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A REPRESENTATION THEOREM
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To Professor J. Baldzs on his 75-th birthday

1. Introduction

It is well-known that the dual of L? built on an abstract measure space is
L9, where 1 < p < oo, p~t + ¢! = 1, and that the dual of L*> is the space
of finitely additive, absolutely continuous set functions, which have bounded
variation.

A possible generalization is described in Benedek and Panzone [2], where
the authors take successively the p;-norm in the i-th variable (i = 1,...,n;
1 < p; < 0) of a scalar-valued, measurable function defined on the Cartesian
product of n o-finite measure spaces, and the mixed norm space LP1:-Pn)
consists of functions for which these values are finite. It is shown in [2] that
the dual of L(PLPn) is L(a1:00) (1 < p; < 00, p; L+t =1).

Another generalization (that contains the previous one in a certain sense) is
given in Diestel and Uhl [4], where the functions are defined on a finite measure
space and take their values from a Banach-space X. The corresponding LP-
space LP(X) is defined similarly to the scalar-valued case, but the absolute
value is replaced by the X-norm. In [4] it is shown that the dual of LP(X)
is LI(X*), whenever 1 < p < oo, p! + ¢! = 1 and X* has the Radon-
Nikodym property, that is every countably additive, absolutely continuous
vector measure of bounded variation can be regarded as the indefinite integral
of a Bochner-integrable function.

A third possibility for generalization is that instead of the functional space
(LP)* = L(LP; K) we model the linear operator space L(LP; X), where X is a
Banach space and K is the set of the real or complex numbers. Such a result
for p = oo is given in Diestel and Uhl [4] (cf. special cases 1) in this paper).
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In this paper we shall deal with the representation of the operator space
L(LE(X); Z), where X and Z are Banach spaces, L3 (X) is the closure of
the subspace of simple functions in L®(X). This representation will be given
using Y-valued, finitely additive, absolutely continuous and bounded vector
measures, where Y is a Banach space, which is connected with X and Z by
a bilinear operator satisfying the ”bijection property”. The paper contains a
characterization of L3 (X), and finally, two important special cases, too.

2. Definitions and preliminaries

Let (X, ||llx), (Y, |I-1lv), (Z,|I]lz) be Banach spaces over the same (real or
complex) scalar field K, and B : X x Y — Z be a bounded bilinear operator,
which satisfies the following ”bijection property”: the mapping Y — L(X; Z),
y — B(.,y) is bijective, where L(X;Z) denotes the space of bounded linear
operators from X to Z. We remark that the mapping y — B(.,y) is injective
if and only if B is nondegenerated, that is B(x,y) =0 (z € X) implies y =0
(cf. Halmos [5]). If it does not give rise to confusion, we denote B(z,y) simply
by xy and call it as the "product” of x and y, and B as the ”multiplication”.

Let Q be a nonempty set, A C 29 be a field. Denote by P the set of
A-measurable finite partitions of Q, and by {E1, ..., E,} or shortly {E;}, the
elements of P. So E; € A, E;NE; =0ifi# j, ByU...UE, = Q. A set
function p : A — Y is called Y-valued vector measure if it is finitely additive.
Define the semivariation of p by

m
]| := Sup{ > wiu(E)
=1

and the total variation of u by

: {Ez} S P,l‘i S )(7 ||J,‘,HX < 1},
4

| := sup {Z le(EDlly - {Ei} € 7’}

i=1

as in Bartle [1]. Remark that these variations are not necessarily finite and
that they are norms in the vector spaces of vector measures of finite semi- and
total variations, respectively.

Proposition 1.
a) ([l < 1Bl - |pl-
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b)) If X =K, Z=Y, B(z,y) =x -y, then
[l = sup {ly" o ul: y* € Y™, |ly*lly- <1}
¢) If X is reflexive, Y = X*, Z =K, B(z,y) = y(x), then
el = T
Proof. a) is obvious, for b) see Diestel and Uhl [4], Proposition 11.

Proving ¢), ||u|]| < |u| follows immediately from ||B|| < 1 and a). To see
the opposite inequality it is enough to show that

{Z (Bl x- : {E:} € 7’} -

o

Really, since X is reflexive, by the Hahn-Banach theorem there exists x; € X
such that ||z;||x =1 and p(E;)(z;) = ||u(E;)|| x=-

{E;} € P,x; € X, ||:Elx<1}

In the remainder part of this paper (€2,.4, P) denotes an arbitrary proba-
bility measure space. A vector measure p is called absolutely continuous with
respect to P (briefly p <« P) if P(E) = 0 implies u(E) = 0. Denote by
BA(Q, A, P;Y) or simply by BA(Y) the vector space

BA(Y) :={pu: A—Y :puis additive, ||p| < oo, < P}.

Endowing this space with the norm ||u]|, it is a Banach-space.
Let

S(X):=5(Q,A,P;X) : {le 1g, : xleX{E}eP}

i=1

be the vector space of the X-valued simple functions, where 15 denotes the
characteristic function of £ € A. We say that a function f : @ — X is
P-measurable if it is the P-almost everywhere limit of a sequence of simple
functions, i.e. there exist f, € S(X) (n € N) such that

P({wea: im |fuw) - f@llx =0}) =
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Let us introduce the vector space of all (equivalence classes of) X-valued, P-
measurable, essentially bounded functions, the space L>=°(2, A, P; X) or shortly
L>(X) (cf. Diestel and Uhl [4], IV.1.). This is a Banach space under the norm

[fll 2o (x) := esssup || f(w) ] x-
weN

Finally, let L (2, A, P; X), or shortly L5 (X) be the closure of S(X) in L*>°-
norm.

Proposition 2. Let X be a Banach space having Schauder-basis (e; : j €
€ N), |lejllx =1, further f € L>(X). Then f € LF(X) if and only if

-1

) dm (=3 G0 | =0
= L= (X)
(Here e (j € N) denote the coordinate functionals.)

m

Proof. First let f = > z;-1p, € S(X), and € > 0. Then for every
i=1

i =1,...,m there exist N; € N such that

Z ei(zi) ej|| <e (N > N;).
i=N <

For every N > max{Ni,..., N, } > N; and for every w € E; C 2 we have

Soea(w) el =3 @) o <e
Jj=N j=N

X X

Taking esssup it follows (1).

Now let f € LF(X). Then there exists a sequence f, € S(X) (n € N)
with the property

Jim [ fn = fllzex) = 0.

Denoting by C the supremum of the norms of the partial sum operators in
X (which is depending only on the chosen Schauder-basis), we deduce for any
n,N € N, N > 2 and for any w € Q

X
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N-1
< ||f@) = falw) = D (@) — falw)) - es]| +
j=1 X
N-1
[ Aaw) = Y @) e <

j=1 X

N-1
<€+ 1) = fal@)llx + | fa@) = 3 &) ¢

j=1

X

Taking ess sup we obtain

Z e;(f() € < (CH+D)-f = fallpex)+ Z e;(fn(.) € )
=N j=N

Le=(X) Le=(X)

which shows (1).

Conversely, let € > 0 and f € L>°(X) satisfying (1). Then there exists an
N € N, N > 2 with the property

(2) Yo ()¢ <e/2.

=N Lo (X)
Since ||ef|| < 2C (j € N), it follows from the estimation
&5 (f (@) < N5l - Lf (@)l < 2C - || f(w)]

that e (f(.)) € L>=(K). Since S(K) is dense in L*°(K), one can find for every
j€{l,...,N — 1} a simple function ¢; € S(K) such that

(3) e (f() = @jllLea) <e/2(N —1).
The functions ¢; (j = 1,...,N — 1) can be assumed to be generated by the
same partition {E1, ..., E,,}. It is easy to see that the function

N-1

g(w) = Z j(w)-e; (we)

—

<~
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is in S(X). The independence of ey, ..., ex_1 implies that for any w € Q holds

€;(9(w)) = ¢;(w) and
[f(w) = g(w)lx <
<[ X @ -gw)-o| +||3 0w - gw) o <
j=1 x Jj=N X
N-1 00
< e (f @) =@+ || D € (fw) e
j=1 j=N

X

Taking ess sup and using (2) and (3) we obtain || f —g|| L~ (x) < €, which implies
f e LEF(X).

This proposition makes us possible to give example for a function being in
L>*(X), but not in LF(X), provided that X has Schauder-basis (e; : j € N),
llejllx = 1. Suppose that © can be written as union of a countably infinite
set family {E; € A : j € N}, where the sets E; are disjoint, and P(E;) >

1
> 0. (For example the intervals E; ::{ 1--,1- 1 ) (j eN)in [0,1).)
J J
The function f := }_ e;- 1, is obviously P-measurable, moreover, for every
j=1

=1,ifwe |J Ej, and 0 otherwise.

N € N holds that o

' S GU@)-o

X J=N
Since P | |J Ej | >0, we obtain that esssup || > e;(f(w))-e;|{| = 1. This
J=N we ||j=N X

relation shows on one hand (for N = 1) that f € L*°(X), and it implies on the
other hand that f ¢ L3°(X), because (1) is not true.

Note that for finite dimensional X we have L§°(X) = L>®(X).

3. Integration and model for the operator space

Following the way in Bartle [1] let us introduce the integral of an X-valued

m
simple function f = Y x; - 1g, € S(X) with respect to the vector measure
i=1
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w € BA(Y) using the "multiplication” defined by the bilinear operator B, as
Lu(f) = /fdM = mip(E).
Q =1

One can easily verify that I,, : S(X) — Z is a well-defined linear operator (cf.
[1]).
Proposition 3. The operator I, is bounded, and ||I,|| = ||u||.

Proof. Define the following real number sets:

m
Hy = { in,u(E,-) : {El} S ’P,l‘i S )(7 iquaxm ||xz||X < 1} R
P p s

Hy = z; (B {E;}eP,x; € X, max X; <1l,,
2 {Z W) () el }

i
zZ

H3 = { Zl‘l,u(Ez)

{E;}eP,x; € X, max ||x; <1l,.
m) _max il }

It is plausible that H3 C Hy C Hs and - using u < P - that Hy C Hs. he
mapping

(4) 1 BA(Y) —LLF(X):Z),  ®(u) =1,

is a well-defined linear isometry, consequently it is an injection.

Proposition 4. Every F € L(LF(X); Z) has the form I,, with a suitable
we BAY).

Proof. For a given F € A the mapping « — F(x-1g) is in L(X; Z). Since

our "multiplication” (i.e. the operator B) satisfies the ”bijection property”,
there exists a unique element u(FE) € Y such that

B(z,(E)) = F(x - 1g) (x € X).
So, we have defined a set function p : A — Y. To see its additivity, after
verifying B(x,u(EU F)) = Bz, u(E) + u(F)) (ENF =0, x € X) use that

B is nondegenerated. To see p < P take any F € A with P(E) = 0 and any
z € X. It follows from ||z - 1g| 1 (x) = O that

B(a, u(E)) = Flz-15) = F(0) = 0 (z € X),
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which implies p(FE) = 0. Let us prove that ||u| < co. Let {E;} € P, z; € X,
lz;llx < 1. Then

m

> F(zi-1g,)

=1

= <|F- <7,

Leo(X)

inM(Ei)

m
E xZ; - 1Ei
i=1

4 Z

which shows us the desired result. Now we have proved that 4 € BA(Y'). Since

m m m m
i=1 i=1

i=1 i=1

the equality I, = F holds on the dense subspace S(X), consequently on
L& (X), too.
We can summarize our results in the following

Theorem 1. A model for the operator space L(L§(X); Z) is BA(Y) by
the isometric isomorphism (4).

4. Special cases

1) Let X := K, Y be an arbitrary Banach space over K, Z := Y, B(x,y) :=
=z-yzeX,yeY).

B is obviously nondegenerated, and for any f € L(X;Z) = L(K;Y)
holds B(., f(1)) = f, therefore B satisfies the ”bijection property”. Moreover,
dimX = dimK =1 < oo implies LP(K) = L>*(K). Applying Theorem 1, we
obtain (cf. Diestel and Uhl [4]) as special case the following

Theorem 2. There is a one-to-one linear and isometric correspondence
between the Banach spaces BA(Y) and L(L*°(K);Y) defined by
®: BA(YY) — L(L*(K);Y), D(p) :=1,.
Remark that choosing Y = K, we obtain the well-known duality theorem
L>~(K)* =2 BA(K).

2) Let X be an arbitrary Banach space over K, YV := X* 7 := K,
B(z,y) ==y(x) (x€ X, y€Y).
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In this case B(.,y) = y(.), that is the mapping y — B(.,y) is the identity
of Y, therefore B satisfies the ”bijection property”. Applying Theorem 1, we
obtain as special case the following

Theorem 3. The dual of LF(X) is BA(X*) and the mapping
®: BA(X™") — LF (X)), O(p) =1,

is an isometric isomorphism.

Remark that for reflexive X the semivariation can be exchanged by the
total variation (see Proposition 1). This special case is applied in Csorg6 [3]
and Weisz [6] for X = (2.

Note that in case Y = K, Z = X, B(x,y) := y -z the ”bijection property”
is not satisfied.
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