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INTEGRAL EQUATION METHOD
FOR MAXWELL EQUATIONS

R.H. Farzan (Budapest, Hungary)

Dedicated to Professor Janos Baldzs on his 75-th birthday

Abstract. The integral equation method is used to the Maxwell equations
written in frequency variables in R3. The coefficient is assumed to be
piecewise constant. We derive the integral equation which is equivalent to
the differential equation. The general case is studied when there is a local
inhomogenity in the space and it crosses boundaries between domains of
constancy of coefficients. The solvability of integral equation is proved.

1. The Maxwell equations written in frequency variables in R? are
(1) rotE = iwpH, 1otH = —iweE+j, € =¢+io/w,

where w, i, € are positive constants, the source function j € Lp is a given
vector function with bounded support Vy. For o we assume that R® can be
decomposed into a finite number of domains G;, in which o is nonnegative
constant and it can be equal to zero only in finite domain. The boundary of
the domain is a surface of Lyapunov type (or it consists of a finite number of
such surfaces).

So o is a piecewise constant function. On surfaces of discontinuity of
o the boundary conditions have to be given. Correspondingly to physical
assumptions we suppose for the tangential components of vectors E, H that

(2) E,, H, are continuous.

Furthermore, we suppose that there is a ball Vi of large radius R, with
boundary Sg which includes any bounded domain G; and the sphere S crosses
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every infinite surface of discontinuity of 0. We assume that on the sphere Sgi
because of positivity of o the following estimates hold ([1,2])

(3) Alm Ry|E| =0, Am Ry|H| =0,
or
(4) Bl =o(R;Y),  [H[=0(R;").

Note that we do not assume there exists a large ball Vg so, that outside Vi o
is constant.

The system of equations (1) can be rewritten in the form of one equation
for E

(5) rot totE = k?E +iwpj, k* = w?pe’, Im(k) > 0.

The vectors E, H can be expressed with the vector potential A
1
(6) E =iwp (A +V (deiVA>) , H = rotA.

The vector potential satisfies the equation

(7) AA + KA = —j.

On the boundaries A satisfies the following conditions:

(8) vector A and scalars 9A,/On, (1/k*)divA are continuous.

Note that the boundary conditions for E and A differ from each other.

Suppose that the solution of (5) is known if the function j is the Dirac
o-function. Then for the solution of (5) with an arbitrary j an integral
representation can be used.

Let the fundamental solution of (5)

By By EZ
9) ER.Ro)= | EI EY E

be a solution of the following tenzor equation

(10) A€ + K?E = —iwpD, D =656R—Ry)Z,
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where Rg(zg, yo, 20) is the pole position and Z is the unit tenzor.

Let H = (iwu) 'rot€. The tenzors £ and ‘H can be expressed with the
tenzor potential A in the same form as (6).

2. £ is a singular tenzor function. At first let the pole Ry be inside any
domain, for example G,,, : Rg € G,,. In this domain k = k,,,. Near the pole
the tenzor £ can be decomposed as

(11) E=8E+ &,
where the principal singural part £° is a solution of the equation
(12) AE° + k2,E° = —iwuD.

So &Y is the fundamental solution in the homogeneous space with characteristics
which are constant in all domain R3. £° has a simple structure ([3,4])

1 )
E% =dwu (AO + k2Vdiv.A0> , AV = AgZ, Ag =B /(4nR),

(13) R=|R—Ry|.

It is easy to see that the elements of £% (and &) have singularity of the order
of R3if R — Ry.

Let us define the tenzor H° as iwuH® = rot£°. Since H° = (iwu)~1.A° the
singularity of H" (and H) is of the order of R™2.

The remaining part £* in (11) satisfies the equation

(14) AE* + K26 = (K2, — K2)E°.

Near the pole as well as in all the domain G,, the right hand side function in
(14) equals zero. In the other domains £° is a bounded function. Therefore £*
is bounded in R3.

Now let the pole be on the boundary surface between two domains. In this
case £° cannot be expressed in the form like (13). We shall analyse in detail
the structure of the singularity of £° for the particular case k = k(z). In this
case the tenzor potential can be written as (see [3])

A 0 0
(15) A= 0 A4 0
oB 9B,

%ay
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where A, B, A, satisfy the equations
AA +k*(2)A = —5(R — Ry),
(

)
(16) AB+ E*(2)B
AAZ + k2(z)Az = _5(R - RO)v

with the following boundary conditions

A, B, A, 0A/0z, (1/k*)(A+0B/dz),

(17) ,
(1/k*)0A,/0z  are continuous.

Now for the tenzor £ we get

0% 1 0B 0% 1 0B
E* =4 A A+ — EY = A+ ——= A+ —
i (44 g (44 52) ) on 4t g (4+52)).

9% 1 0B
(18) E; —El.—zwu(,%(%k2 (A—i— az)’

) oB 9 1 oB
B = “"“(a t w0s 12 <A+8z)>’
oB o 1 OB 9 (104
Y _ i z_ o0 9 z
E “"“(a o i <A+8z)>’ By =g, (k2 az)’

9 [ 10A, . 9 /10
£y ”‘ay(kzaz> EZ"°”“<A+5 (/czaz))'

Since A, B, A, in cylindrical coordinates {r, 0, z} (r?> = (z — 20)% + (v — y0)?)
do not depend on 6, it is reasonable to use the Hankel transformation

o0 oo

A(r, 2) = % / Jo(tr)u(t, 2)tdt,  B(r,z) = % / To(tryw(t, 2)tdt,

0 0

oo

x / Jo(tr)o(t, 2)tdt,
2

0

(19) Alr2) =
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where u,w and v satisfy the following ordinary differential equations

/ 2 / 2

u' —ofu=—06(z—2), w' —a*w=0,
(20) " 2 2 2 2
v —afv=—0(z —2), a°=t"—k%, Re(a)>0.
On the surfaces of discontinuity of k, namely on the planes z = z;, the

conditions for A, B, A, (17) imply that
(21) u,w, v, (1/k*)(u+w'), (1/k*)v" are continuous.

Let the pole Ry be inside the domain G, = {z;m-1 < 2 < 2z} with k = k.
Near the pole we can write

uw=ug+u*, v=uvy+0v",

where ug and vy satisfy the equations

uy —Zug = —8(z—z), vy —atvg=—0z—2), m=alzm),
so that
(22) Uup = vg = L e~ omlz =zl
200, ’

If 2 = 29 and t — oo ug and vy approach zero as ¢~ !.

Substituting ug, vo and w = 0in A, B and A, (19) and using Sommerfeld’s
integral [5] we can separate the principal part A° (13) of the tensor A.

If now the pole Ry is on the boundary plane between the domain G, and
Gumt1, namely zg = z,,, we cannot separate part like (22) from v and v. In
this case we have

1 emomGEm=2) " if 5 < 2,
’U/O(t,Z; 20) e
Oy, + Qg1 e‘am“(z_zm), if 2> 2,
e~ om(zm=2) ifz <z
) ms
(23) vo(t, 2320 £ 0) = &

— zZ—Zz 3
e m+1( m)’ if z > Zm,
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where )
+ (k:F) T
c, = , kT =k(z, F0).
U ok gy + Qi kE, (zm .0)

The function vy can be rewritten as

kT2 1
(KF) —emailzmal

k72n +k72n+1 ij

F)\2
vy = (k' 3) Kje—ocj\z—z_j\ + O(t_5),

R2(k2 — k2, )
24 K._iﬂ—m"‘l,
2 2R, 4 K2r)

where k; =k, if 2 < 2z, and kj = kg1 if 2 > 2z, and kT depends on the
position of zp.

Note that if z = 2y = z,,, and ¢t — oo, u* and v* exponentially approach
zero, but it is not true for w.

Since
L1 Bk,
O + Qg1 20, 8t3

+O0(t™?)

we can rewrite ug (23) as

1 : ki — ko o 5
ug(t, z;20) = —e %P7l L g = AL pmaylzmzm] L 0475,

20[j 8t3
Therefore
ik, R 2 <
et k — k2, dt
25 Ap = m+l /J fajlzfzmlf
(25) 0 47rR 167 0 t2
0

From the equation for w (21) and the boundary conditions we can decompose
w = wy + w",

k2 _ k2
wo = m m—+1 e
(am + am+1)(amkg@+1 + Oém+1k72n)

—aj|z—zml|

where w* exponentially approaches zero if z # zp and ¢t — oo. If z = 2y and
t — oo then wy = O(t~2), namely

k _km+1 1

k2, + k2, e_aj‘z_zml +0(t™).

(26) wo =
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Now by simple calculations we get that

1

K;
- - _ale Zm‘ j t_5
(kQ =+ k7n+1) ‘ + * O( )

1
w2 (uo + wp) =

J

(27)

3. Let us analyse the singularity of the elements of £ in (18). The
singularity of A, A, and 9B/dz near the pole is of the order of R™1. Let
us examine the singularity of A + 9B/0z. From (27) it can be shown that

1 0B 1 ekif KT et
0

K2 9z ) om(kZ +k%,,) R

Therefore near the pole

etki R 0% etk T — g 2
EZ =1 Di——+—K; 2 —— ) -1
= = “NLR + '942 R + 2r 7 ( r ) x

00 i@t 9 00
/Jl(tr)e_o‘ jlz— zm|7 (1'—260) /JO t?" —aj|z— zm\dt
0 0

W
2 (K2, + k2,,,)

(29) x

S| =

Dy =

The second term has singularity of the order of R~3. Because of

(30) /Jl(tr)% =1, /Jo(tr)dt = %,
0

0

the singularities of remaining terms are of the order of R~!. In the same way
we get that

62 kiR L 52 etki R L

Y - Y -
By =B} = Dig o~ +O(R™), By =Digs—p+O0(R™,
92 kiR ) 92 ¢ikiR )

T _ - Yy -

(31) E* Dl—awz 7 +O(R™), FEY Dlaa 7 +O(R™).
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Furthermore
(kF)2 kiR (|F)2 7 o
2 A, = K; t ajle—zm|
(32) on (2, 1R,y BT oap 1 | oline P
0
Therefore

ia2Az _ (kq:)2 87261’ij
k2 922 2mk2(k2, + k2,,,) 022 R

K I k2
+(ki)227j/t]o (1 - t;) e~ilr==mlgr 4
T

0

It can be shown, because of (30), that the singularity of the second term on
the right hand side is of the order of R~!. So

(k:F)QDl 92 kiR . (kzp)le 92 eikiR .
Ez: Ez:
x k?  0xdz R +OE™), B k2 0yoz R +O(E™),
EF)2D 2 ,ik;R
(33) pr— WD DL 0% &0 (R,

# k‘f 022 R
For the elements of tenzor ‘H we have

0’B — —
D T—ToyY yo(

z = — Y = = — -1
H H} 950y 2= " 2By — B2) + O(R™7),
1 o0 o0
(34)  Bi=- / Ji(tr)e~lz=zmlqr By = / Jo(tr)e= ===l
0 0
1 9 kiR T — X 2 T — g
z_ - 2 — 2 —1| By — B -
Yy A1 0z R 2 (( ( r ) 1 ( ) 2 +O(R )7
HY =
1 0 ekl Y — Yo 2 Y — Y ? -1
1 9 ekilt 1 1 9 ekl
r __ - Y — Hy - - —1
# 4T 0y R O(R™), * 470z R O(R™),
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eik‘j R

0
H? = D3— O(R™ H: =—-D3— O(R™
T 38y R + ( )a y 36.@ R + ( )a
k2 _ k2 F)2
Hj _ O, D2 1 m m+1 D3 1 (k )

ATk + k2

So the singularity of elements of H is of the order of R~2.

4. Now we shall get the integral representation for the solution of equation
(5) with arbitrary function on the right side using the fundamental solution (9).

Theorem 1. The solution of equation (5) with arbitrary function j € Ly

can be represented as

(35) E(R) = / £(R, Ro)j(Ro)dRy — %if—(“mjm),
R3

where by this integral we mean Cauchy’s principal value and £ is the funda-
mental solution (9).

Proof. The vector analogue of Green’s formula is ([1])

/(P rotrotQ — Q rotrotP)dR = /(Q x rotP — P X rotQ)ndS,
v 5

where n is an external normal to S. Notice that this formula is true for
continuously differentiable functions only.

Let the large ball Vz be decomposed into the domains G;. Let Ry € Gy,
and V¢ be a ball of small radius € with center Ry and boundary S.. Furthermore,
let V=G, \V,, Q=E and P = E*  where the vector E* is the first column
of the tenzor €. Then

/ (E? rotrotE — E rotrot E*)dR =

Gm\ve

= / +/ (E x rotE” — E” X rotE)nds.
Se

m

If m # j (and so Ry ¢ V) we have

/(E””rotrotE — ErotrotE”) dR = /(E x rotE” — E* x rotE) ndS.

G Sj
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It can be shown that the integrand of the surface integral is a combination of
the tangential components of vectors E, H, E*, H* and because of (2) the
integrand is continuous. Therefore the sum of the surface integrals over inside
surfaces is equal to zero. So if we sum up these expressions for all G; and use
(5) and (1) we get ([6,7])

(36) / E*(R, Ro)j / / (E x H” — E* x H)nds.

Vr \ Ve

Let us show that the surface integral over Sk approaches zero as R, — oo. If
R € Sg the integrand, because of (4), can be estimated as o(R,?) and then if
Ry — oo the integral over Si vanishes. Therefore (36) can be rewritten as

(37) / E*(R, Ro)j(R)dR = /(E x H* — E* x H)ndS.

R3\ Ve

In the paper [6] it was shown that if Ry is inside G,,, then from (37) we get

E’(R,Ry)j(R)dR = E,(Ryp) + Ro).

3k:2 32 I
R3

Let us show that it is true for the case when Ry is on the boundary plane
between domains, for example zg = z,.

Since E and H are bounded near a pole Ry, let us expand these vectors
at the points of S, in Taylor series

ER*) =ER7) + (r, VYE)RF) + ...,
(38) + + +
HR*) =HRy)+ ((r, VH)RF) + ...,

where r is a radius vector of the point of surface S, and so |r| = . By R
we define values of discontinuous functions in the points (xq, yo, 20 = 0) of the
surface. Further, R™ € S, R~ € S, where SI and S7 are halfspheres

€

belonging to the domains G,,+1 and G, correspondingly.

The first surface integral on the right hand side in (37) with the first term
of the expansion (38) for E can be written as

(39) ERT) [ (H® x n)é?dr,
/
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H” xn=

T
) yng_Z ZOH;;’ Z ZOH:_CU JIOH; TZX0 e Y yon

€ € € € € v €

)

where dr = sinfdfd¢ in spherical coordinates. The first component of this
vector, because of (34), is

- 2 z—2\>
_U<<y y> +< ))_
€ €
_Z zo a: J:O T —To ?
— _ _ _ ~1
(( esm@ 1) B (esin@) Bz>+0(€ )
“’“Jezke—l 1

U= = (1+0(€?)).

€  4re?

The integral of the first term of this expression is equal to 2/3 + O(e?), the
integral with By after integration over ¢ equals zero. For estimating the integral
with B the following equality can be used

/Jo (tr)tdt = 0.
0

Furthermore, the integrals with the principal parts of the second and third
components of vector H* X n in (39) are equal to zero and so for (39) we get

(40) ng(Ro) +0(e).

It is easy to show that the integrals with other terms of the series (38) for E
can be estimated as values of the order of e.

For the second surface integral in (37) with the first term of the expansion
(38) for H we have

(41) H(RT) / (E” x n)dS,
Se
E* xn=
T
y— yOEf ZOE@ZC’ ? ZOE;;_CE IOEZ, r l'OE;_y yOng

€ € € € € €
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From (29) and (31) we can see that the integrals with principal terms of the
first and third components of vector E* x n are equal to zero. The second
component is

. ZOE; - m_xOE;C _ Dleikje ikjez— 1z—2 +O(671) _
€ € € € €
z—2z9 1
(42) = D2 (14 0() + O,

The term of order of e~2 does not depend on k, therefore the integral for this
term equals zero. So the value of integral with (42) is of the order of e. After
that the value of all the integral (41) is of the order of € as well.

For the second term of the expansion (38) for H we have
(43) /((r, V)H)(RE)(E® x n)edr.
Se

It can be shown that the integrals of the principal values of scalar terms in the
integrand are zero except integral of the following term

D1€26ik.v’5ikje—1 z— 2o 28Hy_ Y — Yo > 0H, _
€ € € 0z € oy

2 2
Z—Z0 0H Y — Yo aHZ
=—Di(1+O(¢ L — :
1“(6”<<e)8z ()ay
In this case 0H,/0z and 0H,/0y are discontinuous functions. Therefore by
integrating over S and S_ for the integral (43) we get

iwp (8HZ
3(k3, + k72n+1) dy

OH,
dy

(Ry) - G RD) - TR,

(Ry) +

Because of (1) we have

ion (55 = 222 ) (R = K2(RE)BulRo) + i (RS,

Therefore the integral (43) equals

W

m(jm(RF;) +j2(Ry)) + Oe).

(44) %EZ(RO) +
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So if now in (37) € — 0, we get

W

m(ﬁ(f{z{) +Jz(Rg)).

49) [ E*(RROIRIR = B, (Ro) +

R3
If j, is continuous we can write

(46) E.(Ro) = / E“(R, Ro)j(R)dR — ?)Z";—:‘)QMRO),
R3 !

where (k7)? = (k7, + k7,11)/2. In the same way we obtain

(47) E,(Ro) = / EY(R, Ro)j(R)dR — SZ‘,:—f)mRo)-
R3 !

5. Now let us obtain the relation for F.. For E* we have
(48) / E*(R, Ra—L)j(R)dR = /(E x H? — E* x H)ndS.
R3\ Ve Se

Using the first term of the series (36) for E the first surface integral at the right
hand side is

(49) E(RY) [ (H? x n)é?dr.
')

For the vector H? x n the integrals with the z and y components are equal to
zero (see (34)). For the z component we have

Tr — X9

Y—1Y0 .
€ Hii € Hs =

_ 2 _ 2 ikje ik.e — 1
— _Dy ((m z0> + (y yo) ) BT L oY),
€ € € €

By integrating over S and S. we get

(k¥)?

2 T _
gk?ﬂ T k72n+1 (EZ(RO ) + Ez(RO ) + O(E)-
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Suppose that the pole is placed at the point R, . Since the expression 0H,,/0x—
—0H, /9y is continuous, from (1) we get

(kH_)QEZ(RSr) +iwpj.(Ry) = (k'_)QEz(RS) +iwpj.(Ry),
and then (49) equals

2iwp

muzm&) —j.(R)) + O(e).

2 _
60)  SE(Rg)-
If the pole is placed at the point Ry we obtain for (49)

2 29w
(51) gEZ(Rg) +3

m(b(l’té) —j=(Rg)) + O(e).

The integrals with the other terms of series (38) for E have value of the order
of e.

The second surface integral with the first term of series (38) for H and the
principal part of (33) equals zero and so

(52) H(RT) /(Ez x n)dS = O(e).
Se
For the integral with the second term of series (38) for H we get

W |

1 + +
gEz(Ro ) + 3]:32 Jz(Ro )
Now if € — 0 we obtain
£y _ 2 £ W .oy
BL(RE) = [ BX(RRDIRIIR - 2 (R
J

(53) R o
W . . —
+ m(]z(fig) - Jz(Ro )

If 5, is continuous, we get

Wi

(59) E.(RS) = [ EX(RR{IR)R — . (Ro).

R3
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Now from (46), (47) and (53') together we get

Wi,

E(RY) = [T (RRER)R - L 5i(Ro).
RS2 /

From the explicit formulae for the elements of £ it can be shown that
(54) E'(R,Ro) = £(Ro, R).

By using this relation we get the formula (35).

If the pole is inside the domain G, the proof of this formula is more simple
and was given in [6].

Note that if j is not continuous on the plane z = z,, we have to use the
formulae (45), (53) instead of (46), (53').

From the representation (35) we can see that the form of the integral term
is the same for any position of R. The second term on the right hand side
corresponding to source function j equals zero if R ¢ V5. The complicated

terms with the source like in (45), (53) appear only if Vj crosses the boundary
between the domains G;.

6. Suppose that the solution of the equation (5) with other coefficient
k(R) is known and k # k. only in the bounded domain V7.

Call the solution of the simple equation
(55) rotrot E" = k. E" + iwuj

normal. Note that if the piecewise constant k. is a function of z only, then the
domains are infinite layers. In this case the solution of equation (55) can be
obtained by quadratures ([4,8]).

If the bounded domain V7 is placed in this stratified space then the solution
can no more be reduced to quadratures. The numerical solution of differential
equations (1) can be difficult because of the complicated boundary conditions.

Theorem 2. The solution of equation (5) satisfies the integral equation
over the domain Vp
k2 — k2
W

(56)  a(R)E(R) + /

Vr

(Ro)E(R, Ro)E(Ryp)dRo = E"(R),
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where the tenzor € is a fundamental solution of the simple equation (55).

Proof. Let E = E™ + E“. It can be shown that E® satisfies the equation
(57) rotrot B* = k2B + iwuj®, j* = (iwp) "1 (k? — K?)E.

So E* can be regarded as the solution of equation (55) with coefficient k. and
anomalous source (unknown) function j*. Therefore we can formally use the
representation (35) for the solution E* of equation (57).

Wi,

wJ(R)

(58) E'(R) = [ £(R.Ro)j*(Ro)dRo -

Vr

Note that the integrand is not equal to zero only in a support of j%. After
simple calculations we obtain for E the equality like (56). If R € Vi we get
the integral equation over Vp (56).

If Vp crosses boundaries between the domains G; we have to take into
account the terms with source function like (46), (53’). However these
expressions are bounded and they differ from the form of (45), (53) on those
parts of surfaces S; which are inside Vr, that is a set of measure zero.

Note that the proof is the same if k is a continuously differentiable function
of R for R € V.

Because of this theorem we can solve the integral equation (56) in the
bounded domain instead of solving the original differential equation (5) in the
infinite domain. It is the essence of the integral equation method.

After E has been known in Vi as the solution of the integral equation (56)
the values E in R3\ Vi can be calculated from an equality like (56) because
E(R,Ry) is supposed to be given for R € R®. If R € R*\ V7 a(R) = 1.

The method resorts frequently to some problems of electromagnetics. In
[9, 10, 11, 12] the method has been used for rather similar problems. In [13, 14]
it is given also the algorithm and program package for numerical solution. For
the problem considered in this paper some aspects of numerical solving have
been discussed in [8, 15, 16].

7. The solution of integral equation (56) has been discussed in [6,7] for the
case when Vr C G,. If Vr crosses the boundaries S; between the domains,
the main steps of consideration remain the same.

Theorem 3. The differential equation (5) with conditions (2) and (4) is
equivalent to the integral equation (56) for R € Vr and equality for R € R3\Vp.

Proof. We prove the Theorem 3 for a more general case when k is
supposed to be continuously differentiable function in V7.
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Because of Theorem 2 any solution of the differential equation (5) with
conditions (2), (4) satisfies the integral equation (56).
It can be shown, because of (6), that the equality (56) can be rewritten as

(59) E(R) = (I + vkgdiv) / (k? — k?)(Ro)A(R,Ro)E(Rg)dRg + E"(R)
Vr

in the external and internal points of Vi as well.

We suppose, that correspondingly to a solution of the differential equation,
E is twice differentiable function.

Let us show that the operator rot can be used to the right side of (59),
that is the second term is differentiable function of R. Let R is an inner point
of Vi and let Vo C VUV, is a sphere with a centre in Rg and a finite radius.
The integral in the right side of (59) can be rewritten as

(60) / (k2 — k) AEdR, — / (k2 — k2)(A — A%)EdRo+

Vr Vr

+ / (k2 — k*)A"EdR, + / (k2 — k) A"EdR,.
Vr\Vo Vo

The integrands in the first and second integrals are bounded twice differentiable
functions of R in the corresponding domains. In the third integral the
singularity in the point Ry = R is of the first order and so the operator div
can be included into integral

div / (k2 — k) A’EdR, = / (k2 — k*)(VRA°)EdRy.
V() VU

For the second operator V we have to take into account the potential theory.
Let

(61) <v <k12>>v/(k2 — k?)(VrRAY)EdR( =

o]

1 1
= v/?g X /(kf — k%) (VRAY)EdR, + k—gv/(kf — k%) (VrRAY)EdR,.
Vo

Vo
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The first element of the second vector in (61) is

9 94, 94, 94\
e <E‘”(RO)8:E + Ey(Ro)Ty + Ez(Ro)az) dRy =

Vo

2 2 2
- 74?“ By (Ro)+ lim / (EI 04, E,(Ro) == 04y + E.(Ry) 045 > dRy.

(62)

(‘3302 Oxdy 0xdz
VU\Vs

Now let r = Ry — R and let
E(Rg) =E®R) + ((r, V)E)(R) + ((r, V)’E)(R + Ar),0 < A < 1.

The domain Vg \ V¢ is symmetrical one, therefore

/EyaadRo /E OdRO—O

Vo\ Ve Vo\Ve

1
/E OdRO )/gAAodRoz—EI(R) / @AOdRO,

Vo\ Ve Vo\Ve Vo\Ve

and so the last integral is twice differentiable one. The similar result can be get
for ((r, V)E)(R). Since | r |= R, the integral with (r, V)?E has the singularity
of the order of R~1.

The other two elements of the vectors in (61) can be analysed by analogous

mode. So the right side in (59) is differentiable function and operator rot can
be used for it. Just we have

rotE = / (k% — k?)(Ro)rotr A(R, Rg)ERodRg + rotE"(R).

Vr

For the second operator rot we have to take into account the potential theory.
After that, using (6) and (7), one can see that the equality (56) satisfies equation

(5)-
Let us show, that E satisfies the boundary conditions (2). There are three

cases for examinating. In the first case we examine these conditions in the
boundary of Vp. It is obviously, that in the points of it E”, A and £ are
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continuous. Let 7 is unit vector in tangential direction to the boundary and
E,; =E x T is a projection of E in direction 7. From (59)

(63) B.(R) = / (K2 — K27 ARE, Ro)B(Ry)dRo+

Vr

03+ V) [ (R - K)dive ARE, Ro)E(Ra)dRo + E7(RY),
C VT

where R* define the functions‘ values on the two sides of the boundary.

The first integral is continuous function of R. The second is continuous
as well because E and k are continuously differentiable functions in tangential
direction up to boundary and so the differential operator in tangential direction
can be used to the integral in the boundary points as well. Naturally, the result
will be the same for Rt and R*. Therefore

E.(R") = E,(R).

In the second case the solution have been examined outside Vi on the
boundary between V; and V,,, when k. is discontinuity. In these points £, E"
and E are discontinuous functions, but £ is finite. Since a(R) = 1, from (56)
we get

+ (k(2: — k2)7 + mn +
E-,—(R ) = WT(‘;(R ,Ro)E(RQ)dRO + ET (R ) =
Vr

(klg _k2) T z n +
= [ <" X(E*E, + EYE, + E*E.)dRo + E"(R%),
ZC(JM T TY T T

Vr

EP p = z,y,z are continuous as the tangential componets of the vectors E”
and so E(R) is continuous as well.

In the third case the solution is studies in the boundary between V; and V;,
inside Vi if V crosses this boundary. Now E(Ry) is continuously differentiable
function and from equality like (63) we get that E(R) is continuous.

The conditions on infinity (4) are satisfied because EP and E™ have satisfied
these conditions.

The conditions for rotE can be examined by analogous mode.
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So the integral equation (56) and the equality for R ¢ Vr are equivalent
to differential equation (1) and conditions (2), (4).

Furthermore the solution of the Maxwell equation is unique (see [1, 11,
17, 18, 19, 20, 21, 22] etc.). For the equations with the above assumption on
k and conditions (2), (4) the uniqueness of solution have been proved in [23].
Now the following corollary is true.

Corollary 4. The solution of the integral equation (56) is unique.

Theorem 5. If Vi C G, the index of the singular integral operator R is
equal to zero.

Proof. Let us separate from the tenzor £ the singular part

s _ _ wp (L
(64) & = TR (R) Vdiv <RI)

with elements

sP W

@ W(Sa,}aq —0pg)s P q=1T,Y, 2,

where «,, are the components of the unit vector o = (Ry — R)/R so that in
spherical coordinates with center R

= sin 0 cos ¢, oy = sinfsin ¢, a, = cosb.

Let the singular operator R have the form of the operator R (60), where
instead of £ there is £°. Now the operator R® can be written as

(65) RBR) = «RE®R) + [ TV B(Ro)aRs.
Vr

where F is a characteristic matrix with elements

1 k2 —k?

P47 U k2

(66) (R)(Bapayg — dpg).

So the characteristic matrix is a function of R and « only.
In order to prove the theorem we need the following

Lemma 6. The operator R — R is a compact operator.
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Proof. The kernel of the operator R — R can be written as

k2 — k2 I - _(ekiR 1
o (Ro)(€ — &” +iwpA”) + 2 (Ro)Vdiv (RI> +
1 (K2 k2 k2 — k2 (1

The singularity of the first term is of the order of R™!, the second term is
bounded. The third term is equal to zero if k and k. are piecewise constant. If
there are piecewise continuously differentiable functions we have

k2 — k2 k2 — k2

C

k2 — k2
T( 0) — 12

k2

(R+Ar)|,0<A<1

®)| =1

and so a singularity of the third term is of the order of R=2. Therefore (see
[24]) the operator R — R? is a compact operator.

It is easy to see that any power of elements of the characteristic matrix F
is integrable over the sphere S with center R and unit radius. Therefore (see
[25]) the operator R® : L, — L, is bounded for any p > 1.

From (63) one can see that in the characteristic matrix the only factor
k? — k* depends on R.

The elements of the symbolic matrix G of the operator R® (and R as well)
are ([6])

2
(68) Gpg = adpq — % (1 - :2> (Bapag — bpg)-
For any given R Gpq(R, ) € W3 (S) with an arbitrary n > 1. Therefore the
sufficient conditions for the index of R® (65) to be equal to zero is that the
diagonal minors of the symbolic matrix (68) are not equal to zero (see Theorem
3.40 in [24)).

From (68) it is easy to see that the determinant of the matrix is equal to
|k?/K2|, so it is strongly positive. For the other minors it can be shown that
the absolute values of them are not less than

min(1, |k%/k2|).

Therefore the index of the operator R (and, because of Lemma 6, of the
operator R as well) equals zero.
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The Theorem 5 was proved for the case Vr C V,,. Now let us suppose
that Vi C (V,, UVj), and because Vi crosses a boundary between domains V;
and V,,, k. is not continuous in Vr.

Let B = (k? — k?)E. Note, that B is discontinuous in Vr, but B €
L,(Vr),p > 0. The integral equation (56) can be written as

(69) R'B=a"R)B+ [ E(R,Ro)B(Ro)dRo
Vr

/1 1
CA\k2oR 32

Note, that a* is bounded in V.
Theorem 7. The index of the operator R* is equal zero.

Proof. Let us separate from the tensor £ the singular part in the form

1 1
*S :
E = y= V div (RI>
and let

I ()
R3

(70) (RSB)(R) = o (R)B(R) +
Vr

E(Ry)dRy,

where characteristics matrix F* with elements
1
Fpq = E(?’O‘paq — Opq)

is a function of « only.
The operator R* —R*S is obviously compact operator. The further proving
of the Theorem can be carry out by analogous mode as the Theorem 6.
Theorem 8. The solution of integral equation (56) exists and it is unique.

Proof. From Theorem 5 (and Theorem 7) it follows that Fredholm’s
alternative can be used to the singular integral equation (56). According to it
if the solution of equation is unique then it exists as well.

Since the solution of equation (56) is unique (see Corollary 4), so the
solution exists.

Corollary 9. The solution of the integral equation (56) depends continu-
ously on the right hand side function.
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Proof. From the existence and unicity of solution of equation (56) it
follows that the operator R=! : L, — L, exists. Because R : L, — L, is
bounded by Banach’s theorem, the operator R~! is bounded, too, and so it is
continuous as well.
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