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CONTINUITY IN APPROXIMATE REASONING

S. Jenei (Budapest, Hungary)

Abstract. In this paper we will discuss the continuity property of the
generalized modus ponens in the approximate reasoning. It will be shown
that the continuity in the C-metric and the Hausdorff-metric is equivalent.

1. Introduction

The reasoning problem is a model of the human thinking. Inputs are
implication rules (so called IF' — THEN structures) and statements. Qutput
is a statement (a conclusion).

The approzimate reasoning allows fuzzy inputs, fuzzy antecedents, fuzzy
consequents, or combinations of these [10]. In general, in the approximate
reasoning the multivalued logic is used instead of the classical two-valued logic.
Statements are not strictly true or false there, their ”truthness values” are
determined with a real number between 0 and 1. (This number is 1 if the
statement is strictly true, 0 if it is strictly false.)

Consider the following example:

One gets the information that the price of a given share will increase by 20%
next week. Obviously this statement is not true or false at the moment because
it depends on the future. Actually this is not really a mathematical statement,
this is an uncertain information which can be considered more or less likely. If
this information comes from a ” privat channel” and you trust the person whom
the information comes from the truth value ”v=0.9” can be assigned to. If you
consider this information unlikely ”v=0.1" can be assigned to.

The goal of multivalued logic is to draw conclusions from uncertain
informations. Of course the conclusion has a truth value between 0 and 1
as well.
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Every statement can be represented by a linguistic variable [11], almost
all linguistic variables can be represented by an RL-type fuzzy interval of the
real line. So LR-type intervals play special role in this paper.

There are a lot of papers dealing with the approximate reasoning problem.
We mention here only the papers [1], [2], [11], [12], which are either of basic
concepts or surveys.

The approximate reasoning is used in several fields of the practice, e.g.
in control and decision problems and expert systems. In all of them it is
very important, that the conclusion should be stable with respect to the input
informations and the inference rules used in the reasoning. In other words the
continuity of the reasoning is required in some metrics.

The problem of continuity and stability of modelling in fuzzy environment
was discussed first for fuzzified linear systems in [7]. Further investigations
have been performed for stability of fuzzy linear systems and fuzzy linear
programming problems in [3], [4], [5], [8], [9]. The question of stability
for approximate reasoning, namely for generalized modus ponens, was firstly
discussed in [6], where the stability has been proved in the Hemming- and C-
metric. In the present paper our investigation will be carried on the continuity
in C and Hausdorff metric.

2. Prelimininaries

The basic object of the approximate reasoning is the following structure

Antecedent 1: IF X is A THEN Y is B
Antecedent 2: X is A

(1) Conclusion: Y is B

where the variables X and Y are taking their values from the universes U
and V, respectively, F(U) and F(V) are the sets of fuzzy sets on U and V,
A€ F(U) and B € F(V) are fuzzy sets.

We will deal with the problem when U = V = R, A and B are LR-type
fuzzy intervals of R.

Definition 1. The A € F(R) fuzzy set is fuzzy interval if A is upper
semi-continuous, 3z € R such that Az =1 (A is normal) and « -cuts of A are
intervals or halflines (V0 < a < 1). (Here and in the following Az denotes the
value of the membership function at the given point).

A fuzzy interval is RL-type if its sidefunctions are continuous, the left side
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function is strictly monotone increasing and the right side function is strictly
monotone decreasing.
The set of all RL-type fuzzy intervals is denoted by: FZgrr(R).

Definition 2. A fuzzy interval A is RL.-type if there exists A’ € FIgr(R)
such that A = A’ on {z : Az > ¢} and Az < ¢ otherwise. If ¢ = 0 then the
definition gives back the RL-type intervals.

It is obvious that the RL.-type fuzzy intervals can be characterized by four
parameters a_,ay,a”,at € R: if A € FTpr(R) and z,y € R then A(z) < ¢
ifz <a_orz >at; Alz) < A(y) if a- <z <y < ay; A(z) = 1 if
a; <z <a and A(z) > A(y) if a= < z < y < a*. The special cases
a_ = ay = —00, a~ = at = o0, ay = a~ are also allowed. The interval
[a—,a4] is called the support set of the fuzzy interval and it will be denoted by
Supp A.

Fuzzy sets can be considered to be the extension of sets. To build up fuzzy
theory we need to extend the basic operations, for instance the intersection.
One model for this is the ¢-norm:

Definition 3. t-norm is a function T : [0,1] x [0, 1] — [0, 1] which is com-
mutative, associative, monotone non-decreasing in both variables, T'(1,a) =
=a Ya€(0,1].

We say that a t-norm T is Archimedean if T is continuous, T'(z,z) <
<z Vzre(0,1).

A t-norm T is Archimedean iff it admits the representation

T(a,b) = ¢ (g(a) + g(b)),

where the generator function g : [0, 1] — [0, 00] is continuous, strictly decreas-
ing, g(1) = 0 and ¢g(~)(z) denotes the pseudoinverse of g, i.e. g(~1(z) =
=g Y(z) if z €[0,9(0)] and ¢(-V(z) =0 Vz > ¢(0).

An Archimedean t-norm T has 0-divisors if 3z,y € (0,1) such that T'(z,y) =0
holds. It holds iff ¢(0) < oo.

In multivalued logic the residual implication function is defined by the
following formula:

v(P = Q) :=sup{z €[0,1): v(P)*z <v(Q)},

where v(P) is the truth value of the statement P and * is a binary operation.
The formula is based on the following identity :

A°UB=(A\B)=U{Z:ANZ C B}.
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This formula is used in this paper to model the fuzzy implication, where * is a
t-norm.
Definition 4. The residual implication function Ir : [0, 1] x [0,1] — [0, 1]
generated by the t-norm T is
Ir(z,y) :=sup{z € [0,1]: T(z,z) < y}.
The main adventage of this formula is that only the t-norm T needs to define
that. All the other definitions use negation (and sometimes a t-conorm as well).

Let A,B € FIpr(R) and the IF A THEN B structure be given in (1).
The way the conclusion is obtained is the compositional rule of inference. The
implication rule yields a relation on R x R, we will denote it by I. Observing
A’ we would like to draw the conclusion B’ = A’ or I, where or stands for
the sup —T composition of the fuzzy set A’ as a unary fuzzy relation and the
binary relation S, i.e.

(2) By := smé]];{T(A’z, I(Az, By))}.

If we fix T and I, (2) defines a function on FZ g (R). We will see that under
certain conditions this function is an extention of the function: A — B, which
means that the inference rule (modus ponens rule) holds, it is

(aA(a=0b)=>0b.

Of course we need here the model of the intersection (which is a ¢t-norm in
this paper) and an implication function (which is defined by the formula we
mentioned above).

Certain claim for the extension is to be continuous in the point A. We will
prove that this extension meets our expectation.

3. Continuity

Definition 5. Let A,B € FI(R) (fuzzy interval). D(A, B) is the
supremum of the Hausdorfl distances of the level sets:

D(4,B) = sup du({Az > z},{Bz > z}).
z€(e,1)

Let d be the C-metric.

d(A, B) := ilég{Mr — Bz|}.
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Definition 6. Let A be fuzzy quantity. Let z € (0,1]. We denote the left
endpoint of the z-level set with A, _ | the right endpoint of the z-level set with

A4 (in the closure R of R).

Theorem 1. d and D are equivalent metrics in FI gL (R).

Proof. (a) We prove that Ve > 0 36, such that for all A’ € S4(4,6):
A’ € Sp(A,e) holds, where S4(A, 8) and Sp (A, €) denote the neighbourhoods of
A in the metrics d and D. Let f := Al{a_ a ], h := Al[a- qa+] be the sidefunctions
of A. If Supp A is a half line then the definition of f or h is not legal. In these
cases one has to skip over the parts of the proof which use the missing function.
We know that f and h are continuous and strictly monotonic. Consequently
f~! and h~! exist and are continuous. Let

511

inf ]{.f'l(z +e) - ()},

2€[0,1-¢

. -1 -1

ze[B',’lf_q{h (z2) —h7 (2 +€)}

From Weierstrass’ theorem and strict monotonicity we obtain: 8, and 6, >
> 0. Let 6 := min{é;,62}. This & is good for our purpose. Indeed, let = be
any number in (0,1] . Since A’ € S4(A, 6 ), from the definition of é, follows
that A, _ € S(A;_,¢) and A, € S(Az4,¢€). From this we obtain (since the
Hausdorfl metric has a more simple form for closed intervals which depends
only on the endpoints of the interval) A’ € Sp(4,¢).

(b) We prove that V6 > 0 Jes such that VA’ € Sp(A,es): A’ € Sa(A, )
holds. Let
e il {f(:+8) - J())

2€la-,a4—

= ] h - h 6 .
cai= _inf,(h(:) = h(z +2))
Using Weierstrass’ theorem and strict monotonicity: €; and €2 > 0. Let €5 :=
:= min{e,e2}. This €5 is a good choice. Indeed, let z € (0, 1] arbitrary. Since
A’ € Sp(A,es) from the definition of €5 we have A’ € S54(A4, 6).

QED.
Theorem 2. Let T be a fized Archimedean t-norm with the additive
generator function g : [0,1] — [0,00], I := Ir be the residual implication

generated by T and let the inference rule for B'y be given by (2). Then the
modus ponens rule holds and

3)

B'y = max ( sup A'z, sup ¢("V(g(A'z) - g(Az) + y(By))> -
z€R:Az<By z€R:Az> By
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If T has 0-divisors, then the extension is continuous in meliric d.

Proof. It immediatelly follows from the definition of pseudoinverse that
for all z € [0,1]:

{yeR:y>0:¢Vy)<z}={yeR:y>0:g(z) <y}
and

{yeR:y>0:9"V(y) >z} ={yeR:y>0:9(z) > y}.

B'y = sup gt (g(4'z) + g (sup{z € R : g"V(g(A2) + 9(2)) < By})) =
z€elR
= sup 90V (g(A'z) + g (sup{z € R : g(Az) + g(z) > g(By)})) =

= sup 9V (g(A'z) + g (sup{z € R: g(z) > g(By) — g(Az)})) =

=max( sup Az, sup 9(‘1)(9(A’£)-y(A$)+y(By)))~
zeB:Az<By z€R:Az> By

If A = A’ then it is obvious from the previous formula that B’ = B, so the
modus ponens rule holds.

_ Let € > 0 be fixed. We will find § > 0 such that VA’ € Si(A,8): B' €
€ S4(B, ¢) holds. (It is more convenient to work with closed neighbourhoods.)
Let us denote
C(y) = {z € R: Az < By},
C(y) = {x € R: Az > By}.

If By= sup A’z then
z€C(y)

B’ € S4(B,e) & sup|By - B'y| < ¢
yel

-~
sup |[By— sup A'z|<e
yeR z€C(y)

L=

By—e¢< sup A'r= max Az < By+¢ VyeR.
T€C(y) z€C(y)
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This is true with § = ¢ because from |A’z — Az| < § = ¢ follows
A'z < Az +e < By+e Yz € C(y),
consequently

sup A’z < By +e¢.
z€C(y)

Otherwise, from Az < A’z + ¢ follows that

sup A’z > sup (Az—¢) = By—c¢.
z€C(y) z€C(y)

If By= sup g(~Y(g(A'z) - g(Az)+ g(By)) > sup A’z >0 then
z€C(y) z€C(y)

B’ € S4(B,e) & sup|By— B'y| <e¢
yeR

<~
sup |By — sup g¢'~')(g(A'z) - g(Az) +9(By))| <€
ved 2€C(y)
&
|By — sup ¢\~ (g(A'z) — g(Az) + g(By))| < e VyER
zeC(y)
(=4
—e < sup ¢V (g(A'z) - g(Az) + g(By)) — By <e Vy R
z€C(y)
<~
() ]
Yy € R,Vz € C(y) 9V (9(A’z) — g(Az) + g(By)) < By +¢
and
VyeR3zeCly): Ye* > ¢ ¢(~V[g(A'z) - g(Az) + g(By)] > By — ¢*

The first inequality in (4) holds trivially if By > 1 — ¢, so to prove the validity
of (4) in that case it is sufficient to restrict our attention to the set

E={y: yeR, Bye[0,1-¢] }.
Therefore the first inequality in (4) &

Vye&,zeCly): g V[g(A'z) — g(Az) + g(By)] < By +¢
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R
Vye&,zeC(y): g(A'z)—g(Az) > g(By +¢€) — g(By)
p—4
inf {g(A'z) — g(Az)} > sup{g(By +¢) — 9(By)}
z€C(y) yeeé
<
sup {g(Az) - g(A'z)} < inf{g(By) — g(By +¢)}.
zeC(y) vee

The righthand side of the last inequality 1s

ze[hr,’lf_c]{g(z) - g(z+¢€)}.

It is a continous function on a compact set. From Weierstrass’ theoren:

m(e) = _inf (9(z) - a(z +6)} > 0.

From the continuity of g ( g(0) < oo ) follows that Ve’ < m(e) 36’ > 0 such
that

sup {g(Az)—g(A'z)} <sup{g(Az)—g(A'z)} < ¢
zeC(y) z€l

whenever sup |Az — A’z| < ¢. It means that the first inequality holds if
z€l
d(A,A) < ¢

The second inequality in (4) holds trivially if By < €, so to prove the
validity of (4) in that case it is sufficient to restrict our attention to the set

F={y: yeR, Bye[e1]}.

The second inequality in (4) <
Vye F3zeC(y): Ve >¢e:g(A'z) — g(Az) < g(By — €*) — g(By)

Vy€ F 3z €C(y): 9(A'z) - g(Az) < inf {g(By - €*) — 9(By)}.
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Since g is strictly monotonic and continuous the righthand side of the last
inequality is
9(By —€) — g(By)
=4
Vy € F 3z € C(y) : 9(A'z) — g(Az) < g(By — €") — g(By).

It holds when

sup {g(Az) - g(A'z)} < inf {g(By —€) — g(By)}.
zeC(y) ver

The righthand side of the last inequality is m(g). So the second inequality of
(4) holds as well when d(A, A") < ' which ends the proof.

QED.
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