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ON HIGHER ORDER UNCONDITIONALLY
NONNEGATIVITY CONSERVING METHODS

Z. Horvath (Gyér, Hungary)

Abstract. For linear systems of ODE (which arise e.g. by semidiscretiza-
tion from parabolic equations) we consider the problem of unconditional
conservation of nonnegativity, review second order methods, propose a third
order nonnegativity conserving method and show ways of parallelizing such
methods. We display numerical results as well and compare our methods
with the Crank-Nicolson method on a problem with nonsmooth initial data.

1. Introduction

Consider the following parabolic differential equation with first kind
boundary conditions

u_ 8

at oz
(1) u(z,0) = up(z), O0<z<1,

u(0,t) = u(1,t) =0, t>0.

d(x)g—zzf(x,t), 0<z<l, t>0,

As is well known this problem arises by appropriate simplification of many
physical problems, for example the problem of one-dimensional heat conduc-
tion. The exact solution of (1) is known to be nonnegative if f and uo are
nonnegative. It is a natural and in many cases necessary requirement that the
numerical solution of (1) posesses this property, too.
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Continuing the investigation started in [3] we consider now the semidis-
cretized equation of (1)

v —Ay=f,

2
@ ¥(0) = yo,

where yo € R?, A € R™**", f,y:[0,00) — R™. We may suppose that f > 0
and yo > 0. (In this paper we use the following notation: for any vector
and any matrix X we write £ > 0 or X > 0 if all components of z or X are
nonnegative, respectively.) We remember (see [3]) that

y) >0 vt>0 iff A- diag(a;) >0,

which is denoted by A > 0.
We deal with the class of ’one-step’ methods which solve (2):

k
(3) Yis1 =r(TA)y; +7 Z ri(TA) fj-it1-

=1

Definition 1. We say that the method (3) conserves nonnegativity
unconditionally if for all n, 7 > 0, yo > 0, f > 0 and for any matrix A > 0
there holds y; > 0 on every time level j.

Definition 2. The method (3) is said to be of order p if p is the largest
integer for which

k
y((F + 1)7) =r(rA)y(i7) + TZ ri(TA)fi—it1 + O(T”H), r—0

t=1
holds for all n, A, f, yo.

The following important theorem holds.

Theorem 1. (Bolley and Crouzeix [1]) If the method (3) conserves
nonnegativity unconditionally and the functions r, r; are rational functions
then the method is of order at most 1.

In [3] we constructed a method which conserves nonnegativity uncondition-
ally and is of order at least 2. We achieved this by an appropriate approximation
of the matrix exponential.

The aim of this paper is to give some additional results for the methods
mentioned above and to construct and investigate other methods.
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2. Construction of nonnegativity conserving methods

Similarly, as in [3], to construct unconditionally conserving methods we
start from the formula for the exact solution y of (2)

T

(4) W((G +1)7) = eATy(jr) + / A=) f(ir + 5)ds,
0

where 7 > 0 is an arbitrary time stepsize and j is an arbitrary time level.
Approximate the integral by the trapezoidal rule and let R, be a second order
approximation of e47, i.e.

er” = R, + O(7?) (r—0).

Then - according to (4) — the method

T T
(5) Yi+1 = R, (y,- + §fj) + §fj+1

is of order two.

In order to be an unconditionally nonnegativity conserving method, for
(5) it is sufficient that
R, >0 vr > 0.

AT

To get such an approximation of e*” we shall use the matrix

E(A; B) == e3BeA-Be3B,

where A and B are arbitrary n x n matrices. We shall approximate e4” by
E(Ar; Br) with an appropriate B.

Proposition 1 ([3]). For all B € R**" there holds

s [A _lp [A, %B” +0(rY).

E(Ar;Br)=e%" + 3 |A- 3

[

Here [.,.] denotes the commutator of matrices, i.e. [C,D]=CD — DC.
Therefore the method (5) with R, = E(Ar; BT), i.e.

(6) v = EATBr)(y + 2;) + 2 fim
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is of order two (for all B € R**").

Consider now some possibilities of choosing B in such a way that the
method (6) conserves the nonnegativity unconditionally and can be imple-
mented easily.

First we consider a more general problem, the ODE (2) with a nonnega-
tivity conserving matrix A. (The generality means that we do not regard the
ODE (2) as an approximation of some partial differential equation, we require
nothing else about the matrix than A > 0.)

In this case let B := diag(a;;). Since B > 0, A — B > 0 follows, hence
E(Ar;Br) = e3B7e(A-B)Te3BT s a product of three nonnegative matrices
(V7 > 0). Therefore the sufficient condition E(A7; Br) > 0 Vr > 0 is fulfilled.

During computation of E(A7; BT) there is no problem with the first and
the third multiplier because they are exponentials of a diagonal matrix. Instead
of the exact value of e(A~B)" we can use its Taylor-polynomial of degree k (k > 2
is a fixed number). In this way we get the following truncated approximation:

k

Ex(Ar; Br) := 387 Z %(A — B)'e3B7,
i=0
Theorem 2 ([3]). The method
. T T
™ v+ = Ex(Ar;ding(ai)) (u + 26;) + 2 fi1

conserves nonnegativity unconditionally and is of order 2 for arbitrary f and of
order k for f = 0.

Definition 3. The method (7) is called MPOW,.
Concerning stability of MPOW;. we can state the following two theorems.
Proposition 2. MPOW; is A-stable for all k € N.

Proof. The statement is an immediate consequence of the fact that
MPOW;. solves the
Y (1) = (1),

¥(0)=1
testequation exactly for all complex numbers A.

Theorem 3. MPOW, is absolutely stable in the L, norms, 1 < p < oo
norms on the class A(dp) == {A € R*** | s €N, a;; < —do (Vi)} where dy is
an arbitrary positive constant.
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Proof. We have to show that for all A € A(dp) there exists a constant C
depending only on A and dp such that

|Ex(AT; diag(ai)T)|]| <C  Vr>0.
The definition of E} implies
| Ex(AT; diag(ai)7)|| < e~ %7 pi(||A — diag(aii)||T)

where pi(z) is the Taylor polynomial of degree k of e*. The right-hand side of
this inequality is bounded for 7 € [0, 00) which proves the theorem.

Remark 1. The matrix A belongs to the class A(do) if A is the standard
approximation of the spatial differential operator in (1) and d(z) is bounded
from below by a positive constant.

In the following we examine the case where d(z) = 1 and the semidis-
cretized equation (2) has arisen from (1) by the standard approximation of the
spatial derivative, i.e. A = 1/h%tridiag(1,-2,1), h = 1/(n 4 1). Let us denote
u=T1/h2

Firstly, let B := 1/h%tridiag(0, —1,1). Then A— B = 1/h?%tridiag(1, —1,0)
and B > 0, A— B > 0, hence the method (6) conserves nonnegativity
unconditionally.

For the computation of E(AT; Br) we use the matrix H := tridiag(0, 0, 1).
Since H is a nilpotent matrix there holds

|
-

n

céB‘r — e%p(—!-{-H) — e—“,—

| —

 (5) #

Taking the sum only until i = [ (where n—1 > | > 2 is a fixed integer), one mul-
tiplication with the truncated matrix requires only 3In scalar multiplications
and the resulting matrix is nonnegative, too.

I\
o
S,

[

With this choice of B let us construct a more accurate method. Indeed,
symmetrize the methed considered above, i.e. let

R, = %(E(Ar; Br) + E(Ar; (A— B)r)),

where B = 1/h%tridiag(0,—1,1). By Proposition 1 it is easily checked that

(8) R, =A™ + O(rY),
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where

9) R=Rr+— —

O -
N—

\

Therefore we can state the following theorem.
Theorem 4. Let R, be defined in (9). Then the method

7
Yi+1 = Rry; + 5 (erj +4Rzfi 1 + fj+1) =
T 2r T
=R, (y,- + 'gfj) + ?R%fﬁ% + Efj+1

is of order 8 and conserves nonnegativity unconditionally.

Proof. Approximating the integral in (4) by the Simpson rule and e4” by
R, the proof follows straighhtforwardly from (8).

3. Parallelization

Now we deal with such choices of B where the corresponding numerical
method can be parallelized in a natural way.

For this aim we choose B in (6) in such a way that - besides the conditions
of conservation of nonnegativity B > 0, A— B > 0 - both B and A- B
are blockdiagonal matrices of small blocksize (2 x 2, 3 x 3 or 4 x 4). Sinces
the exponential function of a blockdiagonal matrix is a blockdiagonal matrix
with the same structure, one multiplication with E(Ar; Bt) can be reduced to
three multiplications with blockdiagonal matrices. This method can be easily
parallelized by working in parallel on different blocks.

For instance let us consider the following choices of B.
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1. B3
B := 1/h%diag(B;),

-2 1 0 -1 1 0
B, = 1 -2 11, B, = 1 -2 11].
0 1 -1 0 1 -1

Then one multiplication with E(Ar; Br) requires 22n/3 scalar multiplications.

2. B44
B := 1/h%diag(B;),

-2 1 0 0 —-05 05 0 0
B S . 1 0 [ 05 -15 1 0
Bi:=1 1 -15 o5 )] Br=1 o 1 =2 1 ’
0 0 05 —05 0 0 1 =2

-05 0.5 0 0
05 -15 1 0
0 1 -15 05 }°
0 0 05 -0.5

B; :=

Remark 2. These methods have the following physical meaning: we
divide [0,1] into m subintervals; then éach block of B describes the heat
conduction in one subinterval and the blocks of A — B describe the flow of
heat between adjacent subintervals.

In connection with the stability of these blockdiagonal methods we can
state the following

Theorem 5. The methods B3, B44 are absolutely stable in the L, norms,
p=12 00.

Proof. We show that ||E(A7;B7)|| < 1 Vr,h > 0. (We remark that
this inequality implies the contractivity of the method.) Since E(Ar; Br) =
e3B7e(A-B)7¢3B7 it is sufficient to prove that ||e3B7|| < 1 and ||e(A-B)7|| < 1.
Both B and A — B are blockdiagonal matrices. A straightforward computation

shows that the asserted estimates hold for every block of e3B7 and e(4=B)7.
This implies the theorem.
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4. Numerical results

Consider the following test equation:

Ou 0%u
% "5z =0 0<z<l1, t>0,
(10) u(z,0) = 6(z —1/2), 0<z<l,
u(0,t) = u(1,t) = 0, t>0.

The exact solution is

[e o]
u(z,t) =2 Z sin % sin(mrz)e~™ *t.

m=1
At the first time level we took
n+1, i=(n+1)/2,
wW=L{(n+1)/2, i=(n+1)/2x1/2,
0, otherwise.

For semidiscretizing (10) we used the standard approximation of the spatial
differential operator so that A = 1/h%tridiag(1,—2,1) in (2). We compared the
following methods: B3, B44, MPOW; and CN (Crank-Nicolson method). In
the tables below we display the errors of these methods in the norms L, (upper
number in the entries) and L (lower number) at the time level ¢ = 0.1. A
closer inspection of the tables leads to the following conclusions.

1. The experiments verify that the order is 2 but this order of convergence

starts only from smaller 7 as n grows.

2. It is known that CN has a threshold number ¢, for conserving nonneg-
ativity: CN conserves nonnegativity for all o > 0 and 7 > 0 if and
only if g < ¢, ~ 1.17. (In [2] the exact value of ¢, is computed.)
In our numerical experiments in all cases when u was greater than 1.17
CN produced negative values (in some cases for all time levels) while our
methods conserved nonnegativity and the shape of the solution.

3. In some cases our methods were more accurate than CN. In these cases
CN was oscillating in the whole examined interval. Therefore it was
suggested ([4]) to compute some (1-4) steps with a method which has
the smoothing property but perhaps is less accurate (generally the purely
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implicit #-method) and continue then with CN. In this way one can achieve
higher order of convergence also in the case of nonsmooth initial data ([4]).
From this point of view we compared our methods and the purely implicit
6-method (f = 1). In the Table 4 and Table 5 below we show the errors
of the mentioned methods after 1 step. This experiment shows that our
methods have the smoothing property and are useful in this connection,
too.

1.69e+00 |8.45e-01 |4.22¢-01 |2.11e-01 | 1.06e-01 |5.28e-02

T 1.00e-02 |5.00e-03 {2.50e-03 | 1.25e-03 | 6.25e-04 | 3.13e-04
CN 1.83e-03 |1.43e-03 |1.36e-03 |1.34e-03 | 1.33e-03 | 1.33e-03
3.15e-03 |1.96e-03 | 1.82e-03 | 1.78e-03 | 1.77e-03 | 1.77e-03
B3 1.07e-01 |3.08e-02 |7.25e-03 | 1.16e-03 | 9.02e-04 | 1.22e-03
1.65e-01 |4.71e-02 | 1.12e-02 | 1.65e-03 | 1.33e-03 | 1.57e-03
B44 1.76e-02 |4.67e-03 | 1.05e-03 [ 1.09e-03 |1.26e-03 | 1.31e-03
. 3.81e-02 |1.03e-02 | 1.84e-03 | 1.46e-03 | 1.66e-03 | 1.74e-03
MPOW, | 5.27e-01 |5.24e-01 {4.61e-01 | 2.61e-01 | 9.56e-02 | 2.86e-02
7.40e-01 |[7.36e-01 |6.47e-01 | 3.67e-01 |1.34e-01 |[4.01e-02
MPOW,o | 4.53e-03 |1.34e-03 [1.33e-03 |1.33e-03 | 1.33e-03 | 1.33e-03
6.26e-03 [1.79e-03 | 1.77e-03 | 1.77e-03 | 1.77e-03 | 1.77e-03
T-MPOW, | 3.86e-01 |2.09e-01 |8.76e-02 {2.93e-02 | 7.85e-03 | 1.20e-03
5.72e-01 |{2.98¢-01 |1.24e-01 {4.14e-02 |1.12e-02 | 1.79e-03
T-MPOW,, | 4.77e-04 |1.33e-03 | 1.33e-03 | 1.33¢-03 | 1.33e-03 | 1.33e-03
5.74e-04 [1.76e-03 | 1.77e-03 [1.77e-03 |1.77e-03 | 1.77e-03

=

Table 1. n=12

4. Observe in the tables that in case both 7 and h tend to zero the error can
increase. A direct computation reveals that MPOW; has a truncation error
O(e~2#u3) showing that u — 0 is needed for consistency. In order to drop
this unpleasant consistency condition we do the following. We truncate
MPOW; by replacing e=2# occuring in E; by 1/pi(2p), where pi(z) is
the Taylor polynomial of e* used already in E} to replace eA~B. It is clear
that for all fixed h this produces a second order, unconditionally stable
and nonnegativity conserving method for the semidiscretized equation
(2). This means that we can step over the order barrier using rational
functions! Indeed, the stability function is rational, but not rational in
A. The truncation error of the resulting method is easily checked to be
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0 ( (2p)*

k!pi(2p)
for consistency. In Tables 1-3 we show results for this truncated method
(’T-MPOW,;’), too.

We mention another way to improve our methods: By the help of three
additional terms in (7) we get an implicit unconditionally nonnegativity con-
serving method which is convergent as PDE-solver as well and is at least of
second order in the sense of Definition 2. We return to this scheme in a future

paper.

+ ‘rhz). Therefore if p is bounded then ¥ — oo is sufficient

7 6.25e+00 |3.12¢400 |1.56e+00 [7.81e-01 |3.91e-01 |1.95e-01

T 1.00e-02 | 5.00e-03 | 2.50e-03 [1.25e-03 |6.25e-04 |3.13e-04
CN 1.63e-01 | 7.15e-04 | 3.83e-04 |3.64e-04 |3.59e-04 |3.58e-04
4.65e-01 | 1.76e-03 | 5.26e-04 |4.91e-04 |4.82e-04 [4.80e-04
BLOKKS3 | 5.83e-01 | 3.28¢-01 | 1.29e-01 |3.77e-02 |9.63e-03 |2.18e-03
9.84e-01 | 5.18e-01 | 1.98e-01 |5.75e-02 | 1.47e-02 | 3.36e-03
BLOKK44 | 2.18e-01 | 8.81e-02 | 3.02e-02 |8.50e-03 | 1.98e-03 {2.77e-04
3.47e-01 | 1.39e-01 | 4.83e-02 |1.37e-02 | 3.23e-03 | 4.60e-04
MPOW; | 5.27¢-01 | 5.27e-01 | 5.27e-01 [5.27e-01 |5.27e-01 [4.76e-01
7.44e-01 | 7.44e-01 | 7.44e-01 |7.44e-01 [7.44e-01 [6.72¢-01
MPOW, | 5.27e-01 | 3.44e-01 | 8.38e-03 |3.89e-04 |3.57e-04 |3.57e-04
7.44e-01 | 4.86e-01 | 1.18e-02 |5.24e-04 |4.79-04 | 4.79e-04
T-MPOW,, | 7.84e-01 | 5.66e-01 | 3.71e-01 |1.96e-01 |8.09e-02 |2.72e-02
1.52e+00 | 9.48e-01 | 5.54e-01 [2.81e-01 |1.15e-01 |3.85e-02
T-MPOWj | 1.95e-01 | 2.64e-02 | 1.88e-04 |3.55e-04 |3.57e-04 |3.57e-04
2.79e-01 | 3.75e-02 | 2.91e-04 |4.75e-04 |4.79e-04 |4.79e-04

Table 2. n=24
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