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A SPLINE METHOD FOR APPROXIMATE
SOLUTION OF THE INITIAL VALUE PROBLEM

y™(z) = f(z,y(z), ¥, ..., ¥ D(z))

A. Sovegjarté (Budapest, Hungary)

Abstract. Approximate solution is constructed in the form of spline
function for the Cauchy problem regarding an n-th order nonlinear ordinary
differential equation: y(")(:r:) = f(z,y(z), ¥y (2), ...,y("'l)(z)); y(zo) =
=y, ¥(z0) =43, - y("'l)(zo) = y(';_l, where n > 1 integer, f € C2.
The spline is of degree m = n + 1 and of class C™. The method has a
local truncation error O(h"*2) in y and the corresponding derivatives are
approximated by the derivatives of the constructed splines S, as follows:
|y (z) — SS,J..)(:L‘)I = O(h™+1-J), j = 1,2,...,m. The existence and
uniqueness of the approximate spline function are proved. Some numerical
examples are given for illustration. This method is a modified version of
the methods given by Callender [3], Loscalzo, Talbot [10,11] and Micula
[12,13] and it can also be regarded as a slightly modified Taylor’s expansion
method of order m.

1. Introduction

Approximate solution of ordinary differential equations with spline func-
tions was investigated by several authors. The first order Cauchy problem
Yy’ = f(z,y) was discussed by Callender [3], Loscalzo and Talbot [10,11], and
Mailthei [14,15]. Callender presented a single step method of order m (m > 2),
where the spline is of class C!, but of degree m. The method given in the
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paper of Loscalzo and Talbot is equivalent to a linear multistep method and is
convergent only if m = 2,3. A general procedure is presented by Miilthei for
the above problem. In this procedure several well-known spline approximation
methods are included as special cases, additional knots are admitted in every
subinterval. Micula [12,13] studied the approximation of the solution of the
problem y"” = f(z,y), i.e. a nonlinear second order differential equation, but
only when the first derivative is absent. The problem y’ = f(z,y,y’) was
solved by Sharma and Gupta [17] with a one-step method based upon the
Lobatto four-point quadratute formula. Fawzy [4,5] solved the same problem
using spline functions but his approximation process consists of two stages.
For the solution of the initial value problem y(")(z) = f(z,y,y') Fawzy and
Soliman proposed a spline method in [6], but there is no connection with the
method presented in this paper.

Consider the following n-th order initial value problem:

(1.1) y™(z) = f(z,y(2), ...,y V(2)),

y(‘)(zo) = yf,, 1=0,1,...,n—1.

When the function f on the right belongs to the class C* (k =0,1,2,...) then
the solution of (1.1) belongs to the class of functions C"**. A natural claim is
that similar property holds for the approximate solution of (1.1). In this paper
we shall use splines of degree m = n + 1 by assumption that S, € C".

To solve numerically the problem (1.1) it has usually to be reduced
to a system of first order differential equations (see [7,8,19]). Furthermore,
sometimes in physical applications it is important to approximate also the
higher derivatives of the solution.

It is well known that direct using of the Taylor expansion method in general
1s not recommended for the first order differential equations or for the system
of equations (Henrici [8] p.66) because it has to be operated simultaneously not
only with the function f but also with its higher derivatives. There is a good
review in [1] which shows the possibilities of using step-by-step methods.

The method proposed in this paper for the solution of nonlinear n-th order
ordinary differential equation is a modified version and a generalization of the
methods given in [3,10-13] and it can also be considered as a slight modification
of the Taylor’s expansion. Furthermore, it has the advantage over the discrete
method that it gives a global approximation of the solution and also permits
the study of the behaviour of derivatives of the approximate solution.
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2. Description of the method

We construct a single step method for the n-th order nonlinear ordinary
differential equations using a spline of degree m and continuity class C™~1.
Here m and the order of approximation depend on the order of the differential
equation n  (n > 1 integer, m = n + 1). Consider the nonlinear differential
equation

(2.1) y™(z) = f(z, 4,9, ..., ¥ V),

where f € C?([zo,b] x R") and z0,b € R, zo < b. We assign to the equation
(2.1) the initial conditions:

(2.2) vy (o) = v, i=0,..,n—1,
where y§,i = 0,...,n — 1 are preassigned values. Let D := {(z,y,..., 5" D) |

zo < z < b} and f € C?(D) furthermore, let L be the Lipschitz coefficient for
which

(2.3) £, u1, 00, 0" 70) = f(z, 02,08, 008 D) <
' : -1 -1
<L(yi — yol + [y = th] + .+ 15" 70 = 577,

In accordance with these conditions there exists only one y(z) solution of
the initial value problem (2.1),(2.2) (see [8], Theorem 4.1). We construct a
polynomial spline function S(z) of degree m = n + 1 approximating y(z) and
its derivatives. (Instead of S,, we write S which denotes a spline of order m.)
For this purpose let h be the stepsize, h = (b — zo)/N (N € N) and we define
in each subinterval [z;_;,z;] i=1,..., N the components of S by

(2.4) pi(z) = a™(z — zi-1)" +a;"_1(x - z'.-_l)m-1 +...+a}(z—x,-_1)+p.~_1.

pi—1 is known approximated value of the exact solution y at the point of
z;_, and the coefficients a‘::, i =1,.,N, j=1,.,m are needed to
be determined. (We consider equidistant mesh points only for the sake of
simplicity but the method is applicable with variable stepsizes too.) Fori =1
let

(25) Po =Y, a
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m—-1 _ f(xO)yO)yéa' )yO 1)
(2.6) o = (m—1)!

From the condition 5 € C(™=1) it follows that
(2.7) p(zi) = pPi(zi), i=1,.,N-1, j=0,.,m—1
These equalities give us recursion formulae for a'z: :
aly; = ma*A™ " 4 (m - Dal 'h™ 24 . +ad},
2a?,, = m(m — 1)al*h™ % + (m — 1)(m - 2)a]* " 'A™"% + . + 247,
3la?,, = m(m- 1)(m—2)a™h™ 3 4 (m—1)(m—2)(m—3)a” 'A%+ ... +3!a?,
(2.8)

(m —2)1a7}7% = m(m - 1)...3a7*h% + (m — 1)l *h 4 (m — 2)lal~?
(m - 1)'a,+1 =m!lal’h + (m — 1)!a:"_1,

where i=1,...,. N —1.
We now calculate the remaining unknown coefficients of S. Integrating (2.1)
from z;_; to z; we get

y(n—l)(zl‘) - y(n_l)(zl‘—l) = / f(l‘, Y, yla '"1y(n—l)) dz.

Let us replace y("~1)(z;) by pflfl)(:c;), y(®=1(z;_,) by p )(:c._l) and in
the integrand y\/)(z) by p(")( ), j=0,1,..,n—1. It follows that

(m— 2)la‘+l (m—?)!a;"—2: / f(z,pi, ), - ’p'n 1))d1:

On the base of equation which corresponds to the smoothness condition
§(m=2) € C we get implicit nonlinear equations for a}” :

m(m —1)..3a7h% + (m — D)!a?*"h =



Spline method for approximate solution of initial value problem 113

(2.9) - / £ pi(2), Bi(), 5" (2)) dz

-

where ¢ = 1, ..., N. By this construction we can determine the spline function
S(z) of degree m = n+ 1, for which the unknown coefficients can be computed
by (2.5),(2.6), by equations in (2.8) and (2.9).

3. Existence, uniqueness and convergence of the approximate solu-
tion

There is the only one approximate spline solution.

Theorem 1. Ifh < Li“ then the spline function S given by the above
constructlion erists and is unique.

Proof. Define p;(z) in the subinterval [z;_y,z;], i = 1,..., N as in (2.4)
where the coefficients p;_;, a}, j = 1,...,m — 1 are uniquely determined by

the continuity conditions. We prove that a/* may be uniquely determined from
(2.9). By rearrangement we get

1

(3.1) a* = gi(a") = m(m—1).32 "

x [ U@ e, @)~ (m = 01" da,

i = 1,..., N. The right-hand side of this equation contains also the unknown
a™ in pSJ) 7j=0,1.,n-1

Define G; : R — Rby a* — gi(a]®), a* € R. Weshow that the operator
Giisa contraction thus it has a unique fixed point.

Let a™,a™ € R, and their distance p(a]*, @) = |a]* — a*|. According to
the Lipschitz condition (2.3) follows that

LhE ") |

p(Gi(a™), Gi(a)) = lgi(al") — gi(a]™)| < Gk P

l’l

Soif Lh/(3 — h) < 1, then G; is a contraction operator and (3.1) has a unique
solution.
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Remark 1. It is readily seen that Theorem 1 gives the stepsize restriction
h < 3/L for the first order equation.

Now we study the approximation of a solution of the problem (2.1),(2.2)
by the constructed spline. In order to estimate the approximation error we
assume that the derivatives of the solution y are bounded and that there exist
bounds for the partial derivatives up to the order two for the function f.

Theorem 2. Let f € C?(D) and let S be the spline function approzimat-
ing the solution y of the problem (2.1),(2.2). Then for any h-< 1/3LC, where
C:=1/3"+...+1/(n+2)! holds

(3.2) [y (z;) — S (z:)| < KR™H79, j=0,1,..,m,

where the constant K does not depend on h.

Proof. We proceed by induction on 7. For i = 1 the coefficients of the
polynomial p;(z) are determined by (2.5) and (2.6). Moreover, from equation
(2.9) we get

m 1
(3-3) o= m(m — 1)...3h2)<
x / [F(2, pr(2), Po(2), o B 0()) = F(z0, 30, U8, oo 9™ )] dz.

Considering the Taylor’s expansion

f(@,p1(2), Pi(2), P (2)) = F(20, 30,88, 05 7H) =

= f'(20, %0, 95, - ¥~ )z — 20) + O((z — 20)?),
a short calculation gives that

a;.n = fl(a"anO)yél )yg—l)/m' + O(h) =

= 4™ (z0)/m! + O(h).

Now let i = k and suppose that o) — y3)(z,_,)/j! = O(A™+1=i) 5 =1,..,m.
From equations (2.8) we get

aiyr = ¥ (ze) + O(h™),
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(3.4) 2laf,, = y'(zx) + O(K™Y),

(m - l)!al";ll = y(™=D(z¢) + O(h?).
On the base of the last estimates it follows from (3.1) that

o 1
Y1 = o —1)..3h2

Tk41

< [ UG P @) B (@), B3 @) — Y @) + O} de.

Tx

As in the case i = 1, it can be calculated for i = k + 1 that

(35) @y, = f/(k, Uks o - 00" V) /ml 4+ O(R) = 4™ (24) /m! + O(h),

whenever 3LCh < 1, where C := 1/3!4+1/4'+...41/(n+2)!. From the construc-

tion of the spline function (2.4) it follows immediately that af: = pEJ)(z,-_l)/j!,
forj=1,..,m, i=1,..,N. This proves (3.2) for j = 1,...,m. To prove (3.2)
for j = 0 we have to apply (2.4), estimates proved just above and the Taylor’s
expansion for y with the remainder term of order (m + 1):

"i.. (m) .
y(z:) = y(zio1) + ¢ (zic1)h + %;")h‘* +..4 %hm +O(h™+Y),

pi(zi) = pi-1 +alh+ a?h? 4+ ..+ a™h™, i=1,..,N.
Using (3.4) — (3.5) follows (3.2) for j = 0 because S(z;) = pi(z:).

Remark 2. From Theorem 2 follows that this method can be regarded as
a modified Taylor expansion method of order m, provided that starting values
¥} are given exactly or with appropriate accuracy.

Theorem 3. If f € C?(D) and S is the spline function approrimating the
solution of problem (2.1),(2.2), then for any h < 1/3LC and z € [zo,b],

v (z) — S(2)| < K™, j=0,1,..,m,

where the constant K, is independent on h.
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Proof. Let be z € [z;,z;_1]. Taking into consideration that the function
S(m) is constant in [z;, z;_1], furthermore on the base of Theorem 2 and by the
help of Taylor’s formula for y(™) it follows that

™ (2) = y™(z) =

= (5™ (2) = 5™ (2)] + [S™(2) = Y™ (20)) + 1™ (25) - ¥™(2)] = O(h).

The Taylor’s expansion leads for the function S(™=1 — y(m=1) to
S (2) — g V() =[S0 (z) — D @)+

HS™(E) — YD)z ~ 2:) = O(h?) + O(h)(z - 2:) = O(h?),

where £ € (z;, z).
Similarly we can also get the other estimates. Finally

S'(z) - y'(z) = [$'(z:) — ¢ (@] + [S"(€) =" (€)= — 2i) =
= O(h™) + O(h™ )(z - z:) = O(K?),
where ¢’ € (z;,z) and
S(z) = y(z) = [S(zi) — y(@)] + [S'(n) = ' (M)(z — =) =

= O(h™!) + O(h™)(z — =;),
where 7 € (z;,z). This completes the proof.

Remark 3. The problems of stability of the spline method proposed here
will be investigated in a following paper.

4. Applications of the method

Let us consider the first order initial value problem y/(z) = f(z,y), y(0) =
= yo. Loscalzo and Talbot (10, 11] proved for this problem the following

Proposition 1. If f(z,y) € C? in T := {(z,y) : 0 < z < b}, then a
constant Ky can be determined such that for all h < %

1S2(2) — y(z)| < K2h?,  |S3(2) =¥/ (2)| < K2h?,
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155 (z) — ¥"(2)| < K2h,

if z € [0,b], provided we define the value of the step function Sy (z) at a knot
zy, by the usual arithmetic mean.

Micula [12] proved for the cubic spline approximation of the Cauchy
problem regarding a second order differential equation y’ = f(z,y), y(0) =
=4y, ¥(0)=ys the next

Proposition 2. If f € C3([0,b] x R) and S is the cubic spline function
approzimating the solution of problems y"' = f(z,y), ¥(0) = yo, ¥ (0) = y} then
there ezists a constant K such that, for any h < (6/L)'/? and z € [0, b],

1S(z) - y(z)| < KB?,  |S'(z) - ¥/ ()| < KA?,

1S"(z) - y"(2)| < KRh*,  |8"(z) —y"(2)| < Kh,

provided S"'(zy) is given by the usual arithmetic mean.
We can say that Theorem 3 is an extension of the Proposition 2 for the
second order Cauchy problem.

Remark 4. The method is applicable also for the system of differential
equations but in this case instead of (2.9) a system of nonlinear equations is
needed to be solved.

In the following section some numerical examples are given for second,
third and fourth order initial value problems.

5. Numerical results

The algorithm: From the initial values we get:

Po ‘= Yo,
a; =y,
a? = y2/2!,

ap =g (m - 1)),

In every iteration step has to be computed:
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1. a* from the implicit equation (2.9) by the help of the values p;_;,a},.
m-1
'y ]

.y

a
2. pi(z;) from the expression (2.4) (pi(z:) = wi),
3. a{+1, j=1,...,m—1 from the equations (2.8) by the help of the values
ofal,..,a™ i=1,..,N.
Numerical results (presented below) have been obtained on an IBM AT/386

compatible computer with programs in PASCAL and with extended variables.
For the illustration the following differential equations were solved.

Example 1. (Babuska, Prager, Vitasek [2], Example 3.4)
y” =Y 0 S z S 1) y(O) = 01 yl(o) =1

Mazimum absolute and relative errors of approzimate solution and its deriva-
lives.

(For the sake of brevity we apply the following notations: 1.54 — 5 denotes
1.54 x 1075.)

h=0.1 h =0.01 h =0.001 h =0.0001
abs rel abs rel abs rel abs rel
y [K.05-7[6.56-74.05-11[5.55-11[4.04-15 5. .16-1713.87-17
y [1.75-7(3.25-7|1.75-113.24-11{1.75-15[3.23-15 4.92-17[9.11-17
y" |7.02-418.35-4|7.01-6 |8.33-6 |7.01-8 |8.33-8 [7.01-108.33-10
y'"' 4.16-2(7.70-2|4.20-3 | 7.78-3 |4.21-4 |7.79-4 |4.20-5 |7.79-5

The absolute errors of the numerical results are given in [2] for the methods
of Stérmer and Adams-Bashforth as follows: for h = 0.01 : 3.27 x 10~ and
3.12x 1077; for h = 0.001 : 3.535 x 10~% and 3.6 x 10~8; and at last for
h =1/20000: 0.158 and 8.99 x 10~7. The derivatives were not approximated.

Example 2. (Fawzy, Soliman [6], Example 2.)
yY'=—-y—-z, 0<z<1, y0)=1, y0)=-2, y'(0)=1.

The exact solution is: y(z) = e™* — z.
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Mazimum absolute and relative errors of approrimate solution and its deriva-

tives.
h=0.1 h =10.01 h = 0.001 h = 0.0001
abs | rel abs rel abs rel abs rel
v [3.82-7/5.25-6[3.82-11[5.76-9 [3.81-15[1.14-11[8.03-17 [4.86-13
v [1.33-6(7.22-7(1.38-10(7.23-11 [1.39-14 [7.23-15 [2.16-17 [1.57-17
v’ [2.19-7(5.95-7 [2.19-11 [5.94-11 [2.19-15 [5.95-15 [1.43-17 [2.96-17
y" [1.59-3(2.88-3|1.66-5 |3.08-5 [1.67-7 [3.10-7 [1.67-9 [3.10-9
¥ [6.26-219.18-2|6.63-3 [9.49-3 |6.66-4 |9.53-4 |6.67-5 |9.53-5

The absolute errors in [6] are as follows: at z = 0.4 for y : 1.0 x 10~9,
Y :4.5x 1078 ¢y :2.84 x 10-7 and 3"’ : 1.0 x 10~2, but the stepsize was not
explained.

Example 3. (Rutishauser [16])

YW=y, 0<z<10, y(0)=y(0)=y"(0)=y"(0)=1

Mazimum absolute and relative errors of approzimate solution and its deriva-

tives.

r=0.1

z=1.0

z=25.0

r =100

abs

rel

abs

rel

abs

rel

abs

rel

/1"
yIV)
¥v)

1.44-9
5.77-8
1.45-6
1.27-9
1.75-3
7.10-2

1.30-9
5.22-8
1.31-6
1.15-9
1.59-3

6.42-2

3.68-7
8.57-7
9.71-7
9.18-8
1.43-3

1.17-1

1.36-7
3.15-7
3.57-7
3.38-8
5.26-4

14.30-2

8.85-5
1.03-4
1.38-4
7.18-5
1.23-1
7.2840

5.96-7
6.96-7
9.32-7
4.84-7
8.26-4
4.91-2

2.42-2
2.65-2
3.17-2
2.18-2
1.83+1

1.10-6
1.20-6
1.44-6
9.87-7
8.31-4

1.0843

4.92-2

z=0.1

z=1.0

z=25.0

x

=10.0

abs

rel

abs

rel

abs

rel

abs

rel

2.85-13
5.77-12
5.84-12
5.09-15
8.76-7
3.85-3

2.58-13
5.22-12
5.29-12
4.61-15
7.93-7
3.48-3

3.70-11
8.60-11
9.81-11
1.12-11

1.43-5

1.20-2

1.63-11
3.16-11
3.61-11
4.11-12
5.27-6
4.38-3

9.01-9
1.05-8
1.41-8
7.46-9
1.23-3
7.39-1

6.07-11
7.09-11
9.48-11
5.03-11

8.28-6

4.98-3

2.48-6
2.71-6
3.24-6
2.25-6
1.84-1

1.1042

1.13-10
1.23-10
1.47-10
1.02-10
8.33-6
4.99-3
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The exact result at z = 10 : y = 22026.4657948067. Our results: for
h = 0.1 :22026.4900, for h = 0.01 :  22026.4657972859. The modified Euler
method in [14] gives for h =0.1: 19865.18 and for h = 0.01: 21794.34.

The problem was solved also with the stepsize h = 0.001. The result is
in this case at £ = 10 the following: y(10) = 22026.4657948070, the absolute
error: 2.44 — 10, the relative error: 1.11 — 14.

Example 4. (Jain, Goel [9], Problem 1.)
y' =—-ky, 0<z<1, y0)=0, k=1,10,30,50,100.

The exact solution is:  y(z) = (1 — e~**)/k.

Mazimum absolute and relative errors of approzimate solution and its deriva-
tives.

h =102 k=1 k=10 k=30 k=50 k=100
abs | rel | abs | rel | abs | rel | abs | rel | abs rel
y 1.4-10{1.4-8 {1.9-6 |1.9-6 |3.8-2 | - - - - -
v 1.4-10[2.7-101.9-5 |4.3-1 J1.140| - - - - -
v’ 1.7-5 |4.0-5 [2.3-1 [5.1+24.64+3| - - - - -
vy 6.6-3 |1.1-2 4.6+1|1.04+448.74+5| - - - - -

h = 10"
Y 1.4-14(1.4-11}2.0-101.4-8 |4.1-6 [1.2-4 |1.5-2 [7.5-1] - -
v 1.4-142.8-14|2.0-9 |4.3-5 |1.2.4| - |75-1]| - - -
v’ 1.7-7 14.0-7 | 2.3-3 [5.24+0[5.0+1| - |1.845( - - -
v 6.7-4 |1.1-3 4.74+0|1.04+319.9+4| - |[3.6+8] - - -
h =104
Y 2.6-17(1.4-14[2.0-14[1.4-11 4.1-10{1.2-8 |1.5-6 {7.5-5] - -
v 2.3-1716.3-17[2.0-13({4.3-9 |1.2-8 | - 7.5-5| - - -
v’ 1.7-9 14.0-9 |2.3-5 |5.2-2 |5.0-1 | - J1.843| - - -
Yy 6.7-5 |1.1-4 14.7-1 |1.0429.9+3| - [3.6+7| - - -
h = 109
v 4.7-16 13.9-15 [2.5-18 |1.4-14 r4.1—14 1.2-121.5-10{7.5-9] 2.1-2 [2.140
74 4.7-16 1.3-15[2.1-174.4-13 |1.2-12|1.341[{7.5-9 | - |2.14+0| -
vy’ 1.7-114.0-11]2.3-7 |15.2-4 |5.0-3 | - [1.841] - |2.549 | -

y'" 6.7-6 {1.1-5 [4.7-2 |1.0+1]9.94+42| - |3.64+6]| - [6.0+14| -

It seems that the method approximates badly the higher derivatives of the
solution for great k because of the singularity of problem. The next example
shows how to correct this handicap.
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Example 5.

The problem, like in the Example 4., was solved by a slight modification of
our method. The modification is as follows: the coefficient of the highest order
term in (2.4) was computed by arithmetic mean, i.e. (a®; + a)/2 instead of
a™ (now m = 3).

Mazimum absolute and relative errors of approzimate solution and its deriva-
tives.

h =10~ k=1 k=10 k=30 k=50 k=100

abs | rel abs |rel | abs | rel | abs |rel | abs | rel

Yy 1.3-5 |2.1-5 |5.0-4 |5.0-3]1.5-3 4.5-2(2.5-3 {1.2-1]6.6-3 [6.6-1

y 1.8-5(5.1-5 |1.9-3 |5.5-212.3-2| - [6.6-2 | - [2.9-1| -

vy’ 8.1-5 [8.4-5 |[6.6-2 4.9-2(1.34+0| - [5.140] - 3.3+1| -

y" 6.7-3 16.9-3 |6.5+08.8-211.64+2| - [6.54+2]| - [3.943| -
h =103

Jj 1.3-7 [2.1-7 |5.1-6 [5.0-5|1.5-5 4.5-4]2.5-5 [1.3-35.0-5 [5.0-3
Y 1.8-7 {5.0-7 |1.8-5 [5.0-4|1.7-4 1.4-2(4.6-4 |6.7-2|1.9-3 [7.1-1
Y’ 8.3-7 |8.3-7 |8.1-4 4.5-4(2.1-2 1.3-2]9.3-2 |6.5-2|6.6-1 [7.0-1
Yy 6.7-4 16.7-4 |6.7-1 16.9-3]1.841]2.2-2|8.3+1(3.9-216.5+26.1-1

y 1.3-9 |12.1-9 {5.0-8 [5.0-7]1.5-7 4.5-6 [2.5-7 [1.3-55.0-7 [5.0-5
Y 1.8-9 5.0-9 |1.8-7 [5.0-6]1.7-6 {1.4-4(4.6-6 |6.3-4]1.8-5 [5.1-3
y” 8.3-9 |8.3-9 |8.3-6 4.4-6[2.2-4 1.3-4]1.0-3 |6.1-4|8.1-3 [5.0-3
y" 6.7-5 |6.7-5 |6.7-2 |6.7-4[1.8408.8-3 18.34+0[3.4-3 16.7+1 [6.9-3

] 1.3-112.1-115.0-10 [5.0-9 1 1.5-9 [4.5-82.5-9 |[1.3-7[5.0-9 [5.0-7
Y 1.8-115.0-11{1.8-9 {5.0-81.7-8 |1.4-6 |4.6-8 6.3-6 |1.8-7 [5.0-5
y' [8.3-118.3-11]8.3-8 4.4-82.3-6 [1.3-6|1.0-5 [6.1-6|8.3-5 [5.0-5
y" 6.7-6 16.7-6 |6.7-3 |6.7-5[1.8-1 |2.0-4[8.3-1 [3.3-416.7+016.7-4

Jain and Goel [9] have got the following results by their fourth order method:

h::'ali k=1k=10]| k=30 k=50 |k =100
abs [rel | abs [rel | abs [rel | abs [rel [abs [rel

y - |- KO9-T|{- N1.4-5]- 16.2-5|- |- |-
v - |- 49-6|- 4.2-4]- B.1-3|- |- |-
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