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Let x−n < . . . < x0 < . . . < xn be a system of nodes. The so-called
Balázs-Shepard operator

(1) Sn(f, x) :=

n∑
k=−n

f(xk)(x− xk)−2

n∑
k=−n

(x− xk)−2

based on these nodes provides a convenient tool for approximating continuous
functions f(x). Various generalizations of (1) (like λ > 1 with absolute
values instead of the exponent 2, or even more general basis functions) have
been widely investigated lately, exploiting the interpolatory and approximating
properties of these operators (see e.g. [3]-[6] and [9-11]). They are used in
rational approximation theory and several applications (e.g. fitting data, curves
and surfaces, CAGD, fluid dynamics problems, see [1], [2], [7] and [8]).

The purpose of this paper is to show that Shepard type operators serve as
good approximating means on infinite intervals as well. For simplicity, we will
consider only the case of the equidistant nodes

xk :=
k

m
(k = 0,±1, . . . ,±n),

where m = m(n) > 0 is a parameter depending on n. If we expect some good
approximating properties of the corresponding operator (1) on R := (−∞,∞),
then we must have
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(i) m →∞ and
(ii) m = o(n)

as n →∞. Namely, (i) must hold in order to get dense pointsystems on finite
intervals, and (ii) ensures that the whole R is filled up with these nodes.

The other feature we have to decide is the class of functions in which we
look for approximation. At first we assume that the finite limit

(2) f(∞) := lim
|x|→∞

f(x)

exists. Then the usual modulus of continuity ωf (h) (on R) exists, and for the
function

(3) εf (x) := sup
|y|≥x

|f(∞)− f(y)| (x ≥ 0)

we have
lim

x→∞
εf (x) = 0.

We shall call a function g(x) quasi-monotone increasing or decreasing on [0,∞)
if there exists a constant c > 0 such that

g(x) ≤ cg(y) or g(x) ≥ cg(y) for all 0 ≤ x ≤ y < ∞,

respectively.

Theorem 1. If for the function f(x) ∈ C(R) the finite limit (2) exists
and xεf (x) is quasi-monotone, then
(4)

|f(x)− Sn(f, x)| = O

(
ωf

(
log n

m

)
+ εf

(
n

m log n

)
+

m log n

n

)
(x ∈ R)

for any real number m > 1.

Remarks. Theorem 1 shows that if we choose m such that

m = o

(
n

log n

)
and

log n

m
→∞ (n →∞),

then Sn(f, x) will converge uniformly to f(x) on R. The actual choice of m
depends on the function. For example if

ωf (h) = hα (0 < α ≤ 1) and εf (x) = (1 + x)−β (β > 0)
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then the optimal choice of m is

m =





(nβ logα−β n)
1

α+β if 0 < β ≤ 1,

(n logα−1 n)
1

α+1 if β > 1,

whence

(5) |f(x)− Sn(f, x)| =





O

((
log2 n

n

) αβ
α+β

)
if 0 < β ≤ 1,

O

((
log2 n

n

) α
α+1

)
if β > 1

(0 < α ≤ 1, x ∈ R).

We mention that if the exponent 2 in (1) is replaced by 4 then the log n factors
in (4) (and in (5)) can be omitted, just like in the finite interval case.

Proof. We distinguish two cases.

Case 1: m|x| ≤ n + 2. Then let j be an index such that

(6) |x− xj | := min
|k|≤n

|x− xk| ≤ 2
m

.

Using an elementary property of the modulus of continuity we obtain

|f(x)− Sn(f, x)| ≤

≤

∑
|k|≤n

|f(x)− f(xk)|(x− xk)−2

∑
|k|≤n

(x− xk)−2
≤ (x− xj)2

∑

|k|≤n

ωf (|x− xk|)(x− xk)−2 ≤

≤ ωf (|x− xj |) +
4

m2


 m

log n

∑

k 6=j

|x− xk|−1 +
∑

k 6=j

(x− xk)−2


 ωf

(
log n

m

)
≤

≤ ωf

(
4

m2

)
+

4
m2

ωf

(
log n

m

) [
m2

log n

2n∑

k=1

1
k

+ m2
2n∑

k=1

1
k2

]
= O

(
ωf

(
log n

m

))
.
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Case 2: m|x| > n + 2. Without loss of generality, we may assume that
mx > n + 2. Then by (3) and the monotonicity of εf (x),

|f(x)− Sn(f, x)| ≤ |f(x)− f(∞)|+

∑
|k|≤n

|f(∞)− f(xk)|(x− xk)−2

∑
|k|≤n

(x− xk)−2
≤

≤ εf (x) +

∑
|k|≤n

εf (|k|/m)(x− xk)−2

∑
|k|≤n

(x− xk)−2
≤

≤ εf (n/m) +

∑
|k|≤n/ log n

εf (|k|/m)(x− xk)−2

∑
|k|≤n

(x− xk)−2
+ εf

(
n

m log n

)
.

Here

(7)
∑

|k|≤n

(x− xk)−2 ≥ m2
n∑

k=0

1
(mx− k)(mx− k + 1)

=

= m2
n∑

k=0

(
1

mx− k
− 1

mx− k + 1

)
= m2

(
1

mx− n
− 1

mx + 1

)
>

>
mn

(mx− n)x
.

On the other hand, the quasi-monotonicity of xεf (x) implies the existence of
a constant c > 0 such that

xεf (x) ≤ c(yεf (y) + 1) for 0 ≤ x ≤ y.

Hence

εf (|k|/m) ≤ c

[
n

|k| log n
εf

(
n

m log n

)
+

m

|k|
]

(1 ≤ |k| ≤ n/ log n),

and therefore

A :=

∑
|k|≤n/ log n

εf (|k|/m)(x− xk)−2

∑
|k|≤n

(x− xk)−2
≤
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≤ c(mx− n)x
mn

[
n

log n
εf

(
n

m log n

)
+ m

] ∑

1≤|k|≤n

m2

|k|(mx− k)2
+

εf (0)
n

.

Here
∑

1≤|k|≤n

m2

|k|(mx− k)2
≤

n∑

k=1

1
k(mx− k)2

+
1

m2x2

n∑

k=1

1
k

=

=
5

m2x2

n∑

k=1

1
k

+
2

mx

n∑

k=1

1
(mx− k)2

≤ 5 log n

m2x2
+

+
1

mx

n∑

k=1

(
1

mx− k − 1
− 1

mx− k

)
≤ 5 log n

m2x2
+

1
mx(mx− n− 1)

.

Thus

A ≤ 4c

[
εf

(
n

m log n

)
+

m log n

n
+

2c

log n
εf

(
n

m log n

)
+

2cm

n

]
=

= O

[
εf

(
n

m log n

)
+

m log n

n

]
,

whence the theorem is proved.

Concerning the sharpness of Theorem 1, first we show that the appearance
of the quantity εf (·) is necessary. Let

f0(x) := min(1, |x|−β) (x ∈ R, β > 0).

Then Theorem 1 yields (see also (5) with α = 1)

(8) |f0(x)− Sn(f0, x)| =





O




(
log2 n

n

) β
β+1


 if 0 < β ≤ 1,

O

(
log n√

n

)
if β > 1,

(x ∈ R)

with the optimal choice

m :=





n
β

1+β log
1−β
1+β n if 0 < β ≤ 1,

√
n if β > 1.
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Now we show that for any m > 0

(9) max
x∈R

|f0(x)− Sn(f0, x)| ≥





cn−
β

β+1 if 0 < β < 1,

c

√
log n

n
if β = 1,

c√
n

if β > 1,

i.e. (8), apart from log n factors, is sharp. In order to show (9), first we note
that

(10) Sn(f0,∞)− f0(∞) =
1

2n + 1

∑

|k|≤n

f0(k/m) =

=
2m + 1
2n + 1

+
mβ

2n + 1

∑

m≤|k|≤n

|k|−β ≥





c(m/n)β if 0 < β < 1,

cm log n

n
if β = 1,

cm/n β > 1

(m = o(n)).

On the other hand,

(11)
∣∣∣∣f0

(
1

2m

)
− Sn

(
f0,

1
2m

)∣∣∣∣ =

=

∑
m≤|k|≤n

∣∣∣∣1−
(

m
|k|

)β
∣∣∣∣
(
k − 1

2

)−2

∑
|k|≤n

(
k − 1

2

)−2 ≥ c
∑

2m≤k≤n

1
k2
≥ c1

m
.

Comparing (10) and (11), we see that the optimal values of m are

m =





n
β

β+1 if 0 < β < 1,
√

n

log n
if β = 1,

√
n if β > 1.

These justify (9).
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It is easy to see that the best estimate we can get from Theorem 1 is

O

(
log n√

n

)
. The next result shows that under some additional restrictions on

f(x) we can get a sharper estimate.

Theorem 2. If f ′(x) ∈ C(R),

(12)

∞∫

0

εf (x)dx < ∞,

and

(13)

∞∫

0

ωf ′(t)
t

dt < ∞,

then, with m =
√

n,

|f(x)− Sn(f, x)| = O

(
1√
n

)
(x ∈ R).

Proof. The proof runs along lines similar to that of Lemma 1 in [11]. We
may assume that x ≥ 0.

Case 1: 0 ≤ x ≤ √
n. Using the obvious estimate

|f(x)− f(xk)− f ′(x)(x− xk)| ≤ ωf ′(|x− xk|)

we get
|f(x)− Sn(f, x)| =

=

∣∣∣∣∣f
′(x)

∑
|k|≤n

(x− xk)−1

∣∣∣∣∣ + O

(
∑
|k|≤n

ωf ′(|x− xk|)|x− xk|−1

)

∑
|k|≤n

(x− xk)−2
.

Here, applying the notation introduced in (6),

(x− xj)2

∣∣∣∣∣∣
∑

|k|≤n

(x− xk)−1

∣∣∣∣∣∣
≤
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≤ 1√
n

+
1
n

∣∣∣∣∣
n−j∑

k=1

(
1

x− xj−k
+

1
x− xj+k

)∣∣∣∣∣ +
1
n

2j−n−1∑

k=−n

1
x− xk

≤

≤ 1√
n

+
1√
n

n∑

k=1

1
k2

+
1
n

log
x +

√
n

−x +
√

n + 1√
n

= O

(
1√
n

)
.

Further by (13)

(x−xj)2
∑

|k|≤n

ωf ′(|x−xk|)|x−xk|−1 ≤ 1√
n

ωf ′

(
1√
n

)
+

1√
n

∑

j 6=k

ωf ′
(
|j−k|√

n

)

|j − k| =

=
1√
n

ωf ′

(
1√
n

)
+ O


 1√

n

∞∫

0

ωf ′(t)
t

dt


 = O

(
1√
n

)
.

Case 2: x >
√

n. Then using (7) (with m =
√

n) we get

|f(x)− Sn(f, x)| ≤ |f(x)− f(∞)|+ (x−√n)x
n

∑

|k|≤n

nεf (|k|/√n)
(x
√

n− k)2
≤

≤ εf (x) + (x−√n)x


 1

nx2

∑

|k|≤x
√

n/2

εf (|k|/√n) +
εf (x/2)
x
√

n− n


 =

= O

(
1
x

)
+

4√
n

∞∫

0

εf (t)dt +
x√
n

εf (x/2) = O

(
1√
n

)
,

since by (12) xεf (x) = O(1) (x → ∞). This completes the proof of Theorem
2.

Now we consider arbitrary functions f(x) ∈ C(R). First we find a weight
function w(x) ∈ C(R) such that

(14) |x|w(x)f(x) = O(1) (|x| → ∞).

For example, w(x) = e−x2
permits a large class of functions, and it is convenient

for practical purposes.

Theorem 3. If (14) holds for f(x), w(x) ∈ C(R) then

|w(x)f(x)− Sn(wf, x)| = O

(
ωwf

(
log n

m

)
+

m log n

n

)
(x ∈ R).
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This result can be considered as a weighted approximation of f by the linear
operator w−1(x)Sn(wf, x). Although the latter is not necessarily a rational
function anymore, it still has a simple structure.

The proof is a simple application of Theorem 1 for wf instead of f .
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