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A REPRESENTATION THEOREM
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To Professor J. Balázs on his 75-th birthday

1. Introduction

It is well-known that the dual of Lp built on an abstract measure space is
Lq, where 1 ≤ p < ∞, p−1 + q−1 = 1, and that the dual of L∞ is the space
of finitely additive, absolutely continuous set functions, which have bounded
variation.

A possible generalization is described in Benedek and Panzone [2], where
the authors take successively the pi-norm in the i-th variable (i = 1, . . . , n;
1 ≤ pi ≤ ∞) of a scalar-valued, measurable function defined on the Cartesian
product of n σ-finite measure spaces, and the mixed norm space L(p1,...,pn)

consists of functions for which these values are finite. It is shown in [2] that
the dual of L(p1,...,pn) is L(q1,...,qn) (1 ≤ pi < ∞, p−1

i + q−1
i = 1).

Another generalization (that contains the previous one in a certain sense) is
given in Diestel and Uhl [4], where the functions are defined on a finite measure
space and take their values from a Banach-space X. The corresponding Lp-
space Lp(X) is defined similarly to the scalar-valued case, but the absolute
value is replaced by the X-norm. In [4] it is shown that the dual of Lp(X)
is Lq(X∗), whenever 1 ≤ p < ∞, p−1 + q−1 = 1 and X∗ has the Radon-
Nikodym property, that is every countably additive, absolutely continuous
vector measure of bounded variation can be regarded as the indefinite integral
of a Bochner-integrable function.

A third possibility for generalization is that instead of the functional space
(Lp)∗ = L(Lp;K) we model the linear operator space L(Lp;X), where X is a
Banach space and K is the set of the real or complex numbers. Such a result
for p = ∞ is given in Diestel and Uhl [4] (cf. special cases 1) in this paper).
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In this paper we shall deal with the representation of the operator space
L(L∞0 (X); Z), where X and Z are Banach spaces, L∞0 (X) is the closure of
the subspace of simple functions in L∞(X). This representation will be given
using Y -valued, finitely additive, absolutely continuous and bounded vector
measures, where Y is a Banach space, which is connected with X and Z by
a bilinear operator satisfying the ”bijection property”. The paper contains a
characterization of L∞0 (X), and finally, two important special cases, too.

2. Definitions and preliminaries

Let (X, ‖.‖X), (Y, ‖.‖Y ), (Z, ‖.‖Z) be Banach spaces over the same (real or
complex) scalar field K, and B : X × Y → Z be a bounded bilinear operator,
which satisfies the following ”bijection property”: the mapping Y → L(X;Z),
y 7→ B(., y) is bijective, where L(X;Z) denotes the space of bounded linear
operators from X to Z. We remark that the mapping y 7→ B(., y) is injective
if and only if B is nondegenerated, that is B(x, y) = 0 (x ∈ X) implies y = 0
(cf. Halmos [5]). If it does not give rise to confusion, we denote B(x, y) simply
by xy and call it as the ”product” of x and y, and B as the ”multiplication”.

Let Ω be a nonempty set, A ⊂ 2Ω be a field. Denote by P the set of
A-measurable finite partitions of Ω, and by {E1, . . . , Em} or shortly {Ei}, the
elements of P. So Ei ∈ A, Ei ∩ Ej = ∅ if i 6= j, E1 ∪ . . . ∪ Em = Ω. A set
function µ : A → Y is called Y -valued vector measure if it is finitely additive.
Define the semivariation of µ by

‖µ‖ := sup

{∥∥∥∥∥
m∑

i=1

xiµ(Ei)

∥∥∥∥∥
Z

: {Ei} ∈ P, xi ∈ X, ‖xi‖X ≤ 1

}
,

and the total variation of µ by

|µ| := sup

{
m∑

i=1

‖µ(Ei)‖Y : {Ei} ∈ P
}

as in Bartle [1]. Remark that these variations are not necessarily finite and
that they are norms in the vector spaces of vector measures of finite semi- and
total variations, respectively.

Proposition 1.
a) ‖µ‖ ≤ ‖B‖ · |µ|.
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b) If X = K, Z = Y , B(x, y) = x · y, then

‖µ‖ = sup {|y∗ ◦ µ| : y∗ ∈ Y ∗, ‖y∗‖Y ∗ ≤ 1}.

c) If X is reflexive, Y = X∗, Z = K, B(x, y) = y(x), then

‖µ‖ = |µ|.

Proof. a) is obvious, for b) see Diestel and Uhl [4], Proposition 11.
Proving c), ‖µ‖ ≤ |µ| follows immediately from ‖B‖ ≤ 1 and a). To see
the opposite inequality it is enough to show that

{∑

i

‖µ(Ei)‖X∗ : {Ei} ∈ P
}
⊂

⊂
{∣∣∣∣∣

∑

i

µ(Ei)(xi)

∣∣∣∣∣ : {Ei} ∈ P, xi ∈ X, ‖xi‖X ≤ 1

}
.

Really, since X is reflexive, by the Hahn-Banach theorem there exists xi ∈ X
such that ‖xi‖X = 1 and µ(Ei)(xi) = ‖µ(Ei)‖X∗ .

In the remainder part of this paper (Ω,A, P ) denotes an arbitrary proba-
bility measure space. A vector measure µ is called absolutely continuous with
respect to P (briefly µ ¿ P ) if P (E) = 0 implies µ(E) = 0. Denote by
BA(Ω,A, P ; Y ) or simply by BA(Y ) the vector space

BA(Y ) := {µ : A → Y : µ is additive, ‖µ‖ < ∞, µ ¿ P}.

Endowing this space with the norm ‖µ‖, it is a Banach-space.
Let

S(X) := S(Ω,A, P ;X) :=

{
m∑

i=1

xi · 1Ei
: xi ∈ X, {Ei} ∈ P

}

be the vector space of the X-valued simple functions, where 1E denotes the
characteristic function of E ∈ A. We say that a function f : Ω → X is
P -measurable if it is the P -almost everywhere limit of a sequence of simple
functions, i.e. there exist fn ∈ S(X) (n ∈ N) such that

P
({

ω ∈ Ω : lim
n→∞

‖fn(ω)− f(ω)‖X = 0
})

= 1.
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Let us introduce the vector space of all (equivalence classes of) X-valued, P -
measurable, essentially bounded functions, the space L∞(Ω,A, P ;X) or shortly
L∞(X) (cf. Diestel and Uhl [4], IV.1.). This is a Banach space under the norm

‖f‖L∞(X) := ess sup
ω∈Ω

‖f(ω)‖X .

Finally, let L∞0 (Ω,A, P ; X), or shortly L∞0 (X) be the closure of S(X) in L∞-
norm.

Proposition 2. Let X be a Banach space having Schauder-basis (ej : j ∈
∈ N), ‖ej‖X = 1, further f ∈ L∞(X). Then f ∈ L∞0 (X) if and only if

(1) lim
N→∞

∥∥∥∥∥∥
f −

N−1∑

j=1

e∗j (f(.)) · ej

∥∥∥∥∥∥
L∞(X)

= 0.

(Here e∗j (j ∈ N) denote the coordinate functionals.)

Proof. First let f =
m∑

i=1

xi · 1Ei
∈ S(X), and ε > 0. Then for every

i = 1, . . . , m there exist Ni ∈ N such that
∥∥∥∥∥∥

∞∑

j=N

e∗j (xi) · ej

∥∥∥∥∥∥
X

< ε (N ≥ Ni).

For every N ≥ max{N1, . . . , Nm} ≥ Ni and for every ω ∈ Ei ⊂ Ω we have
∥∥∥∥∥∥

∞∑

j=N

e∗j (f(ω)) · ej

∥∥∥∥∥∥
X

=

∥∥∥∥∥∥

∞∑

j=N

e∗j (xi) · ej

∥∥∥∥∥∥
X

< ε.

Taking ess sup it follows (1).
Now let f ∈ L∞0 (X). Then there exists a sequence fn ∈ S(X) (n ∈ N)

with the property
lim

n→∞
‖fn − f‖L∞(X) = 0.

Denoting by C the supremum of the norms of the partial sum operators in
X (which is depending only on the chosen Schauder-basis), we deduce for any
n,N ∈ N, N ≥ 2 and for any ω ∈ Ω

∥∥∥∥∥∥
f(ω)−

N−1∑

j=1

e∗j (f(ω)) · ej

∥∥∥∥∥∥
X

≤
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≤
∥∥∥∥∥∥
f(ω)− fn(ω)−

N−1∑

j=1

e∗j (f(ω)− fn(ω)) · ej

∥∥∥∥∥∥
X

+

+

∥∥∥∥∥∥
fn(ω)−

N−1∑

j=1

e∗j (fn(ω)) · ej

∥∥∥∥∥∥
X

≤

≤ (C + 1) · ‖f(ω)− fn(ω)‖X +

∥∥∥∥∥∥
fn(ω)−

N−1∑

j=1

e∗j (fn(ω)) · ej

∥∥∥∥∥∥
X

.

Taking ess sup we obtain

∥∥∥∥∥∥

∞∑

j=N

e∗j (f(.)) · ej

∥∥∥∥∥∥
L∞(X)

≤ (C+1) ·‖f−fn‖L∞(X)+

∥∥∥∥∥∥

∞∑

j=N

e∗j (fn(.)) · ej

∥∥∥∥∥∥
L∞(X)

,

which shows (1).
Conversely, let ε > 0 and f ∈ L∞(X) satisfying (1). Then there exists an

N ∈ N, N ≥ 2 with the property

(2)

∥∥∥∥∥∥

∞∑

j=N

e∗j (f(.)) · ej

∥∥∥∥∥∥
L∞(X)

< ε/2.

Since ‖e∗j‖ ≤ 2C (j ∈ N), it follows from the estimation

|e∗j (f(ω))| ≤ ‖e∗j‖ · ‖f(ω)‖ ≤ 2C · ‖f(ω)‖

that e∗j (f(.)) ∈ L∞(K). Since S(K) is dense in L∞(K), one can find for every
j ∈ {1, . . . , N − 1} a simple function ϕj ∈ S(K) such that

‖e∗j (f(.))− ϕj‖L∞(K) < ε/2(N − 1).(3)

The functions ϕj (j = 1, . . . , N − 1) can be assumed to be generated by the
same partition {E1, . . . , Em}. It is easy to see that the function

g(ω) :=
N−1∑

j=1

ϕj(ω) · ej (ω ∈ Ω)
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is in S(X). The independence of e1, . . . , eN−1 implies that for any ω ∈ Ω holds
e∗j (g(ω)) = ϕj(ω) and

‖f(ω)− g(ω)‖X ≤

≤
∥∥∥∥∥∥

N−1∑

j=1

e∗j (f(ω)− g(ω)) · ej

∥∥∥∥∥∥
X

+

∥∥∥∥∥∥

∞∑

j=N

e∗j (f(ω)− g(ω)) · ej

∥∥∥∥∥∥
X

≤

≤
N−1∑

j=1

|e∗j (f(ω))− ϕj(ω)|+
∥∥∥∥∥∥

∞∑

j=N

e∗j (f(ω)) · ej

∥∥∥∥∥∥
X

.

Taking ess sup and using (2) and (3) we obtain ‖f−g‖L∞(X) < ε, which implies
f ∈ L∞0 (X).

This proposition makes us possible to give example for a function being in
L∞(X), but not in L∞0 (X), provided that X has Schauder-basis (ej : j ∈ N),
‖ej‖X = 1. Suppose that Ω can be written as union of a countably infinite
set family {Ej ∈ A : j ∈ N}, where the sets Ej are disjoint, and P (Ej) >

> 0. (For example the intervals Ej :=
[

1− 1
j
, 1− 1

j + 1

)
(j ∈ N) in [0, 1).)

The function f :=
∞∑

j=1

ej · 1Ej
is obviously P -measurable, moreover, for every

N ∈ N holds that

∥∥∥∥∥
∞∑

j=N

e∗j (f(ω)) · ej

∥∥∥∥∥
X

= 1, if ω ∈
∞⋃

j=N

Ej , and 0 otherwise.

Since P

(
∞⋃

j=N

Ej

)
> 0, we obtain that ess sup

ω∈Ω

∥∥∥∥∥
∞∑

j=N

e∗j (f(ω)) · ej

∥∥∥∥∥
X

= 1. This

relation shows on one hand (for N = 1) that f ∈ L∞(X), and it implies on the
other hand that f /∈ L∞0 (X), because (1) is not true.

Note that for finite dimensional X we have L∞0 (X) = L∞(X).

3. Integration and model for the operator space

Following the way in Bartle [1] let us introduce the integral of an X-valued

simple function f =
m∑

i=1

xi · 1Ei ∈ S(X) with respect to the vector measure
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µ ∈ BA(Y ) using the ”multiplication” defined by the bilinear operator B, as

Iµ(f) :=
∫

Ω

f dµ :=
m∑

i=1

xiµ(Ei).

One can easily verify that Iµ : S(X) → Z is a well-defined linear operator (cf.
[1]).

Proposition 3. The operator Iµ is bounded, and ‖Iµ‖ = ‖µ‖.
Proof. Define the following real number sets:

H1 :=

{∥∥∥∥∥
m∑

i=1

xiµ(Ei)

∥∥∥∥∥
Z

: {Ei} ∈ P, xi ∈ X, max
i=1,...,m

‖xi‖X ≤ 1

}
,

H2 :=

{∥∥∥∥∥
m∑

i=1

xiµ(Ei)

∥∥∥∥∥
Z

: {Ei} ∈ P, xi ∈ X, max
i:P (Ei)6=0

‖xi‖X ≤ 1

}
,

H3 :=

{∥∥∥∥∥
m∑

i=1

xiµ(Ei)

∥∥∥∥∥
Z

: {Ei} ∈ P, xi ∈ X, max
i:µ(Ei)6=0

‖xi‖X ≤ 1

}
.

It is plausible that H3 ⊂ H1 ⊂ H2 and - using µ ¿ P - that H2 ⊂ H3. he
mapping

Φ : BA(Y ) →L(L∞0 (X); Z), Φ(µ) := Iµ(4)

is a well-defined linear isometry, consequently it is an injection.

Proposition 4. Every F ∈ L(L∞0 (X); Z) has the form Iµ with a suitable
µ ∈ BA(Y ).

Proof. For a given E ∈ A the mapping x 7→ F (x ·1E) is in L(X; Z). Since
our ”multiplication” (i.e. the operator B) satisfies the ”bijection property”,
there exists a unique element µ(E) ∈ Y such that

B(x, µ(E)) = F (x · 1E) (x ∈ X).

So, we have defined a set function µ : A → Y . To see its additivity, after
verifying B(x, µ(E ∪ F )) = B(x, µ(E) + µ(F )) (E ∩ F = ∅, x ∈ X) use that
B is nondegenerated. To see µ ¿ P take any E ∈ A with P (E) = 0 and any
x ∈ X. It follows from ‖x · 1E‖L∞(X) = 0 that

B(x, µ(E)) = F (x · 1E) = F (0) = 0 (x ∈ X),
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which implies µ(E) = 0. Let us prove that ‖µ‖ < ∞. Let {Ei} ∈ P, xi ∈ X,
‖xi‖X ≤ 1. Then

∥∥∥∥∥
m∑

i=1

xiµ(Ei)

∥∥∥∥∥
Z

=

∥∥∥∥∥
m∑

i=1

F (xi · 1Ei
)

∥∥∥∥∥
Z

≤ ‖F‖ ·
∥∥∥∥∥

m∑

i=1

xi · 1Ei

∥∥∥∥∥
L∞(X)

≤ ‖F‖,

which shows us the desired result. Now we have proved that µ ∈ BA(Y ). Since

Iµ

(
m∑

i=1

xi · 1Ei

)
=

m∑

i=1

xiµ(Ei) =
m∑

i=1

F (xi · 1Ei
) = F

(
m∑

i=1

xi · 1Ei

)
,

the equality Iµ = F holds on the dense subspace S(X), consequently on
L∞0 (X), too.

We can summarize our results in the following

Theorem 1. A model for the operator space L(L∞0 (X); Z) is BA(Y ) by
the isometric isomorphism (4).

4. Special cases

1) Let X := K, Y be an arbitrary Banach space over K, Z := Y , B(x, y) :=
:= x · y (x ∈ X, y ∈ Y ).

B is obviously nondegenerated, and for any f ∈ L(X; Z) = L(K;Y )
holds B(., f(1)) = f , therefore B satisfies the ”bijection property”. Moreover,
dimX = dimK = 1 < ∞ implies L∞0 (K) = L∞(K). Applying Theorem 1, we
obtain (cf. Diestel and Uhl [4]) as special case the following

Theorem 2. There is a one-to-one linear and isometric correspondence
between the Banach spaces BA(Y ) and L(L∞(K); Y ) defined by

Φ : BA(Y ) → L(L∞(K); Y ), Φ(µ) := Iµ.

Remark that choosing Y = K, we obtain the well-known duality theorem
L∞(K)∗ ∼= BA(K).

2) Let X be an arbitrary Banach space over K, Y := X∗, Z := K,
B(x, y) := y(x) (x ∈ X, y ∈ Y ).
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In this case B(., y) = y(.), that is the mapping y 7→ B(., y) is the identity
of Y , therefore B satisfies the ”bijection property”. Applying Theorem 1, we
obtain as special case the following

Theorem 3. The dual of L∞0 (X) is BA(X∗) and the mapping

Φ : BA(X∗) → L∞0 (X)∗, Φ(µ) := Iµ

is an isometric isomorphism.
Remark that for reflexive X the semivariation can be exchanged by the

total variation (see Proposition 1). This special case is applied in Csörgő [3]
and Weisz [6] for X = `2.

Note that in case Y = K, Z = X, B(x, y) := y ·x the ”bijection property”
is not satisfied.
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