) — 0 (z — o), where

(5.14) H(d) :=H<1+——1—§)

»ld
rl
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In [44] we proved that Conjecture 5.3 implies the fulfilment of Conjecture 5.2.

Let Y (z) be a monotically increasing function such that Y (z) — oo and
logY (2
%g:(cl—) — 0 asz — oo. Let N; := {n € [0,z], p(n) > Y(z)}, where p(n)
is the smallest prime factor of n. Let N(z) = card N,. Let L be the strongly
multiplicative function defined on primes p with the relation

1
—— ifp>2andp [q,
L(p)={P—2

0 otherwise.

In [44] we proved the following assertion:

If g€ My, |g(n)| =1 for n € NU {0},

(5.15) U):= Y g(n),
neENz
then
U) [’ L) & - 2
o1 R IS s (04| §)f 45 o)

where M is an arbitrary integer in the interval ¢~ 'z'/4 < ¢M < qz'/% ¢, is
a positive constant which depends only on ¢, the constant standing implicitly
in 0;(1) depends only on the choice of Y(z) (and does not depend on g),
furthermore D > 1 is an arbitrary real number.

Remark. As a consequence of the above assertion we have that (5.11)
implies that U(z) = o(1)N(z) as £ — oc.

5.8. The distribution of ¢-ary digits on some subsetls of integers

Let B be an infinite subset of NU {0} with cardinality function B(z) =
=f{b <=z, b€ B} For0< Ul <lp < ...lp(<n)b,....,00 € Alet
Asg (z I l’)) be the size of the set of integers n < z for which n € B, and

er;(n) =b; ( =1,...,h) simultaneously hold.
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Conjecture 5.4. For each choice of (1 <)l; < ... <y and by,... by € A,
such that h < c;log N, we have

ith_P (.’L‘ ' 11)>
(5.17) ~ - 7

sup sup
1<h<e, log Nt dn m(x)
by by

-1{—-0

as v — 00. Here P is the set of primes.
Remark. Perhaps (5.17) remains valid extending the supremum for
1 .

h < §N, say. It is known to be true for both of the extremal cases I, < N/3,

I, > N — N/3. The first assertion is proved by R. Heath-Brown, the second
follows from the prime-number theorem for short intervals.

5.4. Distribution of integers with missing digits in arithmetical progressions

Let H denote the set of those integers n the digits e;j(n) of which belong
to {0,1} in their ternary expansions. How they are distributed in arithmetical
progressions?

Let g € M3 be defined by ¢(0) = g(1-3/) =1,¢(2-3)=0(j =0,1,2,...).
Then g(n) = 1 or 0 according to n € H or not.

Let
E(dl)= Y  gn), E@)=)_gn),
n=l n(fnf:d d) n<z
fn
Uz d, f) = Z g(n)e ( p )
n<r
Then

d-1
E(z,d,1) - E;”) :526( {;) U(z, d, f).
f=1

Let us restrict ourselves to the subsequence z = 3V (N =1,2,...). Then

EBN. 4 1
2N

L1
SZ; I8
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where _
.37
N-1 '1+E (fd >
R ) (A NPA)
j=0
. fF
Assume that (d,3) = 1. Let 1= D (F,D) = 1. If —, then

HF ,3j+l

“ “ Hence it follows that

F.3
D

51
6)

max
j=t,.. t4s~-1

logd
log 3

[le]] > 5’ therefore

1+e(e)] 1

7 S5l

] + 1, and t is an arbitrary integer. Since

|T|<( 1 )[N/SI
JRI G

EWan 1) o (1)

< L.
2N d|— d

where s = [

=

Hence

2

The exponent on the right hand side is positive if d is not too large, i.e. if

L9 . ) 1/2 )
logd < (Q‘MM) N1/2

Conjecture 5.5. Let ¢, — 0 arbitrarily, d be an arbitrary positive integer
coprime t0 3, d < z¢=. Then

dE(z,d,!)
E(z)

; - 1' ~0
I (mod d)
uniformly as z — co.

Conjecture 5.6. For a given ¢ > 3 let B = {bo,...,bx—1} be a proper
subset of A, bp = 0. Let k > 2. Let M be the set of those integers n the g-ary
digits of which belong to B. Let

E@,dl)=4{n<z, n=1(modd), n€eH}
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E(zx)=1{n<z, neH}.

Let €z — 0 arbitrarily, d run over those integers up to x°=, for which (d,q)=1,
and fby # 0 (mod d) holds for at least one b; € B for each f € {1,...,d - 1}.
Then

d
max M —_ l — 0
| (mod d) E(l’)
uniformly as z — oo.
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