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EXISTENCE AND UNIQUENESS THEOREMS
FOR A CLASS OF NONLINEAR
VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS

A.A. Bojeldain (Budapest, Hungary)

Abstract. In this paper existence and uniqueness theorems for first
order and m-th order Nonlinear Volterra Integro-differential Equations
(abbreviated NVIDE) are presented in a Banach space using the contraction
mapping principle. Note that these theorems are also valid for the linear
VIDE.

Introduction

Applying a numerical method to a VIDE, linear or nonlinear, one usually
assumes that the problem has solution, thus the introduced here existence and
uniqueness theorems can be applied directly to the given NVIDE to see whether
it has unique solution or not.

At first we prove an existence and uniqueness theorem for NVIDE

t

2(0) = ft,x(t) + [ K(t,ra(r)dr

a

having the initial condition z(a) =: ¢, it has a unique solution in a Banach
space equipped with a generalized Bielecki’s type norm ||z|| ‘=max e~ M|z(2)],
t € [a,b] and r(t) is an auxiliary function (explained in the theorem).

In Theorem 2 we discuss a generalization for the next form of NVIDE of
order m

M) = f (t, {z(j)(t)};"=‘()l,11{X)
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having the i.c. a:(j)(a) =: ¢j for j = 0,1,...,m — 1; such that KX :=

t
=K (t,7,{z9()}Y",!), where
) ]_01 h
a

{25 = 2(1),2'(t), 2"(1), ..., 2" D(t)

t
and z(9)(t) := z(t), IKX means the operator I := [( )d( ) applied to the kernel

a

KX = I( (t; T, {z(J)(t)};n:-Ol)

Definition 1. A continuous function f(t, X) defined in the n + 1-
dimensional region D : a <t < b, |z;] < 00, ¢ = 1,2,...,n, satisfies a
Lipschitz condition on X in D for a Lipschitz coefficient £ > 0 if

£, X) = f& V)| S OX - Y]:=2) |z — uil
i=1

for every (¢, X) and (¢,Y) in D.
1. First order NVIDE in additive form

Theorem 1. The first order nonlinear Volterra integro-differential equa-
tion

t

(1.1) (1) = f(t2(t)) + / K(t, 7, 2(r))dr

a

with initial condition z(a) =: ¢ and satisfying

1. K(t,7,u) is continuous and satisfies |K(t,7,u)| < My for every (¢, 7, u)
n

(1.2) Bl: a<t<b, a<7<b |Ju—c/<T< oo,
moreover K salisfies the Lipschitz condition
(13) IK(t,‘r,ul)-K(t,r, llg)l §£1|u1 — U2

for every (t,7,u;) and (t,7,u2) in BI;
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2. f(t,u) is conlinuous in
(1.4) B2: a<t<b, |u—¢c<T<o

and satisfies |f(t,u)| < My for every t,u) in i, as well as f is Lipschitzian in
B2, i.e.

(1.5) |f(, u1) = F(t, u2)| < £a]uy — ug|

for every t,uy) and (t,uz) in B2;

has a unique solution in E C D (the Banach space of all functions z(t) €
€ C'[a, b] equipped with the norm
(1.6) lall :=max e~ Ola(t)], for t€[a,b]

where r(t) = vL(t — a), £ := max(4y,£,,1), and the finite number v > 2) such
that

(1.7) E:={z(t)eC'(A): |z(t)—c|<T, for A:=|t—a|<8}

with § = min((b — a),T/M), where M = Mj3 (l+b_—a) and M3z =

2
= max(M;, M3).

Proof. Integrate both sides of (1.1) from a to ¢ to show that it is equivalent
to the integral equation

(1.8) z(t) :c+/f(r,z(r))dr+]]K(T,.‘t,z(p))dpdr.

In order to have a fixed point problem choose the r.h.s. of (1.8) to be Q(z)t (a
nonlinear operator), then consider the following difference

Q) — ¢ < / (7, 2(7))ldr + / / |K (7, g, 2(u)) | dpdr <

(t = a)?

19 sm-a+m ST <m0 (1452 <
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Ma(t—a)(uf—;i)gmgr,

which means that for every (¢, 7,z(7)) in Bl and for every (¢, z(t)) in B2 with
a<rt<t<a+6theoperatorQ: F— E.

Next, to show that Q is conraction, consider the difference

(1.10) 1Q(=) - QW)I®) <

< / 11 2(r) - Sy Dlar+ [ / |K (7, 2(w)) — K (7, y())ldd.

Make use of the Lipschitz conditions (1.3) and (1.5) in (1.10) as well as £ :=
:= max(¢,, £2,1) to get the following inequality

t t T
(1) 1Q(2) - QWM < £ [ la(r) - rldr + £ / / l2(1) — ¥()ldpdr.
Multiply the r.h.s. of (1.11) by e=*£(t=2)gv£(t-9) o get

1Q(z) — Q(¥)|(t) < L:/]z(,-) _ y(.r)le—uC(r—a)euc(f_a)dT_*_

t T
(1.12) 4L [ [ lato) = wtlemr 0= e 0=
a a

Now take the maximum in the terms of r.h.s. as follows

1Q(=) - Q(W)I(®) <

t
(1.13) < L:/ (mfa.x lz(r) - y(T)Ie—uC(r—a)) euL(r—a)d1_+

t T
s f (muax l2(u) - y(pne-"““-“)) =0 dydr.
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According to (1.6), (1.13) is equivalent to

(L14)  |Q(=) - QW)I®) < Lllz - yll/ (e"‘(”“) +/e"‘(““‘)d#) dr.

(1.14) implies that

(115) 1) - QIO < lle - ol (L eree-0 - - 22)),

v

where L < %, since £ > 1 and v > 2 is used.

vl
Multiply both sides of (1.15) by e~*£(*=%) to have

e (9|Q(z) - QW)I(Y) <

1+v —vL(t—a t—a ~vL(t-a
<lle =yl (15201 - e - Lo emvito0))

(1.16)

1 : -
<llz -yl ( ;V(l— min e~vE(t-a))_ min — ae—u[.(t—a)) <

1+v —vL(b-a)
<5 (1= flz - il

The most r.h.s. of (1.16) is now constant, i.e. independent of ¢, thus (1.16) is
valid for every t € [a, b]; whence for the maximum of its L.h.s.

(117)  max e SE=1Q(z) - QI(E) € oz (1= 70 o —

which, according to (1.6), gives

118 11eE - QWi < 15

(1-emet=2) |jz - g

1 .

:;V (1 - e'”c(""“)) < 1 for any finite » > 2 and £ > 1,
it can be considered as the contraction coefficient of Q(z)t. Hence Q is
a contraction operator and Banach’s fixed point theorem is applicable to
guarantee the existence of a unique solution for the problem (1.1) in E.

It is clear that 0 <
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2. m-th order NVIDE in general form

Theorem 2. Let us consider the m-th order NVIDE

(2.1) M) = f (t, eV Ol,mx)

having initial conditions £)(a) =: ¢; for j = 0,1,...,m — 1; where z((a) =
= z(a) =: ¢co and

(2.2) IKX = j[{ (t,r,{x(j)(r)};"z_()l) .

Let the following conditions be posed:
1. the kernel K (t,r, {u; ;";01) of (2.2) is continuous for every t, T and
uj, j=0,1,2,...,m —1 in Bl given by

(2.3) Bl: a<t<b, a<r<hb, luj —¢j| <Tj < o0
for 7=0,1,2,...,m—1; as well as K is bounded there by M1, 1.e.

(2.4) IKX| < |K (¢, 7, {u ;5=7,1)| < M1.

2. K satisfies the following Lipschitz condition on w;, j =0,1,2,...,m—1
in B1 for a Lipschitz coefficient £, > 0

(2.5) |K (8,7 {w;}") — K (6, {oi )| < &0 ) [wj — v

for every (t, 1, {w; ] o ) and (t,7,{v; ;-"z_ol) in Bl

f(t f (¢, {u;}%,) is continuous and bounded by M2, i.e. |f (¢, {uj}§"=0)| <
< M2 in B2 given by

(2.6) B2: a<t<b, luj —¢;j| < Tj < o0, |um| < T < 00
forj=0,1,2,...,m—1 and s Lipschitzian there for an £5 > 0, 1.e.

|f (8, {wi Yo' 121) = £ (4 {ny} ] 122)| <

(2:7) <t (”‘z—: |wj — vj| + &1 (':V:: lwj — ”J'|))
j=0 j=0
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for every (t,{wj};-"____ol,IZl) and (t,{vj};"z_ol,IZ2) in B2 given by (2.6); in

(2.7) we used the inequality

m-1
(2.8) 121 -122|< 1|21 - 22| < 41 (Z |w;j — v,-|) ,
j=0

where I is as defined before,
Z1:= K (t, 7, {w;}]!) and 22:=K (t,7,{v;}]%') .

If the NVIDE (2.1) satisfies the abovementioned conditions, then it has a
unique solution z(t) € C(™)(A) in E C D, where

(2.9) E:={a(t) eC™(A):  |s9(t) - ¢ < T}
forj=0,1,2,.... m—1and A := |t —a| <6, where
(2.10)
. T .
é := min ((b —a), ﬁ) , T =min(To,Th,...,Tm),

M= msS (G s My M), j=
" 32 5! ’ 3 = max(|¢j|, M1, M2), j=1,...,m—1.
j=1

D is the Banach space of all functions z(t) € C(™[a, b] equipped with the norm

m-—1
= =r(t) €))
(2.11) EA] ‘=max e ZO [z477(2)], t € [a,b],
=

r(t) = vL(t —a) for a finite v > 2 and L = max(¢y, {3, 1), noting that 2(O(t) =
= :E(t).

Proof. Integrating both sides of (2.1) from a to ¢ m times one can show
that it is equivalent to the integral equation

m—1

(2.12) wy= 3 U=y

1
j=o 7
t
+/
a

H1

/

a

Bm-—1

K2
/ - / £ (s (=9 )}, TKX) it ..
a
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To form a fixed point problem denote the r.h.s. of (2.12) by Q(z)t, a nonlinear
operator. First we have to show that Q@ : E — E (F is the space given by

(2.9)).
For any (pm, {z(j)(pm)};';al, IKX) in B2 given by (2.6) for any a < t <
< a+6 it is clear that

gk (t —a)
(2.13) Q@) = col < 3 lesl=—7—+
i=1
t Py p3 Hm—-1
+// |f (ym,{r(j)(#m)}f'-'()l IKX)ldl‘md/‘m—l-ndﬂlS
a a a a
= —a) t—a)™ Mt —q)i-!
D D 1) VDY U)LY VE YY) Uik
3! m! . 7!
j=1 ij=1
T (b—a) !
§M3(t—a)z( j!) <M6LT
j=1

(2.2) and (2.4) for any a <t < a + 6 imply
t
(2.14) |IKX|< / |K (1., {z<i>(r)};"=;,1)[dr <Ml(t—a) < M§<T,

thus from (2.13) and (2.14) we conclude that Q : £ — E.
Next (to prove that @ is contractive) consider the difference

(2.15) 1Q(z) - Qw)I(?) <

t py B2 HBm-1

S/// / ‘f(#m,{lr(j)(#m)}?=7)l, U\’X)—

a a a

=F (s (6 )72 TKY ) | dppmdpim 1 - dpr.

According to the Lipschitz condition (2.7) and (2.8) the above inequality

becomes
1Q(z) = Q(y)I(t) <
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t M1 M3 Hm-

(2.16) 522///... /l (mz_lh(i)(#m)_y(i)(#m”.*.
a j=0

a a a

m-—1
+£1I(Z |3—'(j)(l‘m) - .'/U)(l‘m”) ) dpmdpm—1 ...dp;.

j=0

Multiplying each term of the r.h.s. of (2.16) by the the product e~*<(*~%)x
xe?(t~3) we obtain

(2.17) 1Q(z) - QW) <

t 41 p3 Bm-1

< ﬁ/// / (ﬂlz;:: |z(.i)(s) - y(j)(s)le'"‘:("°)e”‘:("")+

a a a a

m-—1
+£I(Z lz(j)(s) - y(i)(s)le—uﬁ(s—a)eui(:—a)) ) dsdpm_1 ...du;.

i=0

Now taking the maximum at the r.h.s. of (2.17)

(2.18) 1Q(=) - QW)I®) <

/// 7-1{ [mfx,gh(j)(s)—y(j)(s)le"’c("“)] evL(s—a)

+L1 (|:ma.x Z |z(1)(s) — ) (s)]e” vL(s~ a)] eV Ls- a)) } dsdpim_1 ...dp;,
which, according to the definition of norm (2.11), leads to

(2.19) IQ(z) - QW)I(t) <

t B B2
< Lz -yl (/// / (e"[(’ ) 4 LIe**C~dsdpp,_, . dpl),

noting that the term LIe*“("=%) is performed as follows

f 1
(2.20) LIS~ = ¢ / €0~ )dr = S (eE=0) 1),
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Substituting this in (2.19) and performing the integration we come to

(2:21) 1Q(z) - Qw)I(t) <

1 1 Veliea
SCIIz—yH(<(V£)m+um+1£m)(e ¢ >_1)-

! (t-a) _"‘f (t - a) _(t—a)”*).

v L)m-1 — ilymti-ifm-1 mly

=1

Multiplying both sides of (2.21) by e~*<(*=%) and since (for £ > 1 and v > 2)

L < —L C 1
wLym™ = v’ ymHlLm = pym+l
(2.21) becomes
(2.22) e (=9|Q(2) - Q()I(t) <

-1 P _ -1 i —vl(t—a
B "‘X: (t — a)'e vL(t—a) B "‘2: (t —a)e L(t-a) B [:(t _ a)me_“:(t_a) )
i=1 i=1

tlym-ifm-1-i ymtl-ifm-1-i m!y
for m > 2, it can be majored as

(2:23) e E=91Q(2) - Q)I(Y) <

1 1 (e
< llz -yl ( (,,—m + ,,m+1) (1“ min e~ £ ")) -

m-—1 : m-—1 i
) t —a)levE(t-a) ) t—a)evE(t-a)
— min E ( " ) — — Imin E ( ) ‘ n —
t — ym=-1m—-1-i t — 1!Vm+l—:£m—|—1
1= 1=

—L min —(t —a)” e~ vE(t-a) ) .
1

mly

It implies

(224) e EO01Q() ~ QI < e (17409 [z — .
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Now the r.h.s. of (2.24) is constant, i.e. independent of ¢, thus (2.24) is valid
for every t € [a, b], whence for the maximum of its Lh.s. we have

(225)  max e~ S-9)Q(z) ~ QUI(E) < 1oy (1= e=46-9) |jz — .

By the definition of norm (2.11) the above inequality is equivalent to

(226) Q) - QI < o (1= €750=9) flz — g

It is clear that 0 < 1 — e~%(*-2) < 1 for any finite v > 2 and £ > 1, the
1+v 3
ym+l T gm+1

term 0 < < 1 for v = 2, it is enough to make the coefficient

0< ¥l (l - e'z‘.’(""’)) < 1 for Q(z)t to be a contraction operator; thus

the Banach fixed point theorem is applicable to guarantee the existence of a
unique solution for (2:1) in the domain (2.9).

Remark. In the theorem we use the term
(*)
 (b—a)y! -
M= M3 ~——— with M3=max(lc;|, M1,M2), j=1,...,m-1,
j=1 b
where M1 and M2 are the upper bounds of K and f respectively.
We notice that, as it was clear from the theorems,
(++)

for j=1 M:= M3=max(M1,M2), for j=2 M:=M3(l+b—2-a),

which can be used to specify

. T
6 := min (b—a. ﬁ)

(for further details on M and T see the theorems). However, if the order of
NVIDE m is fairly large, one may use

(#+%) M:= M3e*°, with M3 =max(lc;, M1,M2), j=1,....m-1

instead of (*).
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3. Example

Let us consider the NVIDE
t
3.1) (@) =1-€" - zN(t) + 2/62’(2(3)(1'))2d1',
0

t € [0,8], 2(0) = 1, 2'(0) = 1, 2%(0) = 3, 2"(0) = —1, z®(0) = 1, where
z*(t) = et + 12

Obviously (3.1) satisfies the conditions of Theorem 2 for m = 5 in Bl and
B2

(3.2) Bl: 0<t<b 0<7<b |uj—¢cj|<Tj<oo,

(3.3) B2: 0<t<b, |u,-—c,-|§7} <00, |us|<Ts < oo,
i=0,1,2,3,4;, ¢ =z9)(0).

We have the following Lipschitz condition

|K(t, 7, z(7),..., 1(4)(1')) - K(t, r,y(r),..., y(4)(r))| =

= 122(2® (1) + v (N3 (7) — v3(r
(3.4) 12e2(2®(r) + (1)) (=D (r) - yI(7))| <

4
< ATe®|2®)(r) -y (r)] < 4Tee? Y |20)(r,2) — 4O (7, ))]
j=0

for every (t,,...,z(*(r)) and (t, 7, y(7), ..., y*(7)), where T. = max(T};)+3,
7=0,1,2,3,4.

1f(t,z(t), ..., 2@ (), IKX) = f(t, (1), - .., y(4)(), IKY)| =

=1—e® —z@W@)+ IKX — 1+ € + yI(t) — IKY| <
(3.5) <|e®@) - yP @)+ I|KX - KY| <

4 4
< S 1) - ¥ + 4TS 20(e) -y 1)
j=0 j=0
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for every (¢, z(t),...,z(®(t), IKX) and (¢, y(t),...,¥*®(t), IKY) in B2. There-
fore D is equipped with the norm

4
— -vCt i)
(36) el s=mpx < 3P0,
J:

where £ := max(fy,%5,1) = max(1,4T.e?,1) = 4T,e?*, a = 0 and v > 2.
Moreover, we have the following estimates for the bounds of K and f:

(3.7) |K(t,7,2(r),...,2®(r))| < 2¢*T? in BL,

(3.8) If(t, z(t),...,z(t), IKY)| < 2e®*T?b+ T, in B2.

Thus M3 = 2e?*T2b + T,.

Integrating both sides of (3.1) from 0 to t five times we reach the equivalent
integral equation

t3 t4
(3.9) z(t)_1+t+3 -Gt
t 1 B2 M3 B4 s
+//// (1 - 62’ - 2(4)(8) + 2/ 627(3(3)(7))2dT) dsdﬂ4d[l3dy2dy1,
0 0 0 0 O 0

Hence Q(X)t := the r.h.s. of (3.9).
Using (3.7) the inequality (2.14) gives

(3.10) | IKX| < I|K(t,7,z(7),..., (1)) < 22T} < M36 < M6 < T.

Similarly, from inequality (2.13) using (3.8) and (3.9) we have

3
|Q(X)t—1|<t+3 +3,+ +
t K1 B2 B3 Ba
(3.11) +(2esz,2b+T.)//// dsdpsdpsdurdpy <
00000

5
< (26T + T.) Z -

Q“
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Therefore Q : E — E. The difference |Q(X) — Q(Y)|(t) after applying (3.5)
becomes

(3.12) 1Q(X) - Q(Y)I(t) < 4T.e-
KBy B2 B He

ZB/O/J!(ZIz(J)(s) y(J)(s)|+Iz%|z(’)(s) y(J)(s)I) dsdps. .. dp;

(3.12) is just the inequality (2.16) for m = 5, thus by the same method (3.12)
will end at

1+u N
(1-e“) llz - ol

IR(X) — QM| <
for v > 2 and £ = 4T.e?*. Hence the problem (3.1) has a unique solution
z(t) € C™[0, 8] in E mentioned above.

Conclusions. 1. These theorems are valid for the parametrized and
nonparametrized linear and nonlinear VIDE, where the kernel KX may depend
nonlinearly on its arguments, but the integral operator I should be linear.

2. By posing the weight function e~"(*) not only the existence of the
solution is guaranteed, but its uniqueness as well.
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