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1. Introduction

The problem of Hermite-Birkhoff interpolation on real nodes has a well
developed theory which is embodied in the well-known book by G.G. Lorentz
et al. [4]. R.A. Lorentz and G.G. Lorentz [5] have extended the theory to
multivariate interpolation also. But on the subject of interpolation on nodes
on the unit circle, almost all the results deal with the case of equidistributed
nodes which, except for rotation, are equivalent to some roots of unity. This
observation was first made by Shen Xiecheng [1]. Following this remark, Xie
Siquing [3] has shown that the problem of (0, . . . , r − 2, r) interpolation for
any integer r ≥ 2 is regular on the nodes which are obtained by projecting
the zeros of the Jacobi polynomials P

(α,β)
n (x) vertically on the unit circle on

putting x = (z+z−1)/2. His method comprises in finding a differential equation
for ωn(z) = znP

(α,β)
n ((z2 + 1)/(2z)) which is a polynomial of degree 2n and

whose differential equation also turns out to be of the second degree. More
recently Chui et al. [2] worked out the case of Lagrange interpolation on nodes
which are perturbed slightly in a small neighbourhood of roots of unity. But
they do not consider the case of lacunary interpolation. Fabrykowski et al. [7]
considered the problem of lacunary interpolation on cube roots of unity with
two Hermitian sequences and two non-zero entries in the third row.

Our object here is, in a sense, simpler but the apparent simplicity entails
its own difficulties. We propose to study the regularity of the problem of
(0,m) interpolation on the zeros of (z2n + 1)(z2 − 1) and also on the zeros of
(z2n + 1)(zn − 1). It is clear that the nodes are not uniformly distributed any
more in these cases because of the extra nodes at +1 and −1. It is known that



70 W.Chen and A.Sharma

on the roots of unity and (in particular) on the zeros of z2n + 1, the problem
of (0,m1, . . . , mq) interpolation is regular [6] where 0 < m1 < . . . < mq are
distinct integers and mj ≤ jn.

2. (0,m) interpolation on zeros of (z2n + 1)(z2 − 1) (m ≥ 1 integer)

We shall prove

Theorem 1. The problem of (0, m) interpolation on zeros of (z2n+1)(z2−1)
is regular for any integer m ≥ 1 and m < 2n + 2.

Proof. For m = 1, we know that it is Hermite interpolation so we shall take
m ≥ 2. For m > 2n+2, the problem is known to be not regular. Here the data
is 4n + 4 and so it is enough to show that if a polynomial Q(z) is of degree
≤ 4n + 3 satisfies

(2.1) Q(zk) = 0, Q(m)(zk) = 0, where z2n
k + 1 = 0 k = 1 . . . , 2n,

(2.2) Q(±1) = 0, Q(m)(±1) = 0,

then Q(z) is identically zero.
We write

Q(z) = P0(z) + z2nP1(z) + z4nP2(z),

where P0(z), P1(z) ∈ π2n−1 and P2(z) ∈ π3. Then Q(z) ∈ π4n+3 and from
Q(zk) = 0 we have

(2.2a)
2n−1∑
ν=0

(a0,ν − a1,ν + a2,ν)zν
k = 0, k = 1, . . . , 2n.

Here we have set Pj(z) =
2n−1∑
ν=0

aj,νzν , j = 0, 1, 2. Since P2(z) ∈ π3, we have

a2,ν = 0, ν ≥ 4.

Thus from (2.2a) we have the identity

2n−1∑
ν=0

(a0,ν − a1,ν + a2,ν)zν = 0,
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which yields

(2.3)

{ a0,ν − a1,ν + a2,ν = 0, ν = 0, 1, 2, 3,

a0,ν − a1,ν = 0, ν = 4, 5, . . . 2n− 1.

Similarly, from Q(m)(zk) = 0, on setting (a)m := a(a − 1) . . . (a −m + 1), we
get
(2.4)




(ν)ma0,ν − (2n + ν)ma1,ν + (4n + ν)ma2,ν = 0, ν = 0, 1, 2, 3

(ν)ma0,ν − (2n + ν)ma1,ν = 0, ν = 4, . . . , 2n− 1.

From the second system of equations in (2.3) and (2.4), we see that

a0,ν = a1,ν = 0, ν = 4, . . . , 2n− 1.

Since we also require the conditions (2.2), we get the following four conditions:

(2.5)
3∑

ν=0

(a0,ν + a1,ν + a2,ν) = 0,

(2.6)
3∑

ν=0

(a0,ν + a1,ν + a2,ν)(−1)ν = 0,

(2.7)
3∑

ν=0

[(ν)ma0,ν + (2n + ν)ma1,ν + (4n + ν)ma2,ν ] = 0,

(2.8)
3∑

ν=0

[(ν)ma0,ν + (2n + ν)ma1,ν + (4n + ν)ma2,ν ](−1)ν = 0.

Adding and subtracting we get from (2.5), (2.6) and (2.7), (2.8)

(2.9)
1∑

ν=0

[a0,2ν + a1,2ν + a2,2ν ] = 0,
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(2.10)
1∑

ν=0

[(2ν)ma0,2ν + (2n + 2ν)ma1,2ν + (4n + 2ν)ma2,2ν ] = 0,

(2.11)
1∑

ν=0

[a0,2ν+1 + a1,2ν+1 + a2,2ν+1] = 0,

(2.12)
1∑

ν=0

[(2ν+1)ma0,2ν+1+(2n+2ν+1)ma1,2ν+1+(4n+2ν+1)ma2,2ν+1] = 0.

From (2.3), we get a0,0 + a2,0 = a1,0 and a0,2 + a2,2 = a1,2 so that from (2.9)
we get

a1,0 + a1,2 = 0.

Similarly from (2.4) and (2.10), we have

(2n)ma10 + (2n + 2)ma1,2 = 0.

The last two equations give a10 = a12 = 0. This yields

a0,0 + a2,0 = 0 and a0,2 + a2,2 = 0,

and from (2.4) for ν = 0 and 2, we get

(0)ma0,0 + (4n)ma2,0 = 0 and (2)ma0,2 + (4n + 2)ma2,2 = 0.

Combining these equations suitably proves that

a0,2ν = 0, a2,2ν = 0, ν = 0, 1.

Similarly we get

a0,2ν+1 = a1,2ν+1 = a2,2ν+1 = 0, ν = 0, 1.

Hence Q(z) ≡ 0. This completes the proof.

Remark. It is clear from the foregoing proof that the theorem is also valid
when the nodes are zeros of (zpn + 1)(z2 − 1), p > 2.
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3. Zeros of (z2n + 1)(zn − 1)

We shall now consider the problem of (0,m) interpolation on the zeros of
(z2n + 1)(zn − 1). We shall prove

Theorem 2. The problem of (0,m) interpolation on the zeros of (z2n+
+1)(zn − 1) is regular for m < 3n.

Proof. As in Theorem 1, we set

Q(z) = P0(z) + z2nP1(z) + z4nP2(z),

where Pi(z) =
2n−1∑
ν=0

ai,vzν , i = 0, 1, 2, since in this case Q(z) ∈ π6n−1. From

Q(zk) = 0, where z2n
k = −1, we get

P0(zk)− P1(zk) + P2(zk) = 0,

P
(m)
0 (zk) + (z2nP1)(m)

zk
+ (z4nP2)(m)

zk
= 0.

From these we get as in Section 2,

(3.1)
2n−1∑
ν=0

(a0,ν − a1,ν + a2,ν)zν = 0,

(3.2)
2n−1∑
ν=0

[(ν)ma0,ν − (ν + 2n)ma1,ν + (ν + 4n)ma2,ν ]zν = 0.

If we denote ξ1, . . . , ξn to be the zeros of zn−1, then Q(ξk) = 0 and Q(m)(ξk) =
= 0 (k = 1, . . . , n) yield the following conditions:

(3.3)
n−1∑
ν=0

[(a0,ν + a0,n+ν) + (a1,ν + a1,n+ν) + (a2,ν + a2,n+ν)]zν = 0,

(3.4)
n−1∑
ν=0

[{(ν)ma0,ν + (n + ν)ma0,n+ν}+ {(2n + ν)ma1,ν + (3n + ν)ma1,n+ν}+

+ {(4n + ν)ma2,ν + (5n + ν)ma2,n+ν}]zν = 0.
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From (3.1)-(3.4) we get the following system of equations:

(3.5)





a0,ν − a1,ν + a2,ν = 0

(ν)ma0,ν − (ν + 2n)ma1,ν + (ν + 4n)ma2,ν = 0,
(ν = 0, 1, . . . , 2n− 1)

(3.6)





(a0,ν + a0,n+ν) + (a1,ν + a1,n+ν) + (a2,ν + a2,n+ν) = 0,

((ν)ma0,ν + (n + ν)ma0,n+ν) + ((2n + ν)ma1,ν + (3n + ν)ma1,n+ν)+
+((4n + ν)ma2,ν + (5n + ν)ma2,n+ν) = 0

(ν = 0, 1, . . . , n− 1).

Writing the first equation (3.5) for ν and for n + ν and adding, and on using
the first equation in (3.6) we get

a1,ν + a1,n+ν = 0.

Similarly from the second equation in (3.5) for ν and n + ν, and the second
equation in (3.6) we get

(2n + ν)ma1,ν + (3n + ν)ma1,n+ν = 0,

so that a1,ν = a1,n+ν = 0, ν = 0, 1, . . . , n− 1. This leads to the equations

a0,ν + a2,ν = 0, a0,n+ν + a2,n+ν = 0,

(ν)ma0,ν + (ν + 4n)ma2,ν = 0, (ν + n)ma0,n+ν + (ν + 5n)ma2,n+ν = 0,

whence we get a0,ν = a2,ν = 0, (ν = 0, 1, . . . , 2n−1). This completes the proof.

Remark. The above method shows that the problem of (0,m) interpolation
is also regular on the nodes given by the zeros of (zpn + 1)(zn − 1).

4. Regularity of (0, 1, . . . , r − 2, r) on zeros of (z2n + 1)(z2 − 1)

When r = 2, this is a special case of Theorem 1. We believe that a more
general result is true, i.e. (0, 1, . . . r, r + m) is also regular on the zeros of
(z2n + 1)(z2− 1) for m < (r + 1)(2n + 2). But our method here does not apply
here. Here we shall prove
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Theorem 3. The problem of (0, 1, . . . , r − 2, r) is regular on the zeros of
(z2n + 1)(z2 − 1).

Proof. Since the number of data is r(2n + 2), we set

(4.1) Q(z) = (z2n + 1)r−1(z2 − 1)r−1P (z), P (z) ∈ π2n+1.

Then it is clear that

(4.2)





Q(ν)(zk) = 0, ν = 0, 1 . . . r − 2, z2n
k = −1 (k = 1, . . . 2n),

Q(ν)(−1) = Q(ν)(+1) = 0, ν = 0, 1, . . . , r − 2.

We shall show that if we require

Q(r)(zk) = 0, Q(r)(−1) = Q(r)(1) = 0 (k = 1, . . . , 2n),

then P (z) = 0.

From Q(r)(+1) = 0 and Q(r)(−1) = 0 we get from (4.1)

(4.3)





2P ′(1) + (r − 1)(2n + 1)P (1) = 0,

2P ′(−1)− (r − 1)(2n + 1)P (−1) = 0.

If we set P (z) =
2n+1∑
j=0

ajz
j , then (4.3) is equivalent to





2n+1∑
ν=0

(
2ν + (r − 1)(2n + 1)

)
aν = 0,

2n+1∑
ν=0

(
2ν + (r − 1)(2n + 1)

)
aν(−1)ν = 0.

From these we at once obtain

(4.4)





n∑
ν=0

{4ν + (r − 1)(2n + 1)}a2ν = 0,

n∑
ν=0

{2(2ν + 1) + (r − 1)(2n + 1)}a2ν+1 = 0.

From Q(r)(zk) = 0, k = 1, . . . , 2n, we get

z2
k[2zkP ′(zk) + (r − 1)(2n + 3)P (zk)] = 2zkP ′(zk) + (r − 1)(2n− 1)P (zk).
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Using the fact that z2n
k = −1, we obtain from the above, after some simplifica-

tion, a polynomial of degree ≤ 2n− 1 vanishing at the zeros of z2n + 1. Thus
we have the identity
(4.5)

2n−1∑
ν=2

{2(ν − 2) + (r − 1)(2n + 3)}aν−2z
ν−

−
3∑

ν=0

{2(ν + 2n− 2) + (r − 1)(2n + 3)}a2n+ν−2z
ν =

=
2n−1∑
ν=0

{2ν + (r − 1)(2n− 1)}aνzν −
1∑

ν=0

{2(ν + 2n) + (r − 1)(2n− 1)}aνzν .

Comparing like powers of z on both sides gives the following system of equations

{2(ν − 2) + (r − 1)(2n + 3)}aν−2 = {2ν + (r − 1)(2n− 1)}aν

(4.6) (ν = 4, 5, . . . , 2n− 1),

and for ν = 0, 1, 2, 3, we have

(4.7) {2(2n− 2) + (r − 1)(2n + 3)}a2n−2 = 4na0,

(4.8) {2(2n− 1) + (r − 1)(2n + 3)}a2n−1 = 4na1,

(4.9) −{4n+(r−1)(2n+3)}a2n +(r−1)(2n+3)a0 = {4+(r−1)(2n−1)}a2,

(4.10)
−{2(2n + 1) + (r − 1)(2n + 3)}a2n+1 + {2 + (r − 1)(2n + 3)}a1 =

= {6 + (r − 1)(2n− 1)}a3.

From (4.6) we can write a2ν−2 in terms of a2ν and obtain

(4.11) a2ν−2 = Aν−1a2ν , where Aν−1 =
4ν + (r − 1)(2n− 1)

4(ν − 1) + (r − 1)(2n + 3)
,

where Aν−1 < 1 for r ≥ 2 (ν = 2, . . . , n− 1). If we set

An−1 :=
4n

4(n− 1) + (r − 1)(2n + 3)
< 1,
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then from (4.7) we have a2n−2 = An−1a0. From (4.4) and (4.11) we now obtain

(r−1)(2n+1)a0 +
n−1∑
ν=1

{4ν +(r−1)(2n+1)}a2ν +{4n+(r−1)(2n+1)}a2n = 0,

which can be written as

(4.12) Ana0 + {4n + (r − 1)(2n + 1)}a2n = 0,

where

0 < An = (r − 1)(2n + 1) +
n−1∑
ν=1

{4ν + (r − 1)(2n + 1)}
n−1∏
µ=ν

Aµ.

From (4.9) we have

(r − 1)(2n + 3)a0 − {4 + (r − 1)(2n− 1)}a2 − {4n + (r − 1)(2n + 3)}a2n = 0

which gives

(4.13) Bna0 − {4n + (r − 1)(2n + 3)}a2n = 0,

where

Bn = (r − 1)(2n + 3)− (4 + (r − 1)(2n− 1))
n−1∏
µ=1

Aµ.

Since 0 < Aµ < 1, we see that

Bn > (r − 1)(2n + 3)− (4 + (r − 1)(2n− 1)) >

> 4(r − 2) ≥ 0 if r ≥ 2.

The determinant of the two homogeneous equations (4.12) and (4.13) is clearly
non-zero. Hence a0 = a2n = 0 which shows from (4.11) that all the aj ’s are
zero. This completes the proof.

5. Zeros of (z2n + 1)(zn − 1)

We shall now prove
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Theorem 4. The problem of (0, 1, . . . , r−2, r) interpolation is regular on the
zeros of (z2n + 1)(zn − 1).

Proof. Here the number of data is 3nr and so we set

Q(z) = (z2n + 1)r−1(zn − 1)r−1P (z), P (z) ∈ π3n−1.

It is enough to show that if Q(r)(zk) = 0, k = 0, 1, . . . 2n−1, where zk is a zero
of (z2n + 1)(zn − 1), then Q is identically zero.

Let ξn
k (k = 0, 1 . . . n− 1) be a primitive root of unity. Then Q(r)(ξk) = 0,

(k = 0, 1, . . . n− 1) yields

(5.1) 2ξkP ′(ξk) + (r − 1)(3n− 1)P (ξk) = 0, k = 0, 1, . . . , n− 1.

If we set P (z) =
3n−1∑
j=0

ajz
j , then from (5.1) we get

2
3n−1∑

j=0

jajξ
j
k + (r − 1)(3n− 1)

3n−1∑

j=0

ajξ
j
k = 0.

Rearranging the terms on the left and keeping in mind that ξn
k = 1, we obtain

a polynomial in ξk of degree ≤ n− 1 which vanishes at the n-th roots of unity.
So we have the identity

2
[ n−1∑

j=0

jajz
j +

n−1∑

j=0

(j + n)aj+nzj +
n−1∑

j=0

(j + 2n)aj+2nzj

]
+

+(r − 1)(3n− 1)
[ n−1∑

j=0

ajz
j +

n−1∑

j=0

aj+nzj +
n−1∑

j=0

aj+2nzj

]
= 0.

This yields the following equation in the aj ’s:

(5.2)

{2j + (r − 1)(3n− 1)}aj + {2(j + n) + (r − 1)(3n− 1)}aj+n+

+ {2(j + 2n) + (r − 1)(3n− 1)}aj+2n = 0

(j = 0, 1, . . . , n− 1).

If we denote by ηk the zeros of z2n +1, then from Q(r)(ηk) = 0 (k = 1, . . . , 2n),
we get [(

z2n + 1
z − ηk

)r−1

(zn − 1)r−1P (z)
]′

z=ηk

= 0.
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Simple calculations then give the relation

2ηk(ηn
k − 1)P ′(ηk) + (r − 1)[(4n− 1)ηn

k − (2n− 1)]P (ηk) = 0

(k = 1, . . . , 2n).

Since P (z) =
3n−1∑
j=0

ajz
j , we get, as in the earlier case, the following two

equations

(5.4)

{2j + (r − 1)(2n− 1)}aj + {2(j + n) + (r − 1)(4n− 1)}aj+n−
− {2(j + 2n) + (r − 1)(2n− 1)}aj+2n = 0

(j = 0, 1, . . . , n− 1),

(5.5)

{2(j − n) + (r − 1)(4n− 1)}aj−n − {2j + (r − 1)(2n− 1)}aj−
− {2(j + n) + (r − 1)(4n− 1)}aj+n = 0

(j = n, . . . , 2n− 1).

Replacing j by j + n in (5.5), we get

(5.6)

{2j + (r − 1)(4n− 1)}aj − {2(j + n) + (r − 1)(2n− 1)}aj+n−
− {2(j + 2n) + (r − 1)(4n− 1)}aj+2n = 0

(j = 0, 1, . . . , n− 1).

From (5.2), (5.4) and (5.6), we see that the determinant of this system of
homogeneous equations is given by ∆(j), where

∆(j) :=

∣∣∣∣∣∣∣∣∣

a a + 2n a + 4n

b c + 2n −(b + 4n)

c −(b + 2n) −(c + 4n)

∣∣∣∣∣∣∣∣∣

j = 0, 1, . . . , n− 1,

where

a := 2j +(r−1)(3n−1), b := 2j +(r−1)(2n−1), c := 2j +(r−1)(4n−1).
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Expanding ∆(j) in terms of the elements of the last column we see that

∆(j) = −(a + 4n)[b(b + 2n) + c(c + 2n)] + (b + 4n)[−a(b + 2n)− c(a + 2n)]−
− (c + 4n)[a(c + 2n)− b(a + 2n)].

Since a(c + 2n) − b(a + 2n) = 2n(r − 1)(b + 2n) > 0, it follows that ∆(j) < 0
for j = 0, 1, . . . , n− 1. This completes the proof.

Remark. The above method can be used to show that the problem is regular
also on zeros of (zpn + 1)(zn − 1).

6. Another approach to (0,m) interpolation

We shall use a different method to prove the regularity of (0,m) interpolations
on the zeros of (z2n +1)(z2−1). This method has been used in [6] for regularity
of (0,m1, . . . ,mq) interpolation on the n-th roots of unity. We observe that if
z2n
k = −1, then

zm
k [Dm(z2nP1)]zk

= −
m∑

ν=0

(
m

ν

)
(2n)m−νzν

k (DνP1)zk
,

so that we may set

G1,2np(D) := (−1)p
m∑

ν=0

(
m

ν

)
(2np)m−νzνDν .

It is easy to check that G1,2np(D)zs = (2np + s)mzs.
Now we set Q(z) = P0(z) + z2nP1(z) + z4nP2(z), when P0(z), P1(z) ∈ π2n−1

while P2(z) ∈ π3. From Q(zk) = 0 and Q(m)(zk) = 0, we can derive

(6.1)





P0(z)− P1(z) = −P2(z),

(zmDm)P0(z)−G1,2n(D)P1(z) = −G1,2n(D)P2.
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Solving these differential equations, we obtain P0(z) and P1(z). Thus we have

P0(z) =
G1,4n(D)−G1,2n(D)
G1,2n(D)− zmDm

P2(z),

P1(z) =
G1,4n(D)− zmDm

G1,2n(D)− zmDm
P2(z).

If we put P2(z) =
3∑

ν=0
a2,νzν , then

(6.2)





P0(z) =
3∑

ν=0
a2,ν

(ν + 4n)m − (ν + 2n)m

(ν + 2n)m − (ν)m
zν ,

P1(z) =
3∑

ν=0
a2,ν

(ν + 4n)m − (ν)m

(ν + 2n)m − (ν)m
.

From Q(±1) = 0 and Q(m)(±1) = 0, we get

(6.3) P0(1) + P1(1) + P2(1) = 0, P0(−1) + P1(−1) + P2(−1) = 0

and

(6.4)
[
zmDmP0(z) + G1,2n(D)P1(z) + G1,2n(D)P2(z)

]
z=±1

= 0.

Using (6.2) in (6.3) and (6.4), we can get equations containing only the
coefficients of P2(z). By elementary calculations we then get

1∑
ν=0

a2,2ν(2ν + 2n)m
(2ν + 4n)m − (2ν)m

(2ν + 2n)m − (2ν)m
= 0,

1∑
ν=0

a2,2ν
(2ν + 4n)m − (2ν)m

(2ν + 2n)m − (2ν)m
= 0.

Since the determinant of this system is (2ν + 2m)m − (2n)m 6= 0 we see that
a2,0 = a2,2 = 0. Similarly we get a2,1 = a2,3 = 0. This shows that P2(z) ≡ 0
and hence P0(z), P1(z) are also zero. This completes the proof.

The method used above to prove regularity can be used to find the fundamen-
tal polynomials of interpolation in the case of Theorem 2. We shall return to
this aspect later. Another question which arises naturally is whether the results
of Theorems 1 and 2 can be extended to (0,m1,m2) interpolation. We have
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been able to prove that (0,m1,m2) interpolation on the zeros of (z2n+1)(z2−1)
is regular but this required tedious computation with determinants. We
propose to return to these questions later.
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