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1. Introduction. Preliminary results

1.1. Let us consider a triangular interpolatory matrix X = {zxn} C [-1,1]
defined by

(1.1) —1<z2pn<2Zpo1n<...<Z2a<T1n<1, n=12....

The unique Hermite-Fejér (HF) interpolatory polynomial Hpm(f, X,z) €
€ Pnm-1 of higher order (m > 1, fixed integer) is defined by

(1.2) HUO(f, X, z10) = ot f(2kn) k=12,....n;t=0,1,.... m—1,

nm
where f € C (= f is continuous on [—1,1]). (m = 1: Lagrange-, m = 2: the
classical HF-interpolation.)

Sometimes we use the Hermite (H) polynomial Hnm € Ppm—1 uniquely
defined by

(1.3)  HO(f X, 2n) = fzkn), 1<k<n;t=0,1,...,m—1

(f(m=1) € C). One can prove the following relations

m-1 n

(14) Ham(f. X, 2) = D 3 fO(@in)hiknm( X, 2) |

t=0 k=1
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(1.5) Hnm(f,X,l') = Zf(l'k:n)hoknm(xiz) )

k=1

where, by obvious short notations, hy;, € Pppm— satisfy

(1.6) B (24n) = Burbis
and have the form

hu(z) = vie(z)(z — zi) £ (2) |

(1.7) - )
v(z) = § E exk (x—z¢)', e = ——(i))z—"“

£i(z) are the fundamental polynomials of Lagrange interpolation of the form

(1.8) lu(z)= —2n®) wn(@)=ca [[(z—2) . e #0,

wp(ze)(z — zk) i

(0<t,s<m-1,1<k,s<n,n=1,2,..).

When m = odd, a Faber-type result can be proved (cf. J.Szabados [1,[11]]
(the reference [11] in the survey paper P.Vértesi [1])).

However for m = even - what will be supposed from now - we can have
many matrices X with the good convergence property

(1.9) lim ||Ham(f, X,2) = f(2)[| =0V feC,

where || - || is the maximum norm in [-1, 1] (cf. L.Fejér [1,[1]] (m = 2), R.Sakai
and/or P.Vértesi [1, [12], [13], [14]] (m > 2)).

For the classical case (m = 2) the idea of p-normality was introduced
and applied in papers L.Fejér [1,{1]] and G.Griinwald [1,[6]]. In cases m =
=4,6,8,... the definition was generalized by Y.Shi [1,[2]]. The modification of
Shi’s definition turned out to be very flexible. Namely, let I, and I3, be two
proper disjoint subsets of J,:= {1,2,...,n} with |L15| = rip, [fon] = ron: =
=n—ry, with0<r, <n.

Definition. Let m be even. X is p-normal with parameters ry,, r3, and
m (shortly X is (p,r2,) or (p,r2n, m)-normal) iff with a proper p > 0 and
n > ng
(i)
Voknm(2) 2 ptl{viknm(z)| for 1<t <m—1, n>ng, |2| <1, if k € L1,
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(17)

> lz— J":n|6|haknm(z)|
kE’Zn

Z: |hoknm(-‘c)| H = O(l), lim

kGIZn 11— 00

’ZO,

for every 6 > 0, moreover

Z lhian(IN

kel2n

lim
n—00

Z: |vtkHM(3’)|ZZ‘n(I)
kelin

=0(1),

’zo,

1<t<m-1.

This definition was introduced in P. Vértesi [4]; when 73, = 0, we get back
Shi’s original definition. The classical case, treated by L.Fejér and G.Griinwald,
corresponds to m = 2 and 73, = 0; they called the matrices simply p-
normal. When ry, =0, (n = 1,2,...), the polynomials Hy,, are positive linear
operators; if ry, are "small” we can say that our system X is ”practically”
p-normal.

Using the above definition the following statement holds true for X (4 =
= {xi‘:"p)} (= the roots of the Jacobi polynomials P,(.a‘p)(:z:) € Pn \ Pn-1,
n=1,2,..,a B3> -1, fixed; cf. G.Szegd 2, Ch.4], say).

Theorem A. Let m be even fized, and let a, f > —1 satisfy the conditions

, 1 1 1 1
(1'10) Cnx~——2—;<(l,ﬂ<—'2'+;.—/1m.
Define pg > 0 by
. 1 m am 1 m Pm
(10 me=min(5-5 -5 5-5-5)

Then for arbitrary fized € > 0 with 0 < € < pg there ezists a constant G =
= G(a, B, m,€) such that X'*#) is (p,G,m)-normal with p = py — €. Here po
cannot be replaced by any po > po. Further, if I': = max(e, ) > Ay or y:=
:= min(e, 3) < Cp, the statement does not hold true.

The above theorem was proved in P. Vértesi [4]. However, if m = 2, even

the case v = —-;— —% = —1 was settled and was proved that X(~11) is the

only 1-normal matrix; cf. L.Fejér in [1,[8, p. 157 (-3,-5)]] and L. Pasquini [1,[9]]
(if m = 2, then vi(z) = 1, so (i) yields voe(z) > p whence by 1 = vo(zk) > p
we obtain relation p < 1; that means the result is the best possible).
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2. The case p =1 when m > 2

. . : 1 1
2.1. The first aim of this paper is to settle the case y = C,,, = 3T
We state using notation (1.11)

Theorem 2.1. Let m be even and let ¥y = Cy,. Then for arbitrary sequence
{Gp} with lim n=2/3G, = oo, the matriz X(®F) s (p, Gn, m)-normal with
n— 00

p=po—¢€, and 0 < € < py, arbitrary fized.

Remarks. 1. If a = 8 = C,;,, then pp = 1, whence p = 1 —¢. On the other
hand by 1 = vok(zx) > p(m — 1) vmor k(zk) = 9 (Vm-1k(x) = 1/(m — 1)!),
we get p < 1, i.e., again, our result is, in a sense, the best possible.

2. If m > 4, a possible question is to obtain other (1 — ¢, G, m) matrices
with G, = o(n?/3). (The proof of Theorem 2.1 with a small modification holds
when G,, = An?/3, A > 0 is big enough.)

2.2. Finally, using the original definition, 1.e. X is g-normal iff

Uoknm(m) > (—I)H-lgt!vtknm(x)
for lstsm—linZROIIIISIvlsksnv_

(=)

(cf. Y. Shi [1[2]]), we prove
Theorem 2.2. [f m > 4, even, then there is no 1-normal matriz.

Remark. Conditions (i*), using [1[2,(2.8)]], imply vox(z) > gt!|vek(z)] (cf.

(i)).
3. Proofs

3.A. Proof of Theorem 2.1.

3.1. We use many formulae and ideas of papers [1,[12],{13],[3] and [4]].
For sake of simplicity, we suppose « = 8 = C,,, = —= — —1- First we verify

2 m
(i) if Iin:= {k; min(k,n —k + 1):= K > Go/2, n > no}, whence obviously
|I1n| = G (for simplicity, G, =even).
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3.2. In [4,(3.26)] we obtained relations

(3.1) vok(z) > (1 — )t! ver(z) > 0, 1<t<m-1
if |k — j| <co, K > ko, n > ng, where |z — zj,|: = 11(1}321 |z = zkn|, no is chosen
SkESn

according to the fixed values of ¢y and ko. Relation (3.1) shows that we have
to prove (i) only when |k — j| > co. By [4, (3.27)] we get

em—Z,k(l' - Ik)m_z + em-l,k(x - xk)m—l =

3.2 ; -
3.2) :em—?k(l'—l'k)m-l{l—Ekl—'—‘?—;}, K > ko, n > ng,
' 1 -z

1 1
where € = g, = O(I_& + ;) Let 0<é6 <z <1, z>-1/2, say. Then for
the function L(z,zx): = {...} we get by 2K > G,

1 1Y\ [k +jllk -l n? n
L(z,zr) =1+ 0(1) ('}-c' + ;) TR = 1+0(1) 3 +ﬁ = 1+0(1)

(we used |z — z;| < c|k — j||k + j|n~2), whence

em—ak(z —2t)" "2+ emor k(e —2)™ " =

(33) .
=(1+o(l))em-zi(z—zg)™"°, k € L.
Another important relation proved in [4, (3.29)] is
2t-1 .
(3.4) A Z lesk(z — zi)|* < ean(z — :ck)m , 2<2t<m—-2
i=0

for any fixed A > 0 if ¢y and kg are big enough.
Then, by (3.3), (3.4) and (1.7)

2t—1

kT — i
tv(z)] .'Z:o‘ k ol

vok(2) T (14 %) em-zi(z — 2e)™ 2+ emo1k(z — zp)™"1 ~
Lem_zk(z — )" 2 1

< = <l—-¢ if KeI ’ E—il>ecq .
T (1+E)emap(z—z)™? 2+A ! i, lk—3jl>co
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So we verified (i) for 2 <t <m—1. Ift = 1, we write

vok(2) _ (1= 2) em—2(z — 2)™?

vie(z) T (14 %) em—zk(z — zk)™2

>l—¢, K€ lk—j|>co

if A is properly chosen (see (3.3) and (3.4)).

3.3. Now we verify relation (ii) for k¥ € I5,. Estimation

Z |hok(2)] }

kelan

= 0(1)

i1s an obvious consequence of

} = O(1) which was proved in [3,

n

3 [hoiz)

3.8 and 3.9]. Now let us prove the second relation in (ii).
We write with 5, \, 0

.5'1:=le—kahok(z)lsg...: Z ot Z Lo=T + Ty

kel lz-zk|<nn lz—zk|>na

Here by

kgl lhok(z)l
= o(1). Further, by (1.7)

_ Pn(m) m 1 . .
s Z (Pr'.(-'ﬂlc)) (z—zk)m—é(l'*'llkn El+.. .+

lz=zk|2na

ey < [ (P@ (R
+|em-—1”1 k' )S T],T_JZ{<PA(1'I:)> (Zlikl)} .

k=1 1=0

’ = O(1) we obtain relation T3 < n¢

5 lhot(2)]
k=1

On the other hand, in [4, 3.9. A] we proved that the sum Y {...} can be
k=1

estimated by €,, where ¢, \, 0. So with a proper 7, we obtain T3 = o(1),
whence S < Ty + T, = o(1) which was to be proven.

To get relations

2. |hu(z)]

k€lzn
calculations even the estimations

' = o(l) we remark that by standard

logn .
—gt— 1 is odd,
n
< . t=0,1,...,m—1
— t 1s even,
n

(3.5)

S Ihe(a)]
k=1
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can be verified (cf. [1, [1, Theorems 1 and 2]] and relations (3.19)-(3.25) in [4]).

Finally, we prove

2 lvu(2)l6 (=)

= O(1). By the formulae quoted
kE’?n

above one can get

> ()6 (=) <

k€lan

k,!
chlk—j|‘+1|k+j|’$c whenever 1<t<m-1.

k#j

3.B. Proof of Theorem 2.2.

3.4. We suppose that X is 1-normal. Then, by (i*) we get vok(z) > vik(z)
if t = 1, whence vok(z) — v1x(2) = em—1,k(z — z)™ ' > 0. Here m — 1 is odd,
so supposing that —1 < z; < 1, we conclude that

em—-1,k = 0, if I:L‘kl <1.
Now let t = 3. Again, by (i*) vek(z) — 3lva(z) = em-3x(z —z)™ 3+
+em—2,k(2 — :n:k)"“2 +0=(z- :zk)’"'a{em~3,k + em—2,k(z — xx)} > 0. Let
|zx| < 1. Then if em—_3 > 0, say, for a proper z with —1 < z < z, T = T, We
would get 0.5em—3% < {...} whence (z — z:)™3{...} < 0 - a contradiction.
The case ey, -3k < 0 is similar, i.e. we can conclude
€m-3,k = 0 , if |r;¢| <1 s
whence by 0 < (z — z)™ 7 3{...} = em—2k(z - z)™~% we get relations
em—-2,k 2 0 if I:L‘kl <1.
Using induction we obtain
(3.6) e =0 if Jzkl <1, t=13,...,m—-1 n2no,

and

(3.7) e >0 if Jzi| <1, t=2,4,....m=-2, n2no.
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Using relations (3.6) only, we state

(3.8) Zi‘yf(zk)zo, el <1, t=1,3,...,m—=1, n>ng.

Indeed, from
(3.9) (G (2) =

= Y A8 (@) () (@) 4 (), 21,
PSP Y

where A(I) = A(i1,12,...,1;) > 0, integer, s isreal, (s); = s(s—1)...(s—j+1)
(cf. [1[12, (4.1)]]), using (1.7) we get

0= e1r = (6™ (2))omr, = —mb(zs) . loel < 1,

L=ZTk
which is (3.8) for ¢t = 1. Similarly, with obvious short notations

(e;m )III
6

0=e3 = = ()3 + .. bt —mll = —ml) |zi| < 1,

whence we get (3.8) for t = 3. Using induction, we get (3.8) for the other
values of ¢, considering that in the sum each term but the last one contains at

least one factor Zg') where 1 < i, <t and odd, 1.e. by the induction condition
y =0.
Then relations (3.8) and

w$1"+1)(17k)

(r) = ——
(3.10) & (zr) = (r + Dw!(zk)

, 1<k<n r=0,12,....

(cf. [3]) applying for r =t = m — 1 yield that w%m)(:ck) =0, |zx] < 1. By
m > 4 we obtain that the polynomial ws,m)(:c) of degree n — m < n — 4 has

n — 2 zeros at least, whence wn(z) = 0.
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