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POINTWISE CONVERGENCE OF THE
CESARO MEANS OF DOUBLE WALSH SERIES

Gy. Gat (Nyiregyhaza, Hungary)

Dedicated to Professor J. Baldzs on the occasion of his 75-th birthday

Abstract. Let function f be integrable on the unit square. In 1939
Marcinkiewicz and Zygmund proved that the Cesaro means of the double
trigonometric series of f converges to f a.e., that is o(ma)f — f ae.
as m,n — oo provided the integral lattice points (m,n) remain in some
positive cone. The aim of this paper is to prove the dyadic analogue of this
result.

Intruduction and the theorem

The problem of a.e. Cesaro summability is very interesting in any local
field setting (Taibleson [7, p.114]). The dyadic case is no exception (Fine [3]).

For double trigonometric Fourier series Marcinkiewicz and Zygmund [4]
proved that o(m n)f — f a.e. as m,n — oo provided the integral lattice points
(m, n) remain in some positive cone, that is provided f~! < m/n < g for some
fixed parameter 3 > 1.
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It is known that the classical Fejér means are dominated by decreasing
functions whose integrals are bounded, but this fails to hold for the one-
dimenional Walsh-Fejér kernels. This growth difference is excerbated in higher
dimensions so that the trigonometric techniques are not powerful enough for
the Walsh case.

During the last decade several attemps have been made to obtain this
result with respect to the Walsh system. In 1992 Moricz, Schipp and Wade
[5] proved that @(ani 202)f — f ae. for each f € L}(Q?), when n;,ny — oo,
|ny — n2| < « for some fixed a. In [9,10] Weisz proved some inequalities of type
(HP, LP) for (0 < p < 1) with respect to the maximal operator of the Cesaro
means.

Let P denote the set of positive integers, N := P U {0}, and Q := [0, 1).
For any set E let E? the cartesian product £ x E. Thus N2 is the set of
integral lattice points in the first quadrant and Q2 is the unit square. For
(n1,n2) = n € N2 set Vn := max(n;,n3), An := min (n;,n;). Let E! = E and
fix j = 1 or 2. Denote the j -dimensional Lebesgue measure of any set E C Q7
by |E|. Denote the L?(Q7) norm of any function f by ||f|l, (1 < p < ).

w .
Denote the dyadic expansion of n € N and z € Q by n = )" n;2’ and
3=0

* . . k . .

z=) z;2777! (in the case of z = om k,m € N choose the expansion which
j=0 .

terminates in zeros). n;, z; are the i-th coordinates of n, z, respectively.

The sets I,(z) == {y € Q : Yo = 20, Yn-1 = Tp-y1} forz € Q, I, :=
:= I,(0) for n € P and Iy(z) := Q are the dyadic intervals of Q.

Let (wn,n € N) represent the one-dimensional Walsh-Paley system [2,6]

00
(w,.(:c) = kl_]o(.—l)"*’*, n e N). Denote by

n-1
1
Dp:=) wi, Kn:= ~). D (n€P)
k=0 k=1

the Walsh-Dirichlet and the Walsh-Fejér kernels.
It is well-known that [5,6]

5. f(y) = / f(2)Da(y + 2) = f + Daly)
Q

and

onf(y) = / F(2)Kaly + 2) = [ * Kn(y)
Q
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(y € Q,n € P) the n-th partial sum of the Walsh-Fourier series and the n-th
Cesaro mean of f, respectively (—F i1s the dyadic addition, that is z + y =

e}
= Y (zj + y; mod 2)277~1). Moreover, ([6, p.28.))
j=0

n if z€l,,
Dgn(l‘) = {
0 otherwise.
Dp(z) :=wn(z) Y ni(Daxsi () — Do (2)) = wa(z) Y ne(=1)"* Dax (z),
k=0 k=0
neN,z € Q.

It is also known [5] that for m = (m;,m;) € N? and f € L}(Q?) the
Cesaro mean of order m of the the double Walsh-Paley-Fourier series of f is
given by

omf = f*(Km, X Kn,),
where K, X Km,(X) = K, (21)Km,(22) , x = (z1,22) € Q%

Theorem 1. Let f € L'(Q?). Then O(nyna)f — f ae. asny,ny — oo,

where n1,ny € P and 7! < ny/ny < B for some fized parameter § > 1.

Proof of Theorem 1

Without loss of generality we can suppose that # = 27 for some v € P. In
this paper c denotes a positive constant depending only on § which may vary
at different occurences.

We need to introduce some more notations. First we need the following
decomposition lemma of type Calderon and Zygmund.

Lemma 1. [1,5, 6] Let f € LY(Q@%),A > ||f|l\-Then f = fo+ 3. fi, where
i=1

folloo < 4%, suppfa € L, (21") x I, (e87)) =2 Ju (=",25") € Q. kn €
EN), [ fo=0, |[falli <8AJn| (n €P). The sets J, are disjoint intervals,
In

<A1 /A

furthermore |Q] =

U Jn
nep

First we prove the following
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Lemma 2. Let 1, A,n € N.

or\ /2
sup |Kn|<c (——)
/ n224| I 24

I'-\[r+l

Let suppf C Ii(z1) x Ie(z2) =: J, f € LYQ?),A>k—-c (kA€
€N, x=(z,,z2) € @?), then by Lemma 2 we verify

Lemma 3.

21: 1/2
[ swpllonfiin € P An2 2% 5 <mujmr < ) < (—) 151l
Q3\J

Proof of Lemma 2. Let n € P,2° < n < 2%*! (a € N). Forn,s € N

o0 .
set n(®) .= Z n;2). Then by elementary calculations we have
J:J

nk, = Z > Dj+Ds.

3=0n(e+)<j<nle)

This implies

a 2'—1
nK,. = z Ng E Dn("“)i—j + Dn.
s=0 j=0
Denote by
2'-1
I\"n__., = Z Dn('+1)+j (Tl,S € N)
ji=0
Then we get

Inkn] <> [Kn,sl +|Dnl.
s=0

Suppose that @ € I; \ Ir41, a > 7, s > 7. Then the formula for the one-

dimensional Dirichlet kernel implies

2'-1
Kpo(2) = Y Dptsngj(z) =
j =0
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2°-1 T-1
= Z Wos41) 45(2) (Z(n(aﬂ) +j)k2k - (n(s+l) + j),?y)

j=0 k=0

Since s > 7, then (nC*+V 4 j), = ji (for k < 7 = 1), (nB+V) 4 5), =
Moreover, j < 2° and 2 € I, \ I;4; implies

oo

Wrtet1) 45 (T) TWpe4n) (2)w; (2) = whean (T )H(—l)j"' =
=0
=wn o (2)(=1)7 H (1) = Wy (T)wj e (z) (= 1) =
=741

SWhe+1) 45 r+1($)(—1)j'.

Consequently,

2°-1
CREED IR o (S i),

Since

')'._1

Z Wn(-+x)+1r+1 (Z Jk2L> =
71

= w,e+n(Z) Z (—l)J'wJ'r-H(:B) (Z jk2k> =
k=0

jO vvvvv jl—lE{O 1}

7—1
= w,(+n () Z Z wjr+i(z) (Z jk2k> =0

jr=0 Joydr=iidrtrije-1€{0,1} k=0
thus
Ii’,,_,(z) =
s—-1
= wn(.+1)(:c) Z wjr+1(l')21 = 22'w,,(.+1)(:c) H (1 + (—l)z").
301 -3g—1€(0,1} k=141

jr=1

(Set e; := (0,...,,0,1,0,...) = 2-i=1 € Q the i -th coordinate of e; is 1 , i € N.)
If 2 = 1 for some k, where 7+ 1< k <s—1, then K, ,(z) =0, that is

pHTelif z -9l e,
[Kn,s(l')l =

0, otherwise.
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Next, suppose that z € I, \ I;4;,a > 7, s < 7. The form [6, p.28.] D,(z) =
00

= wn(z) Y nk(—1)%* Dyx(z) gives that |Dy(z)| < 27 for z € I; \ Ir4,. Thus,
k=0

the definition of K, , gives |K, s(z)| < ¢2**7. That is,

a
1 1
/ sup [|nKp| < Z c27+c22’+’ +¢2"— <cla—T1+1)27.
PRV s=T+1 2

r\ir41

That is, we have the desired inequality

i =T+ 1)27  c(A-T+1)27 27
/ supllsnlsz(’ 5 2 > 2 <. 5 Az
24<n —A

’r\’r+l J

In case A < 7 we have

/ sup |Kp| < / sup |K,|+ / sup |K,| <
24<n 2r<n 27>n

lr\1r+l - lr\]r+l I, \Ir+l
27
su <ecLcy\/—~.
V2* / w"n =V oA
1, \lr+1

This completes the proof of Lemma 2.

Proof of Theorem 1. Define the maximal operator of the two-
dimensional Fejér means

Tf:=sup loafl  (f€L'(I%).

nEP2?
B=l<ny/n2g8

By the help of Lemma 3 we prove that operator 7 is of weak type (1,1). (This
means that for all f € L(Q?), A > 0 the inequality |T'f > A| < ¢||f||1 /A holds.)
This implies Theorem 1 by standard argument (see e.g [6]). Let f € L}(Q?)
A > 0, apply Lemma 1 and the o-sublinearity of operator T. Apply also that
[IKnlls < ¢ (n € P?) [6, 5, 8] implies that the operator T is of type (0o, o) ,
that is ||Tf]leo < ¢||flleo for all f € L*®(Q?). Consequently, [{Tfo > cA}| =0
if e > || folloo -

Hz € Q*:Tf > 2eA} < {Tfo > A} + Q0+
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[Lf 1
/ (;f:) S )‘Z / Tft— T ZBJ
Q’\n Q’\J

Denote Ej f(z,y) := 2% f f(u,v)dudv (z,y € Q, k € N). It is easy

Ie(z)x Ix(y)
to see that for n, m < 2F we have

Eo(f(wn X wm)) = Eo((wn X wm)ELf).

Since Ei, f; = 0 for n € P it follows that Eo(f;(wn, Xwn,)) = 0 for n;,ny < 255,
Then, the definition of the Fejér means gives that o(n, n,)fi =0 (n1,n2 < 2k,
This follows,
Tf;=
={suponfil:n€P? B <ny/ny < B}
={suplonfi| :n € P%, 7' <ny/ny < B, vn > 2%}
<{sup|onfi| :n € P2 B! <ny/ny < B, An> c2%}.

Lemma 3 gives B' = f Tfi < efilli- Thus [{Tf > 2eA}| < e|lflli/A.
QN\J,

Consequently, the operator T is of weak type (1,1). This completes the proof

of Theorem 1.

Finally, the rest is to prove Lemma 3.

The proof of Lemma 3. Set
suppf C J = Ix(z1) x Ie(22), f € L'(QP).

Decompose the set Q% \ J in the following way.
Q*\J =
= ((@\L@))x(Q\L(22))) U (1 (21)x (Q\Lk (22))) U ((Q\ L (21)) x Lk (22))
=: .]1 UJ2U']3

Introduce the following abbreviations

o(M) ._.
b'('x ) b sup Al
n€P2,8-1<n,) /n3<B
m<An Vas<M

Sm = sup
n€P3,8-1<n;/n3<8
m<An
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Set
JPt = (Ta(2) \ Ls1(21)) % (Io(22) \ Dog1(22)), (a,b=0,...k=1).
Then,

k-1

b

Jy = U J{J' .
a,b=0

If (y,2) € J and (u,v) € J{”b, then (y + v,z 4+ v) € (Ia \ la41) X (I \ Ip41) ,
consequently,

/ S| Kn (¥ + u)Kn,(z + v)|dudv =

Jet

= / Sm|Kn,(u)Kn,(v)|dudv
(Ta\la41)x(T6\1Ib41)

for all (y, z) € @?. Thus, by Lemma 2 and the theorem of Fubini we have

/ Sm /f(y, 2)Kn,(y + ©)Kn,(z + v)dydz|dudv <
Jeb J

< / £y, 2)] / Sl Fomy (4 + wKny(z + v)|dudvdydz < c / 1f12°8 /m.
J Job J

Consequently,

2k
/Sm|‘7nf| <e—|Iflh-
m
Jy

Next, we discuss the integral of the function above on the set J3.
Set e; := (0,...,0,1,0,...) = 2~~! € Q, the i-th coordinate of e; is 1
(1 € N). Alsoset for k,» € N, 7 >k, €:= ) €e; €Q, where ¢; € {0,1},

i=k
i=k,k+1,...,r.

Then,
J=I(z)x | Lsi(z2+e=JJe

¢, =0,1 €
i=k,..., r
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Divide the set J3 into disjoint sets in the following way. Set for each

a=0,1,..,k=1;b =k, k+1, ..., rand for arbitrary (but fixed) e := }_ ¢;e; € Q
i=k

152 = (L) \ L () % (I(z2 + O\ Tga(zs + 9)),

and

I = Ua(e)\ Tas1 (20)) x (Lsa(22 4 9))
That is,

Recall that g = 27,

Spalonfl <Y sup lonfl < st *|oufl.

— n€P2,8=1<n /ny<B
r=A 2r<azrtl

Introduce the following abbreviation
/f o (K, x Ky,) = /f(y, 2)Kn, (y + ) K, (2 + v)dydz.
L L

Suppose that A > k. Then,

(or+14+Yy , ,
/Sznlvnf|<2/ S [ 1o G, x B <
J

rAJ

< Z/ (zmﬂ) /fo (Kn, x Kn,)| <

rAJ c.:Olak, a7,

€ a=

+z/ ,‘(')r+l+7) /fo(l(nl x 1{'12) )::

a= 0_]4:

=:;‘;(B’+BQ).

k-1 r
< ZZ ( 0;/ '(’gr+ +7y /fO(I\",“ x Ko)|+
J e
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Next, by Lemma 2 (see also the similar case J;) we give an upper bound for

B!.
k-
‘sZ /lfl/s(”“’)lh'n, x Kn,| <
a=0b= kJ
k- ok/2
ZZ/M LEp LT
a=0b= kJ( .
Consequently,

ZZBI<C2A/2||f||1

r=A €

On the other hand, we give an upper bound for B?

B < Z/m j SN, x Kl <

a—OJ

<c2/|f|( ) Sc(g})%/m.

o 2k/2
S 3B < emplivih.

r=A ¢

In the case of A < k, that is k — ¢ < A < k (see the conditions of Lemma 3)
by the above written, the theorem of Fubini and Lemma 2 we have

/ Salonfl < 3 / SE [ 1o (n, x Kn)| <
J

r_A

This implies

< Z / (2r+1+1) /fo(I{nl XI{ng) +
J

r-k+l_,

r+l+y
+Z/ S5 ) /fo(K,,1 x Kn,)| <

r=A -’3

~k2

+14y
< C2k/2”f“1 +CZ/|f|/5(3 NKn, x Kn,| <

r=AY
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<alslh+cY [ (Z yed ) ron

r=A J j

k 2
2A/o”f”1

That is, in each case

2k/2
[ Sislonti < cliflhgazs.
Ja

In the same way we have the inequality above also for the set Jo. At last we
have

2k/2
[ Snlont) < clifls 2275
Q3\J
This completes the proof of Lemma 3.

The author wishes to thank the referee for his advices.
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