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INTEGRABILITY AND ['-~CONVERGENCE OF
TRIGONOMETRIC AND WALSH SERIES

S. Fridli (Budapest, Hungary)

Dedicated to Professor Jinos Baldzs on the occasion of his 75th birthday

Abstract. In this paper we summarize the recent results on integrability
and L!- convergence of trigonometric, Walsh and Vilenkin series by giving
a unified approach. We investigate this question from the aspect of the
coefficient sequence. Several conditions sufficient to conclude the integra-
bility and L'-convergence of the corresponding series will be presented for
the coefficient sequence. Since this is in close relation with the so called
Sidon-type inequalities a summary about them is also given. We focus our
attention onto this relation. Connections, similarities and differences will
be pointed out concerning the different approaches and systems. We also
show examples for consequences, generalizations and applications.

1. Introduction

Let (u,) represent the cosine, the sine, the trigonometric, the Walsh or
the Vilenkin system defined on [—m, ], or [0, 1]. Furthermore, let LP (1 < p <
< 00) stand for the function spaces LP[—m, ], LP[0,1] defined as usual, with
the corresponding norm denoted by || ||. Throughout this paper &, j,n,£ will
denote arbitrary natural numbers if not specified otherwise.

This research was supported by the Hungarian Ministry of Culture and
Education (MKM) under grant No. 3344/1994.
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We will consider the integrability and L!-convergence of the series

00

(1.1) Za" Up ,

n=0

where (a,) is a sequence of real (or complex) numbers.

Set Ly = {(fa)u : f € L'}, where (fn)u denotes the sequence of
Fourier coefficients of f with respect to the system (up). Then, the problem
of integrability of (1.1) is to decide whether (a,) € L, . Unfortunately, there
is no characterization known for the elements of L, expressed by the terms of
the sequences. However, there exist conditions described in terms of sequences

alone, such that the classes induced by them are proper subsets of L. They
are called integrability classes with respect to (up).

The other question investigated in this paper is the L!-convergence of
(1.1). It is known that (a,) € L, alone does not guarantee the convergence
of (1.1). Similarly to the integrability we are interested in conditions for
(an) which imply the L!-convergence of the series. Connecting the two
problems we introduce the following concept. A class of sequences is said
to be an integrability and L!-convergence class (with respect to (u,)) if it is
an integrability class and for each element (a,) of it the corresponding series
converges in L!-norm if and only if nlingo |an|||Unll1 = 0, where U, = Y up.

- k=0
Let us now show the connection of the above problems with upper estimations
n

Y U

k=0 1
type inequalities. The connection of such inequalities with integrability and L!-
convergence problems can be made clear by an Abel transformation. Namely,

for expressed in terms of coefficients c;. They are called Sidon-

n n—1
(1.2) Zakuk =ZAak Ur + a Uy,
k=0 k=0

(Aar = ar — ar41). Compare the last term with the definition of integrability
and L!-convergence classes.

Now we show how some classical results for the cosine system can be
interpreted by the above mentioned relation.

Let (un) be the cosine system, i.e.
1

uo(z) = 3 ug(z) = coskz (k>0,z€[-mn]),
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Then Uy is the trigonometric Dirichlet kernel Dy. It is well known (see e.g.
(44]) that the null sequences satisfying the condition

(1.3) > " lAak| (logk + 1) < oo
k=0

form an integrability and L!-convergence class. Obviously, (1.3) is a con-
sequence of (1.2) and of the estimation for the Lebesgue constants of the
trigonometric system

(1.4) IDnll; < C(logn +1)

(C denotes an absolute, and C, an only on p depending positive constant
may be not the same in different occurences.) It is clear that (1.4) is equivalent
to the Sidon-type inequality

n

Z ci Di

k=0

1
n+1

1
<(jlogn-+ }:l ”
1

(1.5)

Another classical example is due to Young [43] in 1913. Namely, he showed
that the convex null sequences, i.e. those for which

A%ap >0, lim ax =0
- k—o00 .

hold (A2%a; = Aay — Aak41), form an L'-convergence class. Kolmogorov
[19] obtained that the same holds for the set of quasiconvex null sequences

(o)
(Y k|AZa| < 00).
k=0

We note that this follows from Young’s result by considering that the
linear space spanned by the convex sequences is exactly the set of quasiconvex
sequences. On the other hand, it is easy to see that Kolmogorov’s result can
be deduced from Fejér’s estimation for the arithmetic means of the Dirichlet
kernels

(1.6)

1
k
Indeed, using the notation K = k—_l'_—l 3" Di, we have similarly to (1.2) that
j=0
n n—2

Zak coskz = Z Aay(k + 1)Ki(z) + Aap_1nKpn_y +a,D, .
k=0 k=0
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Then by (1.6) the result of Kolmogorov follows from the estimation

/IZak coslc;z:ld:v <
k=0

0

n-1
<C (Z(k +1)|A%ak| + n|Aan-i1| + (n + 1)(logn + 1)) :
k=0

As we can see both (1.5) and (1.6) induce L'-convergence classes. They can
be considered as special Sidon-type inequalities, i.e. upper estimations for the
integral norm of linear combinations of Dirichlet kernels.

Sidon [33] investigated this problem in general in 1939 and proved the
following inequality named after him

n
ECka

k=0

1
n+1

(1.7) S mx lek]-

1

We note that (1.7) is a generalization of (1.6) but not of (1.5).

In Section 2 we summarize the recent results on Sidon-type inequalities
with respect to several systems. In Section 3 we deal with different types of
integrability and L!-convergence classes.

2. Sidon-type inequalities
2.1. The cosine and the Walsh case

We will consider upper estimations for

n
S enn
k=0

where D, denotes either the trigonometric or the Walsh-Dirichlet kernel.

1
n+1

(2.1)

b

1
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Let us start with the trigonometric case. Concerning the improvements of
Sidons’s inequality we first mention the result of Bojanic and Stanojevié [7].
They proved that

n

chDk

k=0

(2.2)

n+1 =

1 n 1/p
~ P
<G (n+1ZI6kI) (p>1).
1 k
It is easy to see that (2.2) is not valid for p = 1. Indeed, if ¢, = 1 and
ck =0 (k < n) then the left side of (2.2) is of order logn/n while the right
side is of order 1/n with n — oc. Still, it is possible to balance the p > 1
and the p = 1 cases. Namely, Tanovié¢-Miller showed [36] that (2.2) can be
improved as follows
(2.3)
1
n+1

n

chDk

k=0

logo VAR S - p)l/P
<G (nﬂglcktw (g 2 lexl?)

k=0

(a>1,1<p<21/p+1/qg=1). We note that (1.5) does not follow even
from this estimation.
The above results can be written in a unified form. Indeed, if the coefficient

vector (ck)g"_1 is associated with the step function T',, defined on [0,1] as
follows

2" -1

I = Z Ck X[k2—n,(k+1)2-7)

k=0
(where x4 denotes the characteristic function of the set of real numbers A),
then (1.5), (1.7), (2.2), and (2.3) can be expressed in terms of the LP-norm
(1 £ p < 00) of T',,. For the indices 2" the right sides of (1.5), (1.7) and (2.2)
are respectively n||Fa|l1 , ||[[nlle and ||Tallp (p > 1), and (2.3) corresponds
to the mixed norm log a||Tnlls + a~*9||Tu]l, (@>1,1<p<2).

Schipp [31] improved the above results by showing

2" -1
1
(2.4) o | 22 xDe|| < ITall,
k=0 1

where H denotes the non-periodic Hardy space (see e.g. [18]). H can be defined
in several ways. One of them is based on so called atomic decompositions. A
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function f € L*°[0,1] is said to be an atom if either h =1 or there exists an
interval I C [0,1) such that

1
i) supph C I, i1) /h =0, i17) ||hlloo < 1|71
0

Then H is the collection of functions f that can be decomposed as f =

(o] (e o]

= Y Achi, where the hy’s are atoms, A;’s are real numbers and 3 |Ax]| < oo.
k=0 k=0

The norm is defined as

(=]
1 £ll = inf 3 Al
k=0
by taking the infimum over all such decompositions.

Schipp [31], [32] observed that an inequality similar to Sidon’s original one
for coefficients having zero sum and the uniform boundedness of the L!-norm
of the Fejér kernels imply that

2" -1

Z ce Di
k=0

< CITllx

1

holds if I'; is an atom. From here (2.3) follows by atomic decomposition.
Schipp showed that (2.3), consequently also (1.7) and (2.2), can be deduced
from (2.3).

Observe, that in (1.7), (2.2), (2.3) the given upper estimations do not de-
pend on the order of the coefficients. In other words, they define rearrangement
invariant norms in the n-dimensional eucledian space. The only exception is
(2.3). However, the Hardy norm is not rearrangement invariant but still has a
certain translation invariance property. On the other hand ||T's|j2 depends on
2"—1

S ceDi|l (see

k=0 1

[15] for details). Unlike the previous cases ||[,||g is complicated to express
directly by the ci’s. In order to derive a formula for the c;’s from (2.3) the
author [15] used the well known estimation (see e.g. [30])

the order of ¢x’s (0 < k < 27) in a quite different way as

1
Ifllx < C / fllog* Il +1]  (Fen)
0
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to obtain

’

n

chDk

k=0

(2.5)

n
<C S Jeil | 1+ log? x| _
1 k=0 n+1 Z'cJI

Seeing the above outlined process of the improvements of Sidon’s inequality
it is natural to ask how close are the recent results to the best possible one.
It is clear that (2.1) defines a norm in the n + l-dimensional eucledian space.
In this setting the best result would be the characterization, uniformly in n,
of this norm by a known norm. This problem was partially answered by the
author in [15]. Namely, it was shown that

n

E Cpy Dk
k=0

ZC'ZIcH 1+ log*

(2.6) max =
1 k=0 (n+1)- Z le;l

P€

(Here, P, denotes the set of permutations of {0,1,...,n}.) (2.6) means that
the best rearrangement invariant Sidon-type inequality is the one given in (2.5).
It was also shown that

2" -1
Ck
> Zlcﬂ 1+ log* -%——
27" 3 lejl
j=0

is equivalent to [|T'n||pr, where || ||s is the Orlicz-norm generated by the
N-function

1/2|z| if 0<|zl< 1,
M(z) =
1/2+ |z|log* |2] if |z|> L

Consequently, the best rearrangement invariant norm that can be used for an
upper estimation for (2.1) is an Orlicz-type norm. It was also shown in [15]
that the Orlicz space in question is isomorph with a rearrangement invariant
Hardy-type norm.

Sidon-type inequalities have also been investigated with respect to the
Walsh system. This is often referred to as the dyadic case. The Walsh system
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ordered in Paley’s sense can be defined as follows. Let r; represent the k-th
Rademacher function, i.e.

+1 if0<z<1/2,
ro(z) =
-1 if1/2<z<1

periodic with 1, and
re(z) = ro(2¥2) (k> 0).

Then the n-th Walsh function is defined by

(o]

_ Nk
wa = [ 2",

k=0

where n = 3" ny2* (nr =0 or 1), and the Dirichlet kernels are defined by
k=0
the sum
k-1

Dy = ij.

j=0

The Walsh equivalent of (2.2) has been proved by Modricz and Schipp [26].
Schipp [31] proved the dyadic version of (2.3). Here, ||Ty||% has to be replaced
by the so-called dyadic Hardy norm of I',,. The dyadic Hardy space H and its
norm can be defined by means of dyadic atomic decompositions in a similar
way as ‘H. The only difference is that by interval we mean dyadic intervals
in the dyadic case, i.e. sets of the form [k27",(k + 1)27") (0 < k < 27).
(In connection with the dyadic Hardy space we refer to [30].) The author [16]
showed that (2.5) and (2.6) are also valid for the Walsh case. As a summary
we may say that the same program has been carried out for the Walsh system
as for the cosine system.

We note that the results for the Walsh system can be generalized for
Vilenkin systems of bounded type. (See Section 3.3 for the definition of Vilenkin
systems.) However, this is not true for the unbounded case. Indeed, as it was
proved by Price [29], the integral norms of the Fejér kernels with respect to a
Vilenkin system of unbounded type are not uniformly bounded. Consequently,
Sidon’s inequality fails to hold for these systems.
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2.2. Generalizations

First we mention a result of Mdricz that is useful in several applications.
He [21] generalized (2.2) by showing

1/p
o [z ()

O<y<ml<p<2,1/p+1/g=1)

for the trigonometric Dirichlet kernels. He obtained similar results for the
modified conjugate trigonometric kernel

- _ cos(k+1/2)z
Di(z) = - 2sin(z/2)
His result for Dj is a generalization of the one due to Telyakovskii [39].

Another possibility to generalize the inequalities of Section 2.1 is to take
the so called shifted variant of (2.1), i.e.

N

Z C):Dk

k=K

(K < N).

1

In connection with it Méricz [21] showed that

<C (1+logN % +1) Z ek |+

N 1/p
+Cp (N K+1)< el )
A - -
Py N-K+1

(2.8)

holds for the trigonometric Dirichlet kernels. Similar inequalities have been
proved for the modified conjugate ([21]) and for the modified complez Dirichlet
kernels ([22])

E}(z) = Zeikr n eixl = exp (i(n + 1/2)2).

= 2isin(z/2)
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(2.8) has been improved by Buntinas and Tanovi¢-Miller in [9] as follows

<C,,(log ZICL|+V1/q(Z|6‘|p> )

k=K k=K

(2.9)

(1<p<2, 1/p+1l/g=1 0<v<py, p2N).

Finally, (2.9) was improved by the author in [15]. Namely, it is shown
there that

-
> e+

SC(log
. N - I&+1kh

N
S i
k=K

(2.10)
|ck|

N
+ Z lex] | 1+ log* N )
= (N =K +1)7 % |o
i=k

The fact that (2.10) is an improvement of both (2.8) and (2.9) is a consequence
of the following inequality proved in [15]
(2.11)

> af+

k=K

Z ck+px Dk

pEPN K

N
>C('°g7v—1r1

N
Ck
+Z]ck| 1+ log* o ~ )
2 el

k=K (N - K +1)-1

(Again, Py_k denotes the set of permutations of {0,1,..., N — K}.) Conse-
quently, (2.10) can be considered as the best rearrangament invariant shifted
Sidon-type inequality for the cosine system. Clearly, (2.10) and (2.11) are
generalizations of (2.5) and (2.6).

Concerning the Walsh system we note that an inequality similar to (2.7)
was proved by Moricz in [23]. The dyadic equivalents of (2.10) and (2.11) have
also been obtained by the author in [16].

Inequalities (1.7), (2.2) and their dyadic versions have been generalized for
the multidimensional case by Telyakovskii [40], A.A. Fomin [12], and by Méricz
and Schipp [27] respectively. For their shifted trigonometric versions see [21].
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Concerning other systems we mention that Schipp [32] was able to extend
his results (2.3) for several systems satisfying certain properties, that he called
F- and S-properties. We say that a system (u,) defined on [0, 1] satisfies the
F-property (Fejér-property) if

2" =1
L
k=0

<G,

1

1
on

n

where U, = 3 u;. Similarly, we say that the system (u,) has the strong
k=0

S-property (Sidon-property) if

2" -1
. 1
(2.12) on Z xUrye] <C Osrrlxczgn fex
k=0 1
2"—1
holds for any £ and )  c¢; = 0. Observe that (2.12) is a shifted version of
k=0

Sidon’s inequality (1.7) for the system (u,). However, it is required to be
satisfied only for coefficients with zero sum. It is easy too see ([32]) that if (u,)
has the character property uu; = uz4¢ then the inequality corresponding to
(1.7) implies (2.12).

If (2.12) holds only for ¢ = j2" then (u,) is said to satisfy the dyadic
S-property. As we mentioned in the previous section, these properties are in
strong connection with the atomic and dyadic atomic decompositions of the
corresponding I', step function. On the basis of this connection Schipp [32]
proved that if (u,) has the F-property and the strong S-property then the
following Sidon-type inequality holds for it

.

1

57 |22 Ve[| < ClITalbx.
k=1 1

(Recall that H stands for the non-periodic Hardy space.)

On the other hand, if (u,) has the F-property and the dyadic S-property
then

n

S
k=1

(Recall that H stands for the dyadic Hardy space.)

(2.13) < C|ITalln-

1

1
on
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Several examples are given in [32] for systems satisfying the F- and S-
properties. For instance, the cosine system has the F- and the strong S-
property. The complex trigonometric system has the strong S-property but not
the F-property. This is the reason why modified kernels (see e.eg [21], [22]) are
used for the complex trigonometric and for the sine system (conjugate kernels).
The obvious example for a system having the F- and the dyadic S-property is
the Walsh system. It is the product system of the Rademacher system, which
can be considered as a special UDMD system. The concept of UDMD systems
can be defined as follows. Let (p,) be a unitary dyadic martingal difference
(UDMD) sequence. That is, ¢n is a complex function defined on [0,1) with

1) |¢n| = 11
1) fgo:O forall I €7,,
I

iil) ¢n is constant on every interval belonging to T, 41,

where I, is the set of dyadic intervals of the form [k27", (k+ 1)27") (0 <
< k < 2™). Then the product system (3n) of (¢n) is defined as follows

(=]
llbn = H 80;:”:’
k=0

o)
where n = 5 n;2" is the binary form of n. Schipp [32] proved that the
k=0
product system of any UDMD system satisfies the F- and the dyadic S-property.
Consequently, (2.13) holds for these systems.

Our last example ([32]) for a system satisfying the F- and the dyadic S-
property is the Ciesielski system. For the definition see e.g. [29]. Here we only
note that it relates to the Franklin system as the Walsh system relates to the
Haar system.

3. Integrability and L!'-convergence classes
8.1 Sidon-type classes for cosine and Walsh series

In this section we will use the concepts of integrability and L!-convergence
classes defined in the introductory part of this paper. We will show how Sidon-
type inequalities generate such classes.
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Telyakovskii [39] was the first to discover the connection between Sidon’s
inequality and L!-convergence classes. On the basis of (1.7) he proved that
the collection of null sequences (ay) for which there exists a monotonically

o0
decreasing nonnegative sequence (Ag) such that )  Ap < oo, and |Aai| <
k=0

< Ay, is an integrability and L!-convergence class for even trigonometric series.
This class 1s often referred to as Telyakovskil class. It is easy to see that this
class contains the set of quasiconvex null sequences properly, but does not
contain all of the sequences satisfying (1.3).

We note that using (2.2) and Telyakovskii’s method C.V. Stanojevi¢ and
V.B. Stanojevié [34] enlarged this class by showing that the condition

also generates an integrability and L!-convergence class.

The above classes have been extended by several authors by a method
based on Sidon-type inequalities. The general construction goes as follows. Let
(ux) denote the cosine or the Walsh system, and let Dy be the corresponding
Dirichlet kernel. Since (see e.g. [44], [29])

(3.1) D@ <CT  (=#0)

we have by (1.2) that the pointwise convergence of

o]

(32) Zak Uk

k=0

[
is equivalent to the pointwise convergence of " AaiD; provided lim a, = 0.
k=0 n—oo

o
Then we have by (3.1) that if Y |Aak| < oo, i.e. if (ax) is of bounded
k=0

variation, and lim a, = 0 then (3.2) converges pointwise except possibly at
n-—o0

z=0.
Now let X be one of the spaces: LP (1 < p < o0), logaLl+
+a~ 9P (a > 1,1 <p <2 1/p+1/g=1),H (in trigonometric case),
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H (in Walsh case), Las (the Orlicz space defined by the Young function M
(see Section 2.1)). By the results presented in Section 2.1 we have

n+1
1 2 -1
(3.3) > > AaDif| < Cx|9llx,
k=2n

1

271
where Q, = 3" Adgnik X[k2-n (k+1)2-7):
k=0

Clearly,

(3.4) D2 |llx < o0
n=0

o0
implies Y~ 2"||Qq4|]1 < 00, that is (ai) is of bounded variation. Then (3.4) and
n=0

lim a; = 0 are sufficient to conclude that the pointwise limit of (3.2) exists.
n— 00

It is also easy to see that under these conditions the limit function is integrable
and its Fourier series is (3.2). In other words, the class generated by these two
conditions is an integrability class. Let us denote it by X'.

In order to prove that X’ is a convergence class suppose for a moment
that X # H, H. Let (ai) satisfy (3.4) and nl_il& a, = 0. The following is a
simple property of the X-norm. If ¢ is a restriction of h € X , i.e. suppg C
Csupph, g(z) = h(z) (2 €suppg), then |lg||x < [[h||x. Especially,

2" -1

Z Aagn ik Xk2-n,(k+1)2-")
k=¢

(3.5) Slinllx  (0<£<27).

X

00
From here the L!-convergence of >~ Aai Dy follows immediately. Then we
k=0
have by (1.2) that the L!-convergence of (3.2) is equivalent to lim a, ||Dyl|; =
n— 00

= 0. This means that X is an L!-convergence class.

The class corresponding to X = LP (1 < p < oo) was introduced by
Fomin [13] for the cosine system and now called as Fomin class. Its Walsh
version was obtained by Méricz and Schipp [26]. These classes were extended
by Tanovié-Miller [36] by taking X = loga L' + a™/9LP (a >1,1<p <
<2,1/p+1/q=1). The case X = Ly determines an even larger class, which
was proved by the author for the cosine and also for the Walsh system [15],
[16]. Among these classes the latter is the only one that subsumes the class
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determined by (1.3). We note that in all these cases the condition that defines
X can directly be expressed by the coefficients.

The above consideration does not work whithout changes for X = H, H.
The reason behind it is that (3.5) holds for Hardy spaces only in a modified
form
(3.6)
2"-1

> |Aazny

k=t

Slllx  (X=H,H,0<£<2").
X

X[k2-n,(k+1)2-n)

Using (3.6) convergence classes, larger than the ones listed above (see Schipp
(32]) but subsets of X for X = H, H, can be defined for the cosine and for
the Walsh system by

n—00

oo}
Yo 2Iulllx <o (X =H,H), lim a; = 0.
=0

A simple observation shows that the first part of the above condition can be
relaxed as follows

> 2" Qnllx < oo, Jim 2| |Q]llx =0 (X = H, H).
n=0

Unfortunately, as it was mentioned before, unlike the other cases ||A,||# and
}|Anlln are difficult to express by the Aay’s.

Observe that in the construction of X' the indices 2" play a special role.
These indices come from the inequality (3.3), which is a consequence of (1.7),
(2.2), (2.3), (2.5), (2.3), and their dyadic versions. It is clear that a similar
construction is possible if the indices 2" are replaced by a sequence (n;) for
which ng41/(nk+1 — ni) < C. In order to enlarge the above classes by getting
rid of this restriction for the indices one has to take the shifted inequalities (2.8),
(2.9), (2.10). The one that corresponds to (2.9) was introduced by Buntinas
and Tanovié-Miller [9] for the cosine system. A larger class induced by (2.10)
was defined by the author in [15] for the cosine system. It is the collection
of null sequences (ar) for which there exists a strictly increasing sequence of
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natural numbers (N;) such that

i(log ———————NHI Nji_lAak +
N:v1 — N

Nj41-1 IA(I |

+ Aapl | 1+ logT k < 00

(3:) &, 1| 1re L
=N (Njp1 =N~ 3 |Aa
{=N;
and
Njp1~1
lim log ————— Aap| =0.
Jmeo NJ+1 - NJ kZNJ I |

The dyadic version of conditions (3.7) is given in [16].
3.2. Connections with other classes

In the literature there are several examples for integrability and L!-
convergence classes which do not rely on Sidon-type inequalities. In this section
we cannot present the history of the development of such type of classes. We
only deal with three of them which subsume many of the others and are of
special interest. Some historical hints will also be given.

First we mention the class due to Telyakovskii [37]. Namely, he proved
that the conditions

oo |[n/2) 00
Aa,_ — A .
(3.8) E E Cnk Onti < 00, E |Aan] < 00, nlingo a, =0
=1

n=2|k=1 k

([z] denotes the integer part of z) induce an integrability and L'-convergence
class for the cosine system. The speciality of (3.8) is that however it was
introduced in 1964, there have no proof been given, that any of the convergence
classes constructed since then is an extension of it. We note that (3.8) is
originated from a condition of Boas [6].
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Very recently Buntinas and Tanovi¢-Miller [10], and Aubertin and Fournier
[1] showed independently that the class of null sequences (a;) satisfying

oo (#1127 -1 1/2
(3.9) (z k Z |Aan|) ) < 0o

j=1 n=j2m

is an integrability and L!-convergence class for even trigonometric series. The
same result was proved for the Walsh system by Aubertin and Fournier in [2].
In connection with (3.9) we note that it is the result of a several steps refinement
process of conditions of similar type. The class determined by (3.9) subsumes
many of the previously known convergence classes, such as (1.3), X when
X=ILP(1l<p<oo)orlogal'+a I[P (a>1,1<p<2 1/p+1/g=1).

Our last example is an extension of (3.9) given by Buntinas and Tanovi¢-
Miller in [10]. They showed that the condition of (3.9) can be relaxed as follows

[ 2

[+ 1/
3.10 Qjomak — A(; m|? < 00.
(3.10) 2 005“133’5m<zll j2mak = (i 41)2 I)
= ]:

Next we show that the classes determined by (3.7) and (3.8) are incompa-
rable with those corresponding to (3.9), (3.10). Aubertin and Fournier [2] gave
an example for showing that (3.9) cannot be deduced from (3.8). Namely, an
easy computation shows that the sequence a; = 1/(n+1) (2" < k < 2"+1)
satisfies the condition of (3.9) but not of (3.8). It is also easy to see that this
sequence does not satisfy (3.7). More generally, for sequences (ax) which are

00

constant on lacunary blocks (ni, ng41] (3.8) reduces to > logng |Aap, | < oco.
k=0

We note that similar estimation can be obtained for (3.7) (see [16]). On the

1/2

O o0

other hand (3.9) is equivalent to 3 _ (Z |Aan7|2) < 00. Clearly, the latter
k=0 \j=k

is a weaker condition. Consequently, (3.9) performs better for this type of
sequences than (3.8) and (3.7).

The counterpart of the above situation was given by the author in [16].
Let us take a lacunary sequence, i.e. a; # 0 if and only if £k = n; for
some fixed lacunary sequence (n;). Then, for such sequences (3.8) and (3.7)

[ °]
are equivalent to the trivial integrability condition 3 |an;| < oo, while (3.9)
j=0

1/2
[e) [«*]
is > (Z |anj|2) < o0o. We note that the same holds for (3.10) if for
=0 \j=k
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instance n; = 2/. Consequently, (3.8) and (3.7) are better to use for lacunary
sequences than (3.9) or (3.10). Unfortunately, we do not know what the relation
is between the classes induced by (3.7) and (3.8).

At the end we note that weaker conditions can be constructed for the L1-
convergence of cosine and Walsh series if it is assumed a priori that the series
represents an integrable function. For such type of conditions see [35], [23].

3.3. Generalizations

In this section we show some of the generalizations of the results of the
previous section, i.e. we show integrability and L!-convergence conditions for
the sine, the complex trigonometric and for the Vilenkin series.

Let us start with the sine system. Since the sine system can be originated
from the cosine system by differentiation, several integrability conditions (see
e.g. [17], [20], [40]) have been constructed for the sine system based on this
relation. It turned out that the conditions given for the cosine system are
usually not sufficient for the integrability of the corresponding sine series.
Therefore the problem was to find an additional condition that together with
the one given for the cosme system already guarantee the integrability of the
sine series. Now we show a result of Telyakovskii [39] as an example.

Suppose (ai) belongs to the Telyakovskii class (see the definition in

o0
Section 3.1). Then Y arsinkz is a Fourier series if and only if
k=1

(3.11) ZTl
k=1

oQ
Here, the additional condition is ) |ai|/k < co. A similar result holds with
k=1
respect to the Fomin class [13].
(]
In order to see that this is the general situation consider ) agsinkz as
k=1

(e
the conjugate series of }_ ay cos kz. If the latter one is the Fourier series of an
k=1
integrable function f then the integrability of the conjugate series implies (see
e.g. [18]) f € H. Then (3.11) follows from Hardy’s inequality (see e.g. [44))
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with respect to the Fourier coefficients of functions in . Consequently, (3.11)
[e 0]
is necessary to the integrability of arsinkz.
k=1
If (ar) satisfies a Sidon-type integrability condition for the cosine system,
Le. for instance (ax) € X (X =L (1 <p<ox), logal! + a~VILP (a >
>21,1<p<21/p+1/9g=1), Ly), H, H then the sufficiency of (3.11) can
also be proved. The method is given in detail in [15] for the case X = L.
It is based on the following restricted Sidon-type inequality for the complex
trigonometric system with nonnegative indices

TIK+2"-1 k

7 [| X a e de < tulh

0 k=K j=0
_ K+2"-1 2"}
provided 3 ar =0. Here, 'y = Y @ryr X[r2-»,(k+1)2-7)-
k=K k=0

We note that the above inequality can be deduced from the results of
Schipp [32], however it is not stated explicitly there. Using this inequality the
proof can be completed by decomposing (a;) into the sum of two sequences,
the first term of which is constant in dyadic blocks and the other one is having
blockwise zero sum.

Obviously the method described above can be applied for constructing
conditions which imply convergence in Hardy norm. Such conditions were
given by the author in [15]. For the dyadic case see [16].

It is clear that proper combinations of the results given for the cosine and
sine series lead to various integrability and L!-convergence conditions for the
trigonometric and for the complex trigonometric series. In connection with the
trigonometric and the complex trigonometric case we refer to [11], [14], [22],
[27], [35]. Generalizations for the multidimensional case can be found in [26],
[41], [40].

A possible way to generalize the integrability and L'-convergence condi-
tions for the Walsh system is to extend them for the Vilenkin system. It means
usually only technicalities if the Vilenkin system is of bounded type but this
is not the situation for the unbounded case. For instance, as it was shown by
Nurpeisov in [28], there exist Vilenkin systems of unbounded type for which
the quasiconvex and even the convex sequences do not form an integrability
class. Consequently, the dyadic results cannot be transferred automatically for
unbounded Vilenkin systems. In order to show positive results let us define
the concept of Vilenkin systems. For the sake of simplicity, here we only give
the definition of the so called mnultiplicative case. For the general definition we
refer to [4], [42].
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Let (mz) be a sequence of integers which satisfy my > 2, and let Z,,
represent the discrete cyclic group of order my. Then the multiplicative Vilenkin
group G, generated by (my) is defined as the direct product of the cyclic
groups Zm, . The Vilenkin system () is the character system of G, ordered
in Paley’s sense. The Vilenkin system is called to be of bounded type if the
generating sequence (my) is bounded. Set My =1, M4y = myp M.

An integrability condition that can be considered as modified quasicon-
vexity was proved by Nurpeisov [28]. Namely, he showed that if klin;o a, =0

and
[} Mn+1—l
(3.12) D logbn Y k|Aar] < oo,
n=0 k=M,
o0
where b, = max m;, then 2 a,¥, 1s a Vilenkin-Fourier series. He also
1<j<n n=0

showed that if the system is of unbounded type then for certain type of
sequences condition (3.12) is not only sufficient but also necessary for the
o0
integrability of 3 an¥n.
n=0
Similarly, Avdispahi¢ and Pepié [5] introduced an integrability class by a
modified Fomin type condition. That is the collection of null sequences which
satisfy

1
o0 n Mpy1-1 I
l Y
E E mj_le /e E |Aak|p <0
n=1 i=1 k=M,

(I<p<g2, 1/p+l/g=1) '

and
00 Mn+l-1
Z logm, E |Aai| < o0.
n=0 k=M,

We note that a Fomin type integrability and L!-convergence class for the
bounded case was introduced earlier by Bloom and Fournier [8].

Recently, Aubertin and Fournier [3] were able to find the Vilenkin version
of the condition (3.9). They proved that (3.9) together with a simmetry
condition, which is similar to the ones used for the complex trigonometric
system, imply the integrability of the corresponding Vilenkin series. Their
approach reflects to the connection between the Vilenkin and the trigonometric
case.
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Finally, we mention the papers of Mdricz and Schipp [24], concerning the
generalization of Fomin’s condition for multidimensional Walsh series.
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