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1. Introduction

An arithmetic function f(n) is said to be additive if (n,m) = 1 implies
that

f(nm) = f(n) + f(m),

and it is completely additive if the above equality holds for all positive integers
n and m. Let A and A∗ denote the set of all complex-valued additive and
completely additive functions, respectively.

The problem concerning the characterization of functions f(n) = U log n
as additive arithmetic functions was studied by several authors. It is clear that
f(n) = U log n belongs to A∗. Normally log is considered as a mapping IR∗ →
IR and in this context it is well known that continuity along with the functional
equation f(xy) = f(x) + f(y) characterizes the logarithm up to a constant
factor. Restricting the domain from R∗ to N creates an interesting question:
What further properties along with (complete) additivity will ensure that an
arithmetic function f is in fact U log n ? Most of the sufficient conditions that
are known can be formulated in terms of their differences.

The first such characterization is apparently that of P.Erdős. Among other
results on additive functions, P.Erdős [7] proved in 1946 that if a real-valued
additive function f satisfies

f(n + 1)− f(n) ≥ 0 (n = 1, 2, . . .)

or
f(n + 1)− f(n) = o(1) as n →∞,
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then f(n) is a constant multiple of log n. He stated several conjectures
concerning possible improvements and generalizations of his results. In addition
P.Erdős conjectured that the last condition could be weakened to

(1)
∑

n≤x

|f(n + 1)− f(n)| = o(x) as x →∞.

This was later proved by I.Kátai [10]. An alternative proof of a slightly stronger
form of this conjecture was given by E.Wirsing [16]. Another one of Erdős’
conjectures was that if an additive function f satisfies

f(n + 1)− f(n) = O(1) as n →∞,

then f = U log for completely additive f and f = U log +O(1) for additive f .
Any additive function f with f(n) = 0 for odd n and bounded f(2k) shows that
the term O(1) must not be dropped. This conjecture was proved by E.Wirsing
in [15]. P.Erdős also conjectured that the condition (1) could be replaced by

f(n + 1)− f(n) = o(1) (n →∞ through a set of density 1).

This conjecture has been proved only very recently by A.Hildebrand [5] as a
corollary to a more general result on the limit distribution for f(n + 1)− f(n).

Since the appearance of Erdős’ paper several new characterizations of the
logarithm have been found that generalize or sharpen Erdős’ original results
in a variety of ways. I.Kátai [8], [9] proposed the problem to obtain similar
characterizations when n and n+1 are replaced by two linear forms an+ b and
An + B. Specifically, I.Kátai asked for a characterization of those real-valued
additive functions f which satisfy

f(An + B)− f(an + b) → C as n → ∞

for some integers A > 0, B, a > 0, b with Ab − aB 6= 0 and for a real number
C. I.Kátai considered this problem with b = 0 and small values of A and
B in [8], [9]. The general case has been treated and completely solved by
P.D.T.A.Elliott [1], [2], [3]. Namely, P.D.T.A.Elliott [3] showed that if a real-
valued additive function f satisfies the above condition, then f(n) = U log n
holds for all positive integers n which are prime to Aa(Ab− aB).

On the other hand, the condition (1) was weakened by I.Kátai in 1978. He
proved in [11] that a function f ∈ A satisfies

lim inf
x→∞

1
log x

∑

n≤x

1
n
|f(n + 1)− f(n)| = 0
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must be of the form f = U log for some complex constant U .

For further results and generalizations of these questions and related open
problems see the excellent book of P.D.T.A.Elliott [3] and the survey papers of
I.Kátai [12], Hildebrand [6].

In [14] we obtained a complete characterization of those functions f1 ∈ A
and f2 ∈ A for which the relation

∑

n≤x

|f1(an + b)− f2(n)− d| = o(x) as x →∞

holds for some fixed positive integers a, b and for a complex constant d. We
deduced from the above relation that there are a complex constant U and
functions F1 ∈ A, F2 ∈ A such that

f1(n) = U log n + F1(n), f2(n) = U log n + F2(n)

and
F1(an + b)− F2(n)− d + U log a = 0

hold for all positive integers n. We note that this result can be derived from
a recent result due to P.D.T.A.Elliott [4], which was obtained with analytic
methods. Our proof in [14] is elementary, it was used in [13].

Our purpose in this paper is to improve some results mentioned above.
We shall prove the following

Theorem 1. Let a, b, c be positive integers and let d be a complex
constant. Then f1 ∈ A and f2 ∈ A satisfy the condition

(2)
∑

n≤x

1
n
|f1(an + b)− f2(cn)− d| = o(log x) as x →∞

if and only if there are a complex constant U and functions F1 ∈ A, F2 ∈ A
such that

f1(n) = U log n + F1(n), f2(n) = U log n + F2(n)

and
F1(an + b)− F2(cn)− d + U log

(a

c

)
= 0

hold for all positive integers n.

Remark. From our proof it will follow that

F2(n) = F2

[
(n, bc2N2)

]
(n = 1, 2, . . .)
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and
F1(n) = 0 if (n, abcN2) = 1,

where N2 ∈ {1, 2} satisfying (2, aN2 + 1) = 1.

We shall prove Theorem 1 by using the similar result concerning the case
when f1 = f2.

Theorem 2. Assume that f ∈ A satisfies the condition

(3)
∑

n≤x

1
n
|f(An + B)− f(Cn)−D| = o(log x) as x →∞

for some positive integers A, B, C and for a complex constant D. Then there
are a complex constant U and a function F ∈ A such that

f(n) = U log n + F (n)

and
F (n) = F [(n, BCCA)]

hold for all positive integers n, where CA denotes the product of all prime
divisors of C which are prime to A.

Theorem 3. Let a, b and c be positive integers. If f1 ∈ A and f2 ∈ A
satisfy the condition

f1(an + b)− f2(cn) = O(1) as n →∞,

then there are a complex constant U and a function F1 ∈ A such that

f1(n) = U log n + F1(n), f2(n) = U log n + O(1)

and
F1(an + b) = O(1)

hold for all positive integers n. In particular, we have

F1(n) = O(1) for all (n, a) = 1.

We note that Theorem 3 is known result, namely it is a consequence of
the theorem of P.D.T.A.Elliott [2]. But our proof is elementary and it will use
only the result of E.Wirsing [15] concerning the case a = b = c = 1.
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2. Auxiliary lemmas

In this section we introduce some notations and prove two lemmas which
will be used at the proofs of our theorems.

Let A, B and C be fixed positive integers. We shall denote by CA the
product of all distinct prime divisors of C which are prime to A. For an
arbitrary positive integer n let E(n) = EB(n) be the product of all prime power
factors of B composed from the prime divisors of n, i.e. E(n)|B, (n,B/E(n)) =
= 1 and every prime divisor of E(n) is a divisor of n.

Lemma 1. Assume that f ∈ A satisfies the condition (3) for some positive
integers A, B, C and for a complex constant D. Then for each positive integer
k and Q we have

(4) f
(
BCCAQk

)
= kf(BCCAQ)− (k − 1)f(BCCA)

and

(5) f
(
ACC2

AE(C)
)

= 2f (CCAE(C))− f (E(C)) + D.

Proof. For each positive integer Q we define the sequence

R = R(ACAQ) = {Rk(ACAQ)}∞k=1

by the initial term R1(ACAQ) = 1 and by the formula

(6) Rk(ACAQ) = 1 + ACAQ + . . . + (ACAQ)k−1

for all integers k ≥ 2. Moreover, let

(7) Tk(n,Q) = (ACAQ)k
E(CQ)n + BRk(ACAQ).

By using (6) and (7), we have

(8) Tk+1(n,Q) = ACAQTk(n,Q) + B

and

(9) (CCAQE(CQ), Tk(n,Q)/E(CQ)) = 1
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for all positive integers k. Thus, using (3), (7), (8), (9) and the additivity of f ,
we have

∑

n≤x

1
n
|f (T1(n,Q))− f (CCAQE(CQ)n)−D| = o(log x) as x →∞

and

∑

n≤x

1
n
|f (Tk(n,Q))− f (Tk−1(n, Q))−H(Q)| = o(log x) as x →∞

for each integer k ≥ 2, where

H(Q) := f (CCAQE(CQ))− f (E(CQ)) + D.

These imply that
(10)∑

n≤x

1
n
|f (Tk(n,Q))− f (CCAQE(CQ)n)− (k − 1)H(Q)−D| = o(log x)

holds for each positive integer k.

We shall deduce from (10) that

(11) f
(
Ak−1CCk

AQkPE(CQ)
)

= (k − 1)H(Q) + f (CCAQPE(CQ))

holds for every positive integer k, Q and P .

Let k, Q and P be positive integers. Let Rk = Rk(ACAQ). Considering

(12) n := PRk {APCQRkm + 1}

and taking into account (10), one can deduce that (11) holds if k, Q and P
satisfy the condition

(13) (P, Rk) = (PE(CQ) + B, Rk) = 1.

It is obvious that (13) is satisfied in the following cases:

P = 1, Q = 2B

and
P = 1, Q = 2pB,
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where p is a prime number. Thus, we get from (11), using the fact E(2BC) =
= E(2pBC) = B, that

f
(
pk

)
= kf(p) if (p, 2ABC) = 1,

because

f
(
Ak−1CCk

A(2B)kB
)

= (k − 1)H(2B) + f
(
CCA2B2

)
,

f
(
Ak−1CCk

A(2pB)kB
)

= (k − 1)H(2pB) + f
(
CCA2pB2

)

and
H(2pB) = f(p) + H(2B) if (p, 2BC) = 1.

Therefore, by using the additivity of f , we have

(14) f(nm) = f(n) + f(m) if (n,m, 2ABC) = 1.

Thus, using (10), (12) and (14), we see that (11) also holds if we relax the
condition (13) to

(15) (P,Rk, 2B) = (PE(CQ) + B,Rk, 2) = 1.

Assume that (2, ABC) = 1 and k is an odd positive integer. In this case
one can check that the condition (15) is satisfied for P = Q = 1 and P = 1,
Q = 2. Thus, (11) holds in these cases, and so we can deduce in the same way
as above that

(16) f
(
2k

)
= kf(2) for all odd positive integers k.

On the other hand, (15) also holds for P = 2ν , Q = 2 and k = 2, where
ν ≥ 0 is an integer. From (11) we have

(17) f
(
ACC2

A2ν+2E(C)
)

= H(2) + f
(
CCA2ν+1E(C)

)
.

Thus, we get from (17) that

f
(
2k

)
= kf(2) + (k − 1)

[
H(1) + f (CCAE(C))− f

(
ACC2

AE(C)
)]

holds for every positive integer k, which with (16) shows that

H(1) + f(CCAE(C))− f
(
ACC2

AE(C)
)

= 0.
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Thus, the last two relations imply

f
(
2k

)
= kf(2) (k = 1, 2, . . .),

and so by (14) we have

(18) f(nm) = f(n) + f(m) if (n,m, ABC) = 1.

Similarly as above, by using (10), (12) and (18), we see that (11) holds if k, Q
and P satisfy

(19) (P, Rk, B) = 1.

Finally, let P = P1P2, where (P1, P2) = (P1, ACAQ) = 1 and every prime
divisor of P2 is a divisor of ACAQ. We have (P2, Rk, B) = 1, therefore by (11)
and (19) it follows that

f
(
Ak−1CCk

AQkP2E(CQ)
)

= (k − 1)H(Q) + f (CCAQP2E(CQ)) .

Since (P1, ACAQP2) = 1, by using the additivity of f we get

f
(
Ak−1CCk

AQkPE(CQ)
)

= f
(
Ak−1CCk

AQkP2E(CQ)
)

+ f(P1) =

= (k − 1)H(Q) + f (CCAQPE(CQ)) ,

which proves (11).

Applying (11) in the case Q = 1, we obtain that

f
(
Ak−1CCk

APE(C)
)

= (k − 1)H(1) + f (CCAPE(C))

holds for every positive integer k and P . Therefore, applying this relation with

P = Qk E(CQ)
E(C)

, we infer that

(20) f
(
Ak−1CCk

AQkE(CQ)
)

= (k − 1)H(1) + f
(
CCAQkE(CQ)

)

holds for all positive integers k and Q.

On the other hand, (11) with P = 1 implies

f
(
Ak−1CCk

AQkE(CQ)
)

= (k − 1)H(Q) + f (CCAQE(CQ)) ,
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which with (20) gives

f
(
CCAQkE(CQ

)
= (k − 1) [H(Q)−H(1)] + f (CCAQE(CQ)) .

This, using the fact (CQE(CQ), B/E(CQ)) = 1 and the additivity of f , shows
that

f
(
BCCAQk

)
= kf(BCCAQ)− (k − 1)f(BCCA).

So, we have proved Lemma 1, because (5) follows from (11) in the case k = 2
and P = Q = 1.

Lemma 2. Let A, B be positive integers and let D be a complex constant.
If f ∈ A∗ satisfies the condition

(21)
∑

n≤x

1
n
|f(An + B)− f(n)−D| = o(log x) as x →∞,

then there is a complex constant U such that

f(n) = U log n (n = 1, 2, . . .).

Proof. Assume that f ∈ A∗ satisfies the condition (21) for some positive
integers A, B and a complex constant D. We first note that, by using (5) of
Lemma 1 and the fact C = 1, (21) implies that

(22) f(A) = D.

We denote by If those pairs (q, r) of positive integers for which

∑

n≤x

1
n
|f(qn + r)− f(qn)| = o(log x) as x →∞.

Thus, it follows from (21) and (22) that (A,B) ∈ If , therefore by using the
complete additivity of f , we have (A, 1) ∈ If .

We shall prove that

(23) (q, r) ∈ If if 0 < r < q.

First we show the following assertions:

(a) (q, 1) ∈ If if (k, 1) ∈ If and q ≥ k;

(b) (q, r) ∈ If if (k, 1) ∈ If , k ≥ 2 and 0 < r < q/(k − 1);
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(c) (h, 1) ∈ If if (h + 1, 1) ∈ If and h ≥ 2.

Assume that (k, 1) ∈ If . By using the complete additivity of f , we have

f((k + 1)n + 1)− f((k + 1)n) =

= [f(kn + 1)− f(kn)]− [f(k((k + 1)n + 1) + 1)− f(k((k + 1)n + 1))],

and so, by using the fact (k, 1) ∈ If , we deduce that (k + 1, 1) ∈ If . By using
induction, we have proved that (a) holds.

Assume again that (k, 1) ∈ If and k ≥ 2. We shall prove (b) by induction
on r. From (a) it is clear that (b) is satisfied for r = 1. Assume that (q, r) ∈ If

holds for all integers q and r satisfying 0 < r < q/(k − 1) and r < r0, where
r0 ≥ 1 is an integer. Let q0 be an integer such that

(24) 0 < r0 <
q0

k − 1
.

In order to show (b) it suffices to prove that (q0, r0) ∈ If . Without loss of
generality we may assume that (q0, r0) = 1.

Let q and r be positive integers such that

(25) r0q = q0r + 1 and r < r0.

It follows by (24) and (25) that

0 < r < (q0r + 1)/q0 = r0q/q0 < q/(k − 1).

Thus, by using our assumption and the fact r < r0, we have (q, r) ∈ If .

On the other hand, by (25), we get

f(q0n+ r0)− f(q0n) = [f(q0(qn+ r)+1)− f(q0(qn+ r))]+ [f(qn+ r)− f(qn)],

therefore, by using the fact (q0, 1) ∈ If and (q, r) ∈ If , we have (q0, r0) ∈ If .
Thus, we have proved (b).

Finally, we prove (c). Assume that (h + 1, 1) ∈ If and h ≥ 2. Let

S(x) :=
∑

n≤x

1
n
|f(hn + 1)− f(hn)|.

For each integer d with 0 ≤ d ≤ h− 1 we can choose positive integers q = q(d)
and r = r(d) such that

(26) (hd + 1)q = h2r + 1.
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We have

(27)

S(x) =
∑

n≤x

1
n
|f(hn + 1)− f(hn)| =

=
h−1∑

d=0

∑

hm+d≤x

1
hm + d

|f(h2m + hd + 1)− f(h(hm + d))| =

≤
h−1∑

d=0

∑

hm+d≤x

1
hm + d

|f(h2(qm + r) + 1)− f(h2(qm + r))|+

+
h−1∑

d=0

∑

hm+d≤x

1
hm + d

|f(q((hm + d) + hr − qd)− f(q(hm + d))|,

and so S(x) = o(log x) if hr − qd = 0, because, by using (a), (h + 1, 1) ∈ If

and h ≥ 2 implies (h2, 1) ∈ If . If hr − qd 6= 0, then we get from (26) that

0 < hr − qd =
(q − 1)

h
<

q

h
,

which, by applying (b) with k = h + 1, implies that (q, hr − qd) ∈ If . This,
with (h2, 1) ∈ If shows that S(x) = o(log x). This completes the proof of (c).

Now we prove (23).

As we have seen above, (A, 1) ∈ If . If A = 1, then (23) holds. If A ≥ 2,
then by using (c) one can deduce that (2, 1) ∈ If , and so by applying (b) with
k = 2, it follows that (q, r) ∈ If for all positive integers q and r which satisfy
0 < r < q. This completes the proof of (23).

We now prove Lemma 2.

Let q be a fixed positive integer. Let

T (x) :=
∑

n≤x

f(n)
n

.

Then, by using the complete additivity of f , we have

(28)
∑
n≤x

n≡0(modq)

f(n)
n

=
∑

m≤x/q

f(q) + f(m)
qm

=
f(q)

q
log x +

1
q
T

(
x

q

)
+ O(1).
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Let r be an integer for which 0 < r < q. Then, by (23), we have (q, r) ∈ If ,
and so

∑
n≤x

n≡r(modq)

f(n)
n

=
∑

qm+r≤x

f(qm + r)− f(qm)
qm + r

+
∑

qm+r≤x

f(qm)
qm + r

=(29)

=
f(q)

q
log x +

1
q
T

(
x

q

)
+ o(log x).

By summing (28) and (29) over the range 0 ≤ r ≤ q − 1, we infer that

(30) T (x) = f(q) log x + T

(
x

q

)
+ o(log x) as x →∞.

Let k = k(x) be a positive integer such that qk ≤ x < qk+1. Then it is clear
that

k =
log x

log q
+ O(1).

From the asymptotic formula (30) of T (x) we get

T (x) = f(q){log x + log(x/q) + . . . + log(x/qk)}+ o((k + 1) log x) =

= (k + 1)f(q) log x− [1 + . . . + k]f(q) log q + o((k + 1) log x) =

=
f(q)

2 log q
log2x + o(log2 x).

Thus, we have
f(q)
log q

= lim
x→∞

2T (x)
log2 x

:= U.

This holds for each positive integer q, so it also holds for all positive integers
q. Thus, the proof of Lemma 2 is finished.

3. Proofs of Theorem 1 and Theorem 2

Proof of Theorem 2. Assume that f ∈ A satisfies the condition (3).
Then from Lemma 1

(31) f(BCCAQk) = kf(BCCAQ)− (k − 1)f(BCCA)
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holds for every integer k and Q, where CA denotes the product of all prime
divisors of C which are prime to A.

For each prime p let e = e(p) be a non-negative integer for which

pe ‖ BCCA.

Then for all integers β ≥ e we deduce from (31) that

(32) f(pβ+1)− f(pβ) = f(pe+1)− f(pe).

Now we write
f(n) = f∗(n) + F (n),

where f∗ is a completely additive function defined as follows:

(33) f∗(p) := f(pe+1)− f(pe), e = e(p).

Then, from (32) and (33) it follows that

F (pβ+1) = F (pβ) (β = e, e + 1, . . .),

which implies
F (pk) = F [(pk, BCCA)] (k = 0, 1, . . .).

Thus, we have

(34) F (n) = F [(n,BCCA)] (n = 1, 2, . . .).

We shall prove that f∗ = U log for some constant U .

We note that, by considering n = BCCAm and taking into account (3),
we have

(35)
∑

n≤x

1
n
|f(ABCCAm + B)− f(BC2CAm)−D| = o(log x) as x →∞.

Since f = f∗ + F , from (34) we get

f(ABCCAm + B)− f(BC2CAm)−D = f∗(ABCCAm + B)−
− f∗(BC2CAm) + F (ABCCAm + B)− F (BC2CAm)−D =

= f∗(ACCAm + 1)− f∗(m)− {f∗(C2CA)− F (B) + F (BCCA) + D}
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and so, by (35) and Lemma 2, there is a complex constant U such that f∗ =
= U log. This completes the proof of Theorem 2.

Proof of Theorem 1. It is clear to show that if there are a complex
constant U and functions Fi ∈ A (i = 1, 2) such that

F1(an + b)− F2(cn)− d + U log
(a

c

)
= 0

holds for all positive integers n, then the functions

fi(n) = U log n + Fi(n) (i = 1, 2)

are additive and they satisfy the condition (2). Thus, we have proved the
sufficiency part of Theorem 1.

In the following we shall prove the necessity part. Assume that f1 ∈ A
and f2 ∈ A satisfy the condition (2) for some positive integers a, b, c and for a
complex constant d, i.e.

(36)
∑

n≤x

1
n
|f1(an + b)− f2(cn)− d| = o(log x) as x →∞.

We shall prove that there are a complex constant U and functions Fi ∈ A
(i = 1, 2) such that

fi(n) = U log n + Fi(n) (i = 1, 2)

and
F1(an + b)− F2(cn)− d + U log

(a

c

)
= 0

hold for all positive integers n.

Let I(a, b) denote the set of those positive integers N for which

(aN + 1, b) = 1.

Then for each positive integer N ∈ I(a, b) we have

(aN + 1, a(aN + 1)n + b) = 1

and
(aN + 1)(a(aN + 1)n + b) = a[(aN + 1)2n + bN ] + b
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for every positive integer n. Thus, by using the additivity of f1, we get

f2[(aN + 1)2cn + bcN ]− f2[(aN + 1)cn]− f1(aN + 1) =

= −{f1[(aN + 1)(a(aN + 1)n + b)]− f2[(aN + 1)2cn + bcN ]− d}+
+ {f1[a(aN + 1)n + b]− f2[(aN + 1)cn]− d},

which with (36) implies that

(37)
∑

n≤x

1
n
|f2[(aN + 1)2cn + bcN ]− f2[(aN + 1)cn]− f1(aN + 1)| = o(log x)

holds for each N ∈ I(a, b).

Applying Lemma 1 with

A = (aN + 1)2c, B = bcN and C = (aN + 1)c,

it follows from (37) that for each positive integer N ∈ I(a, b)

(38) f2[bc2(aN + 1)NQk] = kf2[bc2(aN + 1)NQ]− (k − 1)f2[bc2(aN + 1)N ]

holds for every positive integer k and Q. Since (38) holds for each fixed positive
integer N ∈ I(a, b), so (38) also holds for every positive integer N ∈ I(a, b).

Let N2 ∈ {1, 2} satisfying (2, aN2 + 1) = 1. For each prime p, let Mp be
the smallest positive integer for which (pb, aMp + 1) = 1 and

(p,Mp) = 1 for p 6= 2;

N2|Mp,

(
p,

Mp

N2

)
= 1 for p = 2.

We note that for each prime p such Mp exists as well. Indeed, in case p 6= 2,
one can show that there is a positive integer r with (r, p) = (ar + 1, p) = 1,
therefore for some positive integer t

(pb, a(pt + r) + 1) = 1.

This shows that Mp exists in this case. For p = 2 we can find M2 in the form
N2(2t + 1). Thus, Mp exists in each case, furthermore Mp ∈ I(a, b).

Now we define the completely additive function f∗2 for each prime p as
follows:

(39) f∗2 (p) := f2(bc2(aMp + 1)Mpp)− f2(bc2(aMp + 1)Mp).
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Let

(40) f2(n) := f∗2 (n) + F2(n) (n = 1, 2, . . .).

Since Mp ∈ I(a, b), we apply (38) with Q = p and N = Mp, by using (38)-(40)
and the definition of Mp, we have

(41) F2(bc2pk) = F2(bc2) and F2(bc2N22k) = F2(bc2N2)

for all primes p and positive integers k. Since (p,N2) = 1 for p 6= 2, one can
check from (41) that

(42) F2(n) = F2[(n, bc2N2)] (n = 1, 2, . . .).

Thus, (40) and (42) imply that

(43)
f2[(abcN2M + 1)2bcN2m + b2c2N2M)]− f2[(abcN2M + 1)bcN2m]−
− f1(abcN2M + 1) = f∗2 [(abcN2M + 1)2m + bcM ]− f∗2 (m)−D,

where
D = f1(abcN2M + 1) + f∗2 (abcN2M + 1),

because by (42)

F2[(abcN2M + 1)2bcN2m + b2c2N2M)]− F2[(abcN2M + 1)bcN2m] = 0

for all positive integers m. Applying (37) with n = bN2m and N = bcN2M ,
by using (43) and the fact N ∈ I(a, b) in this case, we get

∑

m≤x

1
m
|f∗2 [(abcN2M + 1)2m + bcM ]− f∗2 (m)−D| = o(log x)

which, by using (5) and Lemma 2, implies

(44) f∗2 = U log for some constant U

and
f1(abcN2M + 1) = f∗2 (abcN2M + 1) = U log(abcN2M + 1).

The last relation holds for every positive integer M , consequently

f1(m) = U log m
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holds for all positive integers m which are prime to abcN2. Let

(45) f1(m) := F1(m) + U log m (m = 1, 2, . . .).

Then, we have

(46) F1(m) = 0 if (m, abcN2) = 1.

Finally, we shall prove that

F1(an + b)− F2(cn)− d + U log
(a

c

)
= 0 (n = 1, 2, . . .),

which with (40), (44) and (45) completes the proof of Theorem 1.

Since

F1(an + b)− F2(cn)− d + U log
(a

c

)
=

= [f1(an + b)− f2(cn)− d]−
[
U log(an + b)− U log(cn)− U log

(a

c

)]
,

we obtain from (36) that

(47)
∑

n≤x

1
n

∣∣∣F1(an + b)− F2(cn)− d + U log
(a

c

)∣∣∣ = o(log x).

Let K be a positive integer. By (42) and (46), we have

F1(abcN2t + 1) = 0

and
F2

[
(aK + b)bc2N2t + cK

]
= F2(cK)

hold for all positive integers t, consequently

F1(aK + b)− F2(cK)− d + U log
(a

c

)
=

(48) = F1(aK + b) + F1(abcN2t + 1)− F2(cK)− d + U log
(a

c

)
=

= F1[a((aK + b)bcN2t + K) + b]− F2[(aK + b)bc2N2t + cK]− d + U log
(a

c

)
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holds for every positive integer t. Thus, by applying (47) with

n = (aK + b)bcN2t + K

and using (48), we have

(49)
∑

t≤x

1
t

∣∣∣F1(aK + b)− F2(cK)− d + U log
(a

c

)∣∣∣ = o(log x),

which implies

F1(aK + b)− F2(cK)− d + U log
(a

c

)
= 0

for each positive integer K, i.e. (49) holds for every positive integer K.
This completes the proof of Theorem 1.

4. Proof of Theorem 3

We first consider the case when f1 = f2.

Assume that a function f ∈ A satisfies the condition

(50) f(An + B)− f(Cn) = O(1) as n →∞

for some positive integers A, B and C. For each positive integer Q, as in the
proof of Lemma 1, we define the sequence

R = R(ACAQ) = {Rk(ACAQ)}∞k=1

by the initial term R1(ACCA) = 1 and by the formula

Rk(ACAQ) = 1 + ACAQ + . . . + (ACAQ)k−1

for all integers k ≥ 2 and let

Tk(n,Q) = (ACAQ)kE(CQ)n + BRk(ACAQ).

By using (8) and (9), one can deduce from (50) that

f(T1(n,Q))− f(CCAQE(CQ)n) = O(1) as n →∞
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and

f(Tk(n,Q))− f(Tk−1(n, Q))− f(BCCAQ) = O(1) as n →∞

for each integer k ≥ 2. Here and in the remainder of this paper the implied
constants O(1) depend at most on the given initial integers and given functions,
but they do not depend on n, Q, k. The last relations imply that

(51) f(Tk(n,Q))− f(CCAQE(CQ)n)− (k − 1)f(BCCAQ) = O(k)

holds for all positive integers k and Q.

We shall deduce from (51) that

(52) f(BCCAQk)− kf(BCCAQ) = O(k)

and

(53) f(Ak−1CCk
AQkPE(CQ)) =

= (k − 1)f(BCCAQ) + f(CCAQPE(CQ)) + O(k)

hold for all positive integers Q, k, P .

Let k, Q and P be positive integers. Let Rk = Rk(ACAQ). Considering

n := PRk{APCQRkm + 1}

and taking into account (51), one can see that (53) holds if k, Q and P satisfy
the relation

(54) (P, Rk) = (PE(CQ) + B, Rk) = 1.

It is clear that (54) is satisfied if P = 1 and 2B|Q. Thus, we can apply (53) in
the following cases:

P = 1, Q = 2B and P = 1, Q = 2hB,

where h is a positive integer number. Thus, we get from (53), using the fact
E(2BC) = E(2kBC) = B, that

(55) f(hk) = kf(h) + O(k) if (h, 2ABC) = 1.

Let h be a positive integer satisfying (h, 2ABC) = 1. By applying (55) with
k = uv in the two possible way, we have

f(huv) = uf(hv) + O(u) = vf(hu) + O(v),
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consequently
f(hu)

u
− f(hv)

v
= O

(
1
u

)
+ O

(
1
v

)
.

By using Cauchy’s criterion, it follows from the above relation that

lim
k→∞

f(hk)
k

:= f∗(h)

exists. This with (55) shows that f(h) = f∗(h) + O(1) and the function f∗

satisfies
f∗(nm) = f∗(n) + f∗(m) if (n,m, 2ABC) = 1.

Thus, we can assume that (50) holds for a function f satisfying

(56) f(nm) = f(n) + f(m) if (n,m, 2ABC) = 1.

Therefore, by using (50) and (56), one can prove in same way as above that
(53) also holds if k, Q, and P satisfy

(57) (P,Rk, 2B) = (PE(CQ) + B,Rk, 2) = 1.

Assume that (2, ABC) = 1. Then (57) holds for P = 2ν , Q = 2 and k = 2,
where ν ≥ 0 is an integer. From (53), we have

f(2ν+2) = f(2) + f(2ν+1) + O(1),

which implies
f(2k) = kf(2) + O(k) (k = 1, 2, . . .).

Similarly as above, the last relation with (56) shows that (53) holds if
(P,Rk, B) = 1, and so by the additivity of f , the proof of (53) is finished.

Applying (53) in the case Q = 1, we obtain that

f(Ak−1CCk
APE(C)) = f(CCAPE(C)) + O(k)

holds for every positive integer k and P . Therefore, applying this relation with

P = Qk E(CQ)
E(C)

, we infer that

f(Ak−1CCk
AQkE(CQ)) = f(CCAQkE(CQ)) + O(k),

which with (53) concerning P = 1 proves (52). So, (52) is proved.
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Since (52) holds for all positive integers k and Q, as we have seen above,
by (52) it is easy to show in the same way as above that

lim
k→∞

f(BCCAQk)
k

:= f∗(Q)

exists and
f(BCCAQ) = f∗(Q) + O(1),

where f∗ ∈ A∗. Let f = f∗ + F . Then the last relation implies that
F (BCCAQ) = O(1) for all positive integers Q, from which F (n) = O(1) for all
n. Thus, f(n) = f∗(n) + O(1), which with (50) implies

(58) f∗(An + B)− f∗(Cn) = O(1) as n →∞.

In order to prove Theorem 3 in the case f1 = f2 it suffices to deduce from
(58) that f∗ = Ulog for some constant U . To show this, we shall prove that
for each positive integer t we have

(59) f∗(An + t)− f∗(An) = O(t) as n →∞.

From (58) it follows that (59) holds for t = 1. Assume that (59) holds for t.
By using the complete additivity of f∗, we have

f∗(An + t + 1)− f∗(An) = {f∗(An + t)− f∗(An)}−
− {f∗[An(An + t + 1) + t]− f∗[An(An + t + 1)]}+
+ {f∗(An + 1)− f∗(An)},

which with the assumption of induction shows that (59) holds.

Finally, by applying (59) with t = A, we get

f∗(n + 1)− f∗(n) = O(1).

This with the result of Wirsing [16] implies f∗ = U log and so the proof of
Theorem 3 in case f1 = f2 is finished.

Now we prove Theorem 3.

Assume that f1 ∈ A and f2 ∈ A satisfy the condition

(60) f1(an + b)− f2(cn) = O(1) as n →∞

for some positive integers a, b and c.
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We use an argument similar to the proof of Theorem 1, one can deduce by
(60) and the fact (ab + 1, a(ab + 1)n + b) = 1 that

f2[(ab + 1)2cn + b2c]− f2[(ab + 1)cn] = O(1) as n →∞.

As we have proved above, the last relation implies that there is a constant U
such that

(61) f2(n) = U log n + O(1).

Let

(62) f1(n) = U log n + F1(n).

From (60) and (61) it follows that

F1(an + b) = O(1),

consequently F1(n) = O(1) for all positive integers n which are prime to a.
This with (61) and (62) completes the proof of Theorem 3.
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VIII. Múzeum krt. 6-8.
H-1088 Budapest, Hungary






