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The saturation of Riesz means of the classical expansions was investigated
by 1.Jo6 3] (for Hermite-Fourier series), M.Horvath [4], [5] (for Laguerre and
Jacobi cases). In those papers the authors presented the class of functions
having optimal orders of approximation by Riesz means without using any
concept of moduli. In this paper we give some applications of the weighted
moduli introduced by N.X.Ky [7] for those problems.

We begin with the definition of the moduli. Let v(z) be a weight function
on a finite or infinite interval I = (a,b). This means that v(z) > 0 a.e. and
measurable on (a, b). ’

Let 1 < p < 0o. The space of all functions f for which v - f € LP(I) will
be denoted by X = X[I,p,v]. For f € X let

(1) w(fvé)x :|il|JPb Ilvh(z)Ahf(x)”LP[IA])

where

Anf(z) = f(x + k) - f(=),
va(z) = min{v(z),v(z + h)},
In={z: z,z+h €I}
In the proofs of our results presented later, we need

Theorem 1. Let (a,b) be ¢ finite or infinite interval. Let 1 < p < oo. Let
v be a continuous weight on (a,b), having the property that v is nondecreasing
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near a, nonincreasing near b and v(z) ~ 1 locally on (a,b). Then for any
f € X = X[I,p,v] the following statements are equivalent

(39) f is locally absolutely continuous on (a,b), and f' € X.

Proof. The part (i¢) — (¢) is proved in [7]. We prove the converse
statement. Suppose that w(f,w)x = O(6). Let a < a; < b < b. Since
w(z) ~ 1 (z € [a1,b1]). According the definition of the moduli we have
w(f,8)x(1,p,0) ~ w(f,6)L?[a;,b,], Where w(f,8)L» means the usual modulus of f
in L?. By the assumption we get w(f,6)rs[a, s, = O(6). Therefore using the
well-known fact about LP-modulus, we have that f is absolutely continuous
on [a;,b1) and +Axf(z) — f'(z) ae. on [a),b;). On the other hand v is
continuous on (a,b), vy(2) — v(z) (|h] — 0). So for a.e. z € (a,b) we have

1
ZA;.f(:c)v;.(:c) — v(z)f'(z) (Jh] — 0). Now, using the Fatou-lemma and

condition (7), we get

< sup zu(f,)x = O(1)

1
ZA;,f(x)v;,(x)
L’Uh] §—0+

lvf'llLeir Sl}ﬂ.i}(l)f

We have f' € X[I,p,0].
We turn to consider the Riesz means of Hermite expansion. For this

" 2
purpose let us denote X° = X[(—o00,00), p, e*F],1 < p< oo. Any f € X°
has the Hermite-Fourier expansion

f(2) ~ > arhe(2),
k=0
where hy is the k-th orthonormal Hermite polynomial and

(o)

ax = /f(z)hk(x)e-r’dz.

- 00

The n-th Riesz mean of parameter -21- is defined as

n k_
(2) R.(f,z) = (1 - f ) hi(z).
l;) — | axhs

The following theorem is true.
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Theorem 2. Let f € X!

pr L <p<oo. Then

¢ w— 1 1
3 R flixe < : .
@ Rl € s Y e ()
Proof. Denote by
Ea(f)xe = inf {[|f=pnllxe (n=0,1,...),
4 PnGPn P

where P, denotes the set of algebraic polynomials of degree at most n. Let
furthermore

K(ft)xg = int {IIf = allxg +tllg'llxg }

In (7] the author proved that

(4) w(f,8)xg ~ K(f,8)xg-

Therefore using the results of G. Freud [1] and [8, T.3.16] we get

(5) By so (0 o)

On the other hand Joé [3] proved that

c - 1
(6) If = Rafllxe < NS Z% /3 =E(f)xs-

We have (3) from (5) and (6).

Corollary 1. From Theorem 2 we obtain that for any f € X}? and 0 <
<a<1/2

(7) IRaf — fllxg = O(n™®) il w(f,6)x3 = O(5°).

After that it is natural to ask what happens if in Corollary 1 the condition
0<ac< -% is replaced by more general ones: « > 0. Indeed, in the case @ > %
it was proved in [3] that f =const. The case a = 1 is the most interesting. This
is investigated by the first author of this paper in [3]. But, as we mentioned in
the beginning of the paper, the results in [3] were presented without using any
concept of moduli. In the theorem just presented below we use the moduli (1).
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For the presentation of this theorem we need also the concept of Hermite-
conjugate function introduced by Muckenhoupt [6]. Here we recall only the
following simple definition: if f € Xg has Hermite series, then there exists a

function g € X2, which has the Hermite expansion

=}
g(l‘) ~ Z akhk_l.
k=1

~

The function g is called the Hermite-conjugate function of f, in notation g :=f.
We have

Theorem 3. Let 1 < p< oo. Let f € Xg and } (z) € X}?. Then

1f = Rafllxs = O (%) i w (?,a)xo _ 0(5).

Theorem 4. Let 1 <p < oo, f € X). Then
~ ~ 1 X
17 -Ra Ty =0 () i w(f6)x = 06)

Proofs of the theorems. Theorem 3 indeed follows from Theorem 1 and
(3, Theorem C]. Theorem 4 follows from Theorem 1 and [3, Theorem C’ and
Theorem 3].
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