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ON AN IMPLICIT NUMERICAL METHOD
FOR THE GRINDING EQUATION

Cs. Mihdlyké (Veszprém, Hungary)

1. Introduction

In the industry batch grinding is a frequently used unit operation. From
the point of view of effectivity it is an important question how the material
size changes in time. Knowing this one can determine how much time and
energy is needed to get the optimal sized material. Hence one is led to study
the particle size mass density function. In order to determine it we shall use
one of the most wide-spread mathematical models ([1], (2], [3]). Taking this
model as our basis, the solution v(z,t) : [0, Xp] % [0,T] — R of the following
integro-differential equation

Xm
" b (2,8) = ~S(e)(z, 1) + / S(w)blz, Yoy, O)dy,

v(z,0) = vo(z) and z€[0,Xp], t€[0,T]

is the particle size mass density function of the material in the mill. Here
vo(z) : [0, Xm] — RY is the particle size mass density function at t = 0, the
selection function S(z) : [0, Xp] — RY represents the fractional amount of
unit mass material of size z which breaks and b(z,y) : H — Ry is the density
function of the particles which are broken from particles of size y, and

H:={(z,y) |0<z<y< Xm, y#0},

Xp denotes the greatest particle size, T denotes the maximal grinding time.
We can suppose that Xps = 1, because using a transformation of the variable
we can bring it into this form.

In a previous paper [4] we have proved that under some assumptions on
S(z), b(z,y), vo(z), equation (1) has a unique solution which is a density
function. In the same paper an explicit numerical method has been given for
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the approximation of the solution with error O(h? + 7). The method has some
further properties like conservativity and nonnegativity.

In this paper we represent the solution in form of a recursive series of
functions and study the smoothness of the solution. Furthermore, we present
an implicit method for solving the equation numerically which has all the good
properties of the explicit method, moreover it converges in second order if vo(z)
is smooth. For non-smooth vg(z) we obtain first order convergence. Finally,
we show that in the non-smooth case second order can be retained for an
appropriately modified method.

2. The solution in function series form and its properties

Concerning the solution of (1), an existence and uniqueness theorem has
been proved in [4] in the case of continuous vo(z). Now we give a more general
result. We do not work out the details of the proof because it is based on the
well known successive approximation method (compare [4]).

Theorem 1. Suppose that the following conditions hold:
(2) S(z) is continuous in the interval [0,1], vo(z) is bounded and piecewise
continuous in [0,1], b(z,y) is continuous on H (but not necessarily on H);

(3) B := sup flS(y)b(z:,y)ldy is finite,

z€[0,1] =
(4) vo(z), S(z), b(z,y) are nonnegative on their respective domains of defini-
tion;

(5) jb(r, z)dz = 1 for any z € (0, 1),
0

(6) Oflvo(:c)d:c =1

Then there exists a unique solution for equation (1) in the set of functions
which are bounded, piecewise continuous with respect to z and continuous with
respect to 1.

This solution ts a density function, that is nonnegative and for any t €
1
€ [0, T] satisfies [v(z,t)dz = 1.
0
Remark. The conditions (4), (5) and (6) are necessary only for the proof
that the solution is a density function.
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Even more can be stated about the solution.
Theorem 2. Suppose that conditions (2) and (3) above hold. Then

) v(z,t) = Zvi(z)z—:,
i=0 ’
where
Bo(z) = vo(z) and
1
(8) Bip1(z) = —S(z)vi(z) + / S(y)b(z, yyvi(y)dy

for any z €[0,1].

Proof. Let Sy :=r[rgaﬁ( |S(z)| and V; :=sup |vo(z)|. Because of (2) and
' [0,1]

(3) the recursive formula (8) is well defined for any i. Using induction we show
that for: = 0,1,...,z € [0, 1]

©) sup [7(2)] < (Su + B)'Vo.
0,1

This can be easily proved for ¢ = 0, and assuming it for 7, the case i+ 1 follows:
1
Fies )] < IS+ [ 15wz, Dldy sup 7)<

< Sm(Sm + B)i Vo + B(Sm + B)iVo =(Sm + B)H-IV().

oo ; o .
t t . .
Hence ‘X_; |i,(x)|; < VoelSMHB) g0 gi.—(z)ﬁ =: v(z,t) exists. As the series

oo .
tt . . . . .

Zﬁg(z)_—' is absolutely and uniformly convergent and so is the series obtained
i!

i=0

by taking the derivative with respect to ¢, one can take the derivative and

integrate it term by term with respect to z. Now using (8) we get

[oe]

o0 i ! i
TOESINOLEDS (—-S(c)v.-(z) + [ S(y)b(x,y)m(y)dy) o=
i=0 ’ p :

1=0
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[e) i 1 o0 i
= -S@) 0@ + [ SWhe.n) 3w dy =
=0 : e i=0 :

1
= —S(z)u(z,1) + / SW)b(z. y)o(y, )dy

Since v(z,0) = o(z) = vo(z), so 25,(1:):—' satisfies indeed the equation.
i=0 ’
Remark. From (7) and (9) it follows that v(z,) is infinitely many times
differentiable with respect to t. Also from (7) and (8) it can be seen that v(z,1)
is as differentiable with respect to z as are S(z), b(z,y) and vo(z).

However, the case when vo(z) is a noncontinuous function is also impor-
tant, for example when particles with size smaller than a fixed value do not
exist at all, and here the function has a jump. The following theorem includes
the case of noncontinuous and smooth initial function either, although in the
latter one we confine ourselves only to the case v(z,t) € Cs .

Let I, := (0,1]\{a}, where @ € (0,1) and let H, := H\{{a,y) |a <y < 1}.

Theorem 3. Suppose the following conditions hold:

(10) Let S(z), b(z,y) be twice continuously differentiable functions on the set
[0,1] and H, respectively.

(11) vo(z) is twice continuously differentiable in the points of I, and let both
one-sided limits of vo(z), vy(z), vg(z) at the point z = a be finite.

(12) Suppose that the following suprema ezist and are finite:

K :=sup |S@)b(z,z), K’ =sup |(S(2)b(z,2))],
(0,1] (0,1]

D :=sup |S(z)Dib(z,z), B :=sup / IS(w)b(z, )|y,
(0,1] [0,1]

—SUP/IS y)D1b(z, y)|dy, B" '—sup/IS(y )D2b(z, y)|dy.

(0,1]

Then the unique solution for (1) is twice continuvously differentiable with respect

o ?v(z,t) .
to z on the set I, x [0,T] and both one-sided limits of o2 erist at the
z
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point z=a for any t € [0,T]. If vo(z) is twice continuously differentiable on
[0,1] then so is v(z,1) with respect to z.

Proof. Let Sj, ::r[r(}alJ]( |S’(z)| and Sy, ::x[rolal)]( |S"(z)|. By Theorem 1

the equation (1) has a unique solution which can be written in the form (7)
as Theorem 2 states. Furthermore, using condition (11) the following quantity
exists and is finite

V := max (sup |vo(z)], sup |vg(z)], sup |v6’(z)|) .
[0,1] I, I,
For any i, v;(z) is continuous on I, and both one-sided limits at z = a exist;
this is obvious for ¢ = 0 by assumptions on vo(z). For the other indices 1
it can be proved by induction using the recursion form (8). Since [v;(z)| <
< (Sm + B)'V, the series of functions is absolutely and uniformly convergent,
hence v(z,t) is also continuous on I, and it has both one-sided limits at z = a
and [sup] |v(z,t)] < Vexp((Sm + B)t).
0,1

Using the derivative of parametric integrals we get from (8) that for any
zel,

vp(z) = vp(z) and

Ui41(2) = =S(2)v;(2) - S'(2)vi(z) — S(2)b(z, z)vi+
(13)

+ / S(y) Drb(z, )i (v)dy.

Now again by induction one can see that for any ¢ the derivative vj(z) is
continuous on I, and its both one-sided limits exist. It is easy to prove that
for any z € I,

[7/(z)] < (Sm + Shy + K + B+ B')'V,

o .
t . .
consequently E 5;(:2)—,7 converges absolutely and uniformly in I;, therefore
1!
1=0
0 t) . . . . .
Lgc’——)- is also continuous, it has both one-sided limits at ¢ = a and
T
dv(z,t)

< Vexp((Sm + Sy + K + B+ B')t).
I,
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0%v(z,t)

This last statement can be proved for g2 in a similar manner. Now
z
forz € I,

% (2) =v5(2),
Wy = - S(2)v{ (2) - 25/ (2)7i(=) - S"(2)Wi(=)~
(14) ~ S(2)b(z, 2)7}(z) ~ (S(2)b(z, 2)) Ti(2) -

— S(z)Dyb(z, 2)5i(2) + / S(v) D2b(z, y):(y)dy.

Once again using induction one can see that v/ (z) is continuous on I, and has
both one-sided limits at £ = a, and for any z € I,

[7/(z)| < (Sm +2Sy + Syy + K+ K’ + D+ B+ B' + B")'V.

0o )
tl
From this inequality it follows that E 6:’(1); converges absolutely and

i=0
?v(z,t)

oz?

uniformly on I,, therefore 1s continuous on I; and has both one-sided

limits at £ = a and

0%v(z,t)

5| <V exp((Sm + 25\ + Sy + K+ K'+ D+ B+ B' + B")t).

I,

It can be easily seen that if vo(z) is twice continuously differentiable on [0,1],
with some modification of the above idea we get that v(z,t) is also twice
continuously differentiable with respect to z.

Remarks. 1) One can read it from Theorem 3 that v(z,t), 3v(az,t),
T
2
97(z,t) ;E:;’t) are uniformly bounded on the set I, x [0, T].
2) It can be easily seen that if the jump of vo(z) at z = a is u then v(z,t)

—S(a)t

has a jump of size e u tending to 0 as t — oo.

We mention that assuming S(z) > 0, b(z,y) > 0if £ > 0, it can be proved
that not only the value of the jump tends to zero but v(z,t) as well [5].

In the literature ([6], [7]) the following special cases are widely used:

(15) S(z) = kz? and b(z,y):zp—l

yP
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where ¢ > 0, k > 0 and p > 0 are given constants.

Corollary. If condition (11) holds for vo(z) and the above parameters p
and q satisfy either of the following conditions

p=¢=1

p=1, ¢22
(16) P=2  ¢2%

p=3, ¢>2

p>3,  ¢22
then the unique solution for the equation (1) is twice continuously differentiable
on I; x[0,T) and 6—2%%9 has both one-sided limits at z = a for any t € [0, T).

If vo(z) is twice continuously differentiable on [0,1] then so is v(z,t).

Proof. The conditions of Theorem 3 hold. It is enough to check whether
(12) holds. Instead of a detailed proof we restrict ourselves to the following list
(which exhausts all cases of (16)):

- K is finite if ¢ > 1;

- K'isfinite if g > 2 or if ¢ = 1;

- Disfiniteif g >2orif p=1,

- Bisfiniteif¢g>0,p>1lorif¢g=0,p>1;

- B'isfiniteifp=1lorifg>1,p>2o0rifg=1,p>2;

- B'isfiniteifp=1lorifp=2o0rifg>2,p>3orifg=2,p>3.

3. The implicit method and its general properties

The exact solution to (1) is known only in some special cases ([7], [8]).
Therefore it is important to know how (1) can be solved numerically. However
we want to approximate a density function, hence above the convergence
and nonnegativity we require the approximate solution to satisfy a discrete

1
conservation law in accordance with the equality [v(z,t)dz = 1. In this
0

manner we get the discrete model of our process.

As it has been already mentioned, in [4] an explicit method was proposed
which satisfies the above requirement, but has only a first order convergence in
7. In this point we describe a more efficient implicit version of the method.
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Let us introduce the following notations:
1
Let N, M be natural numbers, 7 := i hi=—,tm:=m-7,z; :=th, S; :=
= S(zi), bij = b(zi,zj) and vim = v(zi,tm), where m = 0,1,..., M and
,7=0,1,...,N.
We approximate the derivative with respect to t by a difference quotient
and the integral by the trapezoidal rule. We define the ”discrete” conservation
N
law to hold if ¥ yimyih = 1 (where o = yv = 1/2and 11 =12 = ... =
£=0
= yn-1 = 1) for the numerical solution {yim}.
To achieve this we modify the trapezoidal rule choosing the following
recursive implicit system of equations for the approximation of (1):
vo(z; .
yiO:_Kr_—o'('L 1:011)"'iN)

Y vo(z:)vih

1=0

N
T ~
Yom+1 = Yom + 35 D" Si boj woih(Yims1 + Yim),

(17) i=1
T r& ~
Yim+1 = Yim — ESi(yim-H + Yim) + 5;5} bij wijh(Yim+1 + Yjm),
i=1,...,N—1,
r
YNm+1 = YNm — §5N(me+1 + ynNm),
where
1/2, ifi=jorifj=N,
Wwi; =
1, ifi<j (i=0,1,....N—1; j=12,...,N),
3 1/2, ifi=jorifi=0,
wij=
1, ifi<j(i=0,1,....5; j=1,2,...,N)
and
i ifj=0,1,...,N~1i=0,1,...,j and i? + jZ # 0,
L Eb"j;"jh )
bii= k=0 .
7 b , fj=N,i=0,1,...,N.

N-1
~

E dxnwinh

k=0
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We can rewrite the recursion in the form

1

yO = * Yy,

g N—-—
a e

1
ym+1:gm+§(D—I)(y_m+l+ym) (m=0,1,...,.M -1),

where D = (di;)(N+1)x(N+1) and

'l—rS¢+TS.-~b,~,~w.-.-h, ifi=jandi#£0,N;
1, ifi=j5=0;
(19) dij = | 75; 3;,— wijh, if i < j;
1-7S8n, ifi=j=N,
\ 0, ifi>j.

We are going to prove that the values y;n are nonnegative and satisfy the

discrete conservation law.

Theorem 4. Assume that condition ({) holds. Then yi,, defined by (17)

N 1
satisfy the equality ) yimvih = 1, moreover, if T < 5o then y;m > 0.
1=0 M

Proof. The statement is obvious for m = 0. Now we assume that

N
S yievih =1fork=0,1,...,m. Let us prove it for k = m+ 1. We have from

i=0
(17

N N N
T
; Yim+17ih = goy.’m%‘h -3 Zsi(yim+l + Yim)Yih + En,

i=1
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where

N
. ~
InN:= 570",; Sj(Yjm+1 + Yjm) boj wojh+

N-1 N
T
+§ Z hZSJ me+l+me) bg] (-I),Jh_

i=1 j=i

—‘70’225 (y]m+l +me) b()] w01h+

ij=1
S N-1 N
+ 2 Z ;%hsl(yjm-l—l + Yjm) bij wijh+
S N-1 N
+3 YihSN(YNm+1 + YNm) binv winh =
i=1
S N1 N
=3 Y %hS;(Yim+1 + Yim) bij wijh+
j=11=0
L N-1 N
+3 YihSN(YNm+1 + YNm) bin winh.

=0

-

Therefore the following equality holds:
N
Z Yim417ih =
1=0
N-1

N
r
= Zyim'h - 5 yjm+l +me S h ( Z'f: bij wij )

1=0 j=1

N-1
T ~
- E(me+1 + yNm)Snh (‘m - Z Yi bin w.‘Nh> .

=0

It can be easily seen that in thecase j=1,...,N—1andi=0,...,N -1, we
have ~v;w;; ::);j, furthermore if i = 0,..., N — 1 then ywiy = 1 w;n. Hence

2
for j=1,...,N —1 there holds

bijwijh
Z% bl] w:]h—z { ; JWJ——‘ZIZ‘YJ‘ and
i i=0 Zbkj wkj h
1=0



On an implicit numerical method for the grinding equation 211

N-1 N-1

~ binwinh 1
Z‘n bin winh = E‘ﬁ—_N_l =3=
i=0 =0 S hn kN b
1=0

N N
This calls forth the equality Y yim4+17ih = ) yimYih = 1 and proves the first
i=0 i=

part of the statement.

One can see from (19) that if 7 is sufficiently small then the matrix I — %D
is invertible, so we get from (18) that
(20) -_-5 Y, Where B::

(1 - %D)_l (D+1).

Lol =

gm+1

If r <1/Sm, D is nonnegative. Then using

1 \7! D D\?
I—=D) =I+—=4(=
( 3) +3+(3)+ ,

the nonnegativity of Y1 follows from the nonnegativity of Y. Since Y, 20,
the second part of the statement is also proved.

Remark. The method given by the recursion (17) is almost explicit,
because YynNm+1,---,Yom+1 can be expressed by backsubstitution. Hence the
method requires O(mN?2) steps for computing the vector Yt which is about

the same as in the case of the explicit method.
4. Convergence and stability

In this part we examine the convergence and stability of above method.
We need some assumptions.

0%(S(v)b(=,v))

(21) ay? exists for any (z,y) € H, and
2/C
W :=sup Q_(i(y_)b:)(_x,y_))‘ is finite.
H Oy
2
(22) 9°4(z,y) exists for any (z,y) € H, and

oz?
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B :=sup |S(y)b(z,y)B(y)| is finite, where
H

8%b(z,
B(y) := sup __(_y)'
z€[0,y]
23 Let lim  S(y)b(z,y) = 0.
(23) Jim  S@ia,)
J 1 = S 1
(24) Let o -1Zbk’ wij h 23 Z kN GEN b 23

k=0
(thls condition is not very restrictive since the approximate sum of the integral

f b(z,z;)dz = 1; this means that h has to be chosen sufﬁc1ently small).

(25) Let S(0)=10

(this is natural assumption, because particles with size 0 cannot break).
Now we prove the following
Theorem 5. Assume (3)-(6), (10) (12), (21)- (25) and Iet vo(z) be twice

d?vo(z)
dz?

continuously differentiable on [0,1]. In the case Va := max >0 let

(0,1]

1/2
h < (7) and in the case Vo = 0 let h be arbitrary. Finally, assume
2

1 L
T < S Then there holds the error estimation
M

|v(2s,tm) — Yim| < c6h? + c772 (m=0,1,...,.M; i=0,1,...,N)
where the approzimate values yi, are defined by the recursion (17), and c¢, c7
are constants independent of N and M.

Proof. By Theorem 2 v(z,t) is three times continuously differentiable

: 3v(z,t)
with respect to t. Let Vr ::IO.Hlxafg.T] i

expansion the following inequalities are found to hold:

Using the Taylor series

v +2 A r2
m 12 m Bmt1/2 < VT? and
(26) oy T
Yy — Y .
= 7 m“Qm+1/2 < VTﬁy
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where

Imt1/2 = (v (xo’t"'\*' %) U (-’”l,tm + -;:) yeey U (:cN,tm + %))T and

Umt1/2= (gt (-’Fo,i + T) g: (xl,t +%),...,z—’f’.(zN,tm+§))T

and the other expressions are obtained similarly.

By Theorem 3 v(a: t) is twice continuously differentiable with respect to z,

too, hence V := =0, 1] [0 - |v(z, )] is finite, and because of (10) S(y)b(z, y)v(y, t)

is twice continuously differentiable with respect to y on the set H x [0, T]. The
% (S(y)b(z, y)v(y, 1))

condition (21) assures that R := sup is finite.
Hx[0,T) Oy?
Therefore
1 N
(27) /S(y)b(zo, V)o(y, tm)dy — > Sjboj vjmwojh| < 1—1;’12,
j=1

where we have used that the term corresponding to j = 0 is zero because of
(23).
Further fori =1,..., N — 1 we have

1

R
2 b(z;, Jtm)d S;bijvjmwijh| < —h2.
@8) | [ Sk vy, o)y - Z joimwiih| < 17
Moreover

Te ¢
~ B(ze) , » p—
/b(:c,:u)dz—Zbuwuh <=5 h? for £=1,..,N,

hence for j=1,...,N—1andi=0,...,j it follows that

S; z.‘j:

1 B(IJ') h2
j S S] b:] 1 + —'—_E

N A j
kz—:o brj wien h X_: kj Wi h

= S;bij < Sjb.‘j + C1h2



214 Cs. Mihalyké

and fori =0,1,...,N

B(.’EN) h_2 + %bNNh

N-1 ~ 12 N-1 ~
Y benwin h Y binwin A
£=0 £=0

Sn bin< Swbin | 1+ < Snbin + c2h

with appropriate constants ¢; and ¢, which are independent of N, M.

The last two inequalities require (22) and (24). So

N N
ZSJ‘ boj ‘Uijth < ZSjbojvjmwth + (61 + Cg)Vh2 =
i=1 j=1
(29) =
= ESjbojvjmwth + 63’12
ij=1
and fori=1,... N—-1
N - N
Z Sj b;‘j vjmw;jh < ZSjb;jvjmw;jh + (Cl + CZ)Vh2 =
j=t j=i
(30) N
=) Sjbijvimwijh + csh®.
j=i

Using the inequalities (26)-(29) and the assumption (25) we get

1
(31) Y1 = Uy, + (D - I)(Qm+l + Qm) + O(T(T2 + hz))

5(
Let z,, = v, —y . Then by (30)

~ 2
lzm1lloo <1l D lloollzmlleo + 3

1 -1
I--D

(1-57)

(32) lzm+1lleo < 11 D lI* llzolloo+

[ anu' (z——D)_l m((%*) e+ ) ]

R 2 ﬁz
((12+C3)h + 6r)r.

[o o]

Therefore




On an implicit numerical method for the grinding equation 215

We now estimate || I) lloo

1 -1
(1-37) )

1 . .
If 7 < =, the elements of D are nonnegative, hence we can estimate the

Sm

row-sums as follows

~ 1
(33) 1D llo <3

1

D+ 1| € 7/—=—
1% 1l < 3107

(1 +1Dlleo)-

N N
Dy :=1+ TZSJ' boj wojh <14 TZ Sjbojwojh+ (1 + cz)h2 <

ji=1 j=1
h2
51+r(B+V[I2 >+T(cl+62)h2$1+cm
N - N
D; :=1-1715; +TZSJ' bij u),'jh <1il+4+ TZSjb,’jw;jh+T(cl +02)h2 <
j=i j=i
Wh? 92 .
<l1+7{B+ 12 +71(c1 +c2)h® <14 eyt (i=1,...,N=-1)

and
Dy :=1—-75yv <14 ¢4t

Deriving these inequalities we have used the assumption (21). Therefore
[|Dllcc €14 c47, hence by (33)

~ — — 2c
(34) | Dl £1+7cqr where ¢4:= 2_—:41_.
Finally,
1 Yoh?
(35) lzolloo = fl2o — | < Hﬂo”ool—_—%_;,._—a < csh?
> vovih 12
i=0 )

with an appropriate constant ¢s. By (34), (35) and (32) there holds

||£m+1 ||00 S
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< (1+Er) ™ esh? + ) (14 Ear) . ((—Ii + c3> h? + YT—r’)r‘ <
=0

2 — C4T 12 6
< T cs + 2 '@ + Tc3 h? + L -‘if2 = Ct;hv2 + 6772-
2 — c4r 12 2- caT 6

Now comparing (20) and (34) one can see that the method is stable.

5. The case of noncontinuous initial function

As mentioned in the point 2, in practice there is also important the case
when vg(z) has a jump at £ = a. The method (17) will converge under certain
conditions also in this case, but the order of convergence decreases. More
precisely, if the conditions (3)-(6), (10)-(12) and (21)-(25) hold, furthermore h
and 7 are sufficiently small, then the error of approximation of the solution is
O(h + 12).

However, we now give a new method which converges in second order aiso
in the case of a piecewise continuous initial function, but the jump point has
to coincide with a mesh point. For the sake of simplicity we consider the case
of a uniform mesh only.

We assume that v(z,t) has both one-sided limits at 2 = a for any ¢. Let
these limits be denoted by vo(zx—) and vo(zi+) in case of the initial function
and by v(zy—,tm) and v(zg+,tn) in the general case. The assumptions of
Theorem 3 assure the existence of these limits. The method (which essentially
is a trapezoidal rule with two v-values at z; = a) can now be described as
follows:

1

I
o
1]

QO)

M=

(40) vo(2i)yih + 2(vo(zk—) + vo(zk+))

w0
£

. ; 1 - X
gm_H:gm-l—E(D—I)(gm_H-{-gm) (m:O,l,...,M—-l),



On an implicit numerical method for the grinding equation 217

where D = ((i{j)(N+2)x(N+2)a

(41)
(1, if i=j=0,
1—785; 4+ 75i bii wiih, if i=ji=1,...,k—-1,
1— 718, . if i=j5=k,
~ h
l—TSk+TSkbkk'2', if i=j=k+1,
1= 7Si1 + 7Sicy bio1iot wic1ioth, if i=j; i=k+2,...,N,
1—- 75N, if i=j=N+1,
TS5; bij wijh, if ¢=0,...,57—-1;
jl]:< o h .7:1! 1k_1)
fSkb.'k-Q-, if i=0,...,j—1,
=k k+1,
TSj..l bij-1 w;.j_lh, if i=0,...,k;
j=k+2,...,N+1,
TSj-1 bi-1,j-1 Wi—1,j—1h, if i=k+1,...,5-1;
j=k+2,.. . N+1,
0, if i=j+1,... N+1;
\ j=0,...,N,
where
gm = (gonl)glmy . ‘;gk—l,m, g;m,f/:m, gk+l,m, . 1gNm)T
and
2o = (vo(Z0), vo(21), - - -, vo(Te—1), vo(Zk =), vo(Tk+), vo(Tk+41), - - -, vo(zN))T .
If 7 is sufficiently small then I — %b is invertible, hence from (40) we get
(42) 9nyr =Dy,
where

Similarly as in the case of recursion (17) one can prove that § is
nonnegative if condition (4) holds. The details of proof are not worked out
here, they are similar to the case (17). We formulate now

Theorem 6. Suppose that the assumptions (3)-(6), (10)-(12) and (21)-

6\ d?vo(z)
(25) hold.” Let h < (7) if V; :=sup 122 > 0 and h be arbilrary if
0 I
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Va = 0 and, finally, assume that 7 < El_ Then the following error estimation
is true:
[v(zs,tm) = Bim| < c10h? + c772
(m=0,1,...,M;i=0,1,. .. k=1k+1,...,N)
and

lv(ze—tm) — Il < c10h? + ¢772,
lv(ze+,tm) — 3?;',,,| < c10h? 4 ¢772,
where ¢10, c7 are constants independent of N and M.

Proof. The proof is the same as that of Theorem 5 with some modifica-
tions. The differences are in the proof of inequalities (27), (28) and (33). On
one hand, because of Theorem 3 and assumptions (10) and (21),

0*(S()b(z, y)v(y, t))‘

R, := sup 97

H, x[0,T]

exists and is finite. Hence for 2o < 2y = a < T4,

y)v(y, tm )dy Z S; bO] UJmWOJ Skbok(‘ukm + vkm)‘

e
Tk k-1
. h -
< /S(y)b(zo, Y)Y, tm)dy — ) Sibojvjmwojh ~ §5kb0kvkm|+
2o ji=1
(43) 1
/S(y)b(ran)U(ya m)dy_ Z S; bO]U]mWOJh - —Skbokvkml <
Zx j=k+1
Rgh?
h? + Jh?= 2.
12 R 12 12
Similarly one can show for i = 1,..., N —1 also that the difference between

the integral /S(y)b(z,-,y)v(y, tm)dy and its approximate sum (which uses the

Ti
2

12 -

left-side and right-side limits) is less than or equal to
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The right-hand side of (32) changes, of course. Instead of (32) we obtain

lZm4illoo <

(-3

— R 28, .
< IDIIE* 2olleo + 3 > IDIL
=0

Ra 2 VT 2
(<l2+ca)h + GT)T.

3
We get
N h
1- }_: vo(zi)vih + E(UO(II:—) + vo(zx+))
l1Z0llc0 < ll2olloo Ni*k h < cgh?,
Y vo(zi)vih + §(vo(z:k—) + vo(zi+))
l::

1

because using 1 = [ vo(z)dz one can prove that
0

N
h
1- Evo(-’ﬂi)%‘h + 5(00(%—) +vo(zk4)) | | < coh?

itk

with a constant ¢y (see the derivation of inequality (43)).

Finally, an estimation similar to (34) can be written for || D||o since

(44) [1Dllec = Il D lloo-

Therefore

- TR 2 2T Vr
3 caT Fl =2 4+T . 24 L2
lzmsilleo <€ {[cs ( 12 CQ) 2—641'] h 2—c4Tt 6 T }

= Cloh2 + C7T2.

Remark. The method (40) is also stable as it can be seen from (44) and
(42).
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6. Numerical results

We illustrate the accuracy of the method by some examples corresponding
to (15). The case p = ¢ is examined because in that case the exact solution is
known, namely

1
v(z,t) = e ¥ (vo(2)kpzP~'tRo(z)), where Ry(z):= /vo(z)dz.

The results of computations support the given estimations.

Table 1 contains the deviation of computed and exact solution values in
the discrete maximum norm for some values p(= ¢) if the initial function is
smooth. Since the order of convergence proved theoretically is ceh? + c772,
we have chosen 7 = h for some value h. The table shows the second order

convergence.

Table 1. Deviation between the exact values and computations by (17)
in the discrete maximum norm.

(k=1, v(z)=6z(1—z), T=Xm=1)

r=h=1/200=|r=h=1/40=|r=h=1/80=|r=h=1/120~
=5-10"2 =25-10"2 | =1.25-10"2 | ~8.33-10"2
p=q=2| 3.44-10°3 8.61.10~4 2.15-10°% 9.56-107°
p=q=3| 2.61-10"3 6.35-104 1.59-10"4 7.05-107°
p=q=4| 2.37-1073 5.88-10"4 1.47-10~* 6.53-10~°

Table 2 contains the deviation of computed and exact solution in the
discrete maximum norm if the initial function is noncontinuous. For the sake
of comparison these deviations are also computed by (40) using the same
parameters. These results are shown in Table 3. The computations have been
made with 7 = h and

0, if0<z<05,
vo(l‘) = {

2, f05<z<l.

b

Table 2 shows the first order convergence and Table 3 shows the second
order convergence.
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Table 2. Deviation between the exact values and values computed from
(17) in discrete maximum norm.

(k=1, wv(z)=10(z), T=Xpm=1)

T=h=1/20=|r=h=1/40=|r=h=1/80=|r=h=1/120~
=5.10"2 =25-10"2 1.25-1072 ~ 8.33-10-3
p=q=2] 1.10-10"1 5.65- 102 2.87-10"2 1.93.10°2
p=q=3| 1.15-10! 5.92-10"2 3.00-10"2 2.01-10-2
p=q=4| 1.13-107! 5.79 - 10~2 2.93-10"2 1.96-10-2

Table 3. Deviation between the exact values and computations by (40)
in the discrete maximum norm.

(k=1, v(z)=70(z), T=Xpm=1)

r=h=1/20=|r=h=1/40=|r=h=1/80=|r=h=1/120=
=5-10"2 2.5-10~2 1.25- 102 ~ 8.33-1073
p=q=2| 2.20-1073 542-10-% 1.34.1074 5.96-107°
p=q=3| 4.23.10-3 1.04-1073 2.56-10"4 1.13-104
p=q=4| 7.42-10"3 1.84-10-3 4.56 - 104 2.02-10~*
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