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SOME CONDITION OF
p~-STABILITY AND THE NON-OSCILLATION
OF THE LINEAR PARABOLIC PROBLEM

H.A. Haroten (Basrah, Iraq)

1. Introduction

In this paper we study the problem of linear parabolic equations by means
of the finite element method. We give an upper bound for the maximal
eigenvalue of the fully discrete problem. We formulate some sufficient condition
of decreasing to zero and the non-oscillation of the numerical solution. Finally,
we compare our results with the other ones and we give numerical results for
choosing of the discretization parameters.

2. Formulation of the problem

In the following we consider the linear parabolic partial differential equa-
tion of the form

ou 02U
(2.1) -gt——pw—q(], 136[0,1!’], t>0 ,
(2.2) U(0,t)=U(r,t)=0, t>0, z€[0,n],
(2.3) U(z,0) = uo(z),

where the constants p > 0, ¢ > 0, ug(z) is a given function. This problem can
represent physically the heat conduction in a rod. In this case U(z,t) means
the temperature at the point = € [0, 7] and at time ¢ > 0. Then the task is to
find the temperature’s distribution, associated with a given initial temperature
Uug.
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The problem (2.1)-(2.3) can be written in a weak form:

Ll

U 89U
0

where v is an arbitrary function from the Sobolev-space H}(0,7). We use
Galerkin’s principle which is flexible to apply also to initial value problems.
Let us seek the numerical solution in the form [1]

n-1

Un(z,t) = Y _ ai(t)gi(2),

i=1

where n is the number of the intervals and ¢;(z) are piecewise linear functions
with equidistantly spaced nodes z; = ih (h = w/n). Further, we shall use the
standard linear roof functions ¢;(z) as a basis, defined by

__“"‘f:"l), hi—1) <z < i,
¢i(z) = ————(Hl’)lh_x, ih < z < (i +1)h,
0, elsewhere.
Here i =1,2,...,n—1 and ¢;(t) are unknown functions to be determined later.

Using the Galerkin’s semidiscretization method by the above spline func-
tion we get

| X alwet@sierde +p [ astbi(a)s)do+
0 =1 o =t

(25) +q/ z-: a;(t)¢i(£)¢l]‘(£)dt =0,
0 i=1
kg n—1 w
(2.6) / Z @i (0)¢i(z);(z)dz = / uo(z)¢;(z)dz

0
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for all  =1,2,...,n — 1. These relations can be rewritten in the form
(2.7) Ma'(t) + pNoa(t) + gMa(t) = 0, t>0,
(2.8) Ma(0) = ay,

respectively, where

4 1 0
1

hil 4
M=%l: « -~ |© V=&

are given matrices of dimension (n-— 1) x (n —1) and «(t) is an unknown vector
function of dimension (n — 1) with the components «;(t), ag is a vector with
(n — 1) components given in the right side of (2.6). For the sake of simplicity
let us suppose that p =1 and ¢ = 0. To the numerical solution of the Cauchy
problem (2.7), (2.8) we apply the single step method with the discretization
parameter 7. Then we get some linear system of algebraic equations at each
time level with respect to a+!, which is the approximation of a(7(j + 1)):

it _ i _ .
(2.9) M——-—T—— + (YNa?*!' + (1 - y)Nod) =0,

where j = 0,1,2,..., and a® = «(0) is obtained from (2.8), v is any fixed
parameter from [0,1]. Obviously, (2.9) is equivalent to the problem

(2.10) (M + 1yN)a?*! = (M — (1 - 7)N) /.

Let us denote by A;,A2,..., -1 and Vi, Va,...,V,_; the eigenvalues and
eigenvectors of the problem

(2.11) AMa+ Na=0.

It is well-known [6] that A; are real and negative. The eigenvectors V1, V3, ...,
Va_1 are linearly independent. Therefore it is possible to represent the vectors
a’*! and o’ in the form of the linear combination

n-1 n-1
(2.12) A =N VI, o =Y ViV,
m=1

m=1
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where Y, YZ+! (m = 1,2,...,n — 1) are unknown numbers. Putting (2.12)
into (2.10) and using the relation (2.11) we get

4+ (1-9))

j+1_T+( ¥)Am i

(2.13) Vit = I— Yy,
;_7"\m

It is clear that the numerical solution is strictly decreasing in time only on the
condition

(2.14) YA < VAL,

which implies the inequalities

(2.15) —1<T1—<1, m=12...,n—1.
L

We remark that this property of monotonic decreasing in time, given in [6], is
very characteristic for the solution of the original problem. We call the fact
of strict decay of the numerical solution in time p-stability [5]. It is clear that
p-stability i1s sharper than the condition of stability. At the same time we know
that the solution of the problem (2.1)-(2.3) approaches to zero without any
oscillation, that is the numerical solution cannot change its sign step by step
at some fixed node point z;. This property (which is called non-oscillation [6])
yields

1
Yitl =+ (1 =7)An
(2.16) m_ T >0, m=1,2,...,n—-1.

Condition (2.15) means that the scheme (2.10) is p-stable if and only if the
condition

(2.17) (1 = 29)[Amax|T < 2

is fulfilled, where |Amax| =, Jnax |A;]. It gives the restriction
Sisn—

2 1
r —+—— f € [O,—),
A=29)Pmadd — -72

. . . 1
T 1s arbitrary if v € [5, ]] .

(2.18)
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Analogically, the scheme has non-oscillation if

(2.19) <Ay TEOD,

T 1s arbitrary, if y=1.

Now it is clear from (2.18) and (2.19) that the condition of p-stability and non-
oscillation of the numerical scheme depend on |Apax|- This is the reason why
further we seek some bound for |Amax|- To this end we can use the fact that
the maximum eigenvalue of the global system must not exceed the maximum
eigenvalue of the local system [2]. For our case it means the following. For the

local elements we have

M;=h

| == =
W =D | =
=
]
&> -

The local eigenvalue problem has the form
(2.20) A Mia® 4 Nia® = 0.

So we get
12

~55
Using the above fact it yields the upper bound

/\120, Ag:

P < 3.
So the condition of the p-stability is
(2.21) #<6(1—j27) 057<%.
Analogically the condition of non-oscillation is
(2.22) . ! v €[0,1).

B < 12(1-7)
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3. Condition of p-stability and non-oscillation of the single step
schemes

In this part we shall give a new estimation to |Amax| by some fixed space-
division. Let us consider the eigenvalue of matrix

b 0 0
a b 0
A= Ce
0 b a
and let us determine the eigenvalues of this matrix. We have

(3.1) Ay =y,

where
T
y = [y1)y21 .. ~ayn—1]

is some vector. Then using the form of A we get the problem

(32) b‘yi+1+(a—7l)yi+b‘yi—1=0, i:1121"')n—'11

(3.3) v =0, ya=0.
We seek the solution of (3.2), (3.3) in the form
(3.4) % = sin(fz;),

where 3 is some unknown number to be determined later.

Using the elementary relation

b-yir1+b-yici=b-sinfB(z+h)+b-sinf(z —h) =

(3.5) = 2b - sin(fz) cos(Bh)
and substituting (3.4) into (3.2) we get

2b - sin(fBz) cos(Bh) = (n — a)sin(Bz).
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For the eigenvalue it results
(3.6) n = a+ 2b - cos(Bh).
From (3.3) and (3.4) we get
Yo =0, yn =sin(fr) =0,
that is the corresponding G are
3.7 B =k, k=1,2,...,n—1.
Finally, substituting (3.7) into (3.6), we get the eigenvalues
(3.8) Nk = a + 2b - cos(kh).

So the eigenvalues of the matrices M and N are

(3.9) M = -’%(2 + cos(kh))
and
(3.10) AV = %(1 — cos(kh))

respectively. We want to give some estimation for |Amax|, that is for the
maximum eigenvalue in absolute value of the problem (2.11). Since M and
N have the same eigenvectors [3], it is easy to see that this problem has the
same eigenvector with the eigenvalues

/\N
(3.11) /\k=/\—,’:,, k=1,2,...,n—-1,
k

respectively. Indeed, denoting by y; the k-th eigenvector, we have
(3.12) My, =\ u, Nye = A we.
Substituting these relations into the problem

(3.13) AMeMyk = Ny,
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we get immediately (3.11). So for the eigenvalues of (2.11) we have

2
7 (L—cos(kh)) g (1 _ cos(kh))

(3.14) j=b—— 2 LT k19, a1

‘ §(2+cos(kh)) h? (24 cos(kh))

&S

It is easy to check that A\, take their maxima by choosing k = n — 1. So

6 1—cos((n—1)h) 6 (1—cos(m—h))
h? 24 cos((n —1)h) = h? (2+ cos(m — h))’

(3.15) [Amax| = [An-1] =

Because
1<2+cos(r—h)<3
we have
6
(3.16) [Amax| < ﬁ(l + cos(h)).

Using the elementary inequality

h? ht
(14 cos(h)) < 1+1_?+ﬂ
we get
12 h?
(3.17) Pmaed < 12 =342,
that is we have the estimation
12
(3.18) |’\max| < ‘h—?' - C(h))
where
12 — h?
(3.19) C(h) = —

Knowing the upper bound of |Apax| we can give some sufficient condition
for the p-stability of the numerical solution. By substituting (3.18) into (2.18)
we get

2
12 ) , v €[0,1/2).

(-2 (35 -

(3.20) T <
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Let us compare our result with (2.21). Dividing (3.20) by (2.21) we get the
number

1
_ Chh?’
12

(3.21) kest =

which is always greater than 1. It means that the estimation (3.20) is sharper
than (2.21) for all fixed given space-divisions. Similarly, we can give some
condition of non-oscillation by putting (3.18) into (2.19):

1
12

(1= (5 -co)

It shows the efficiency of our estimation.

Remark 1. If p # 1 and ¢ # 0 on the interval [0, 7] then

(3.22) T <

, ¥ €1[0,1).

p ‘%(1 - cos(kh))) +q ‘%(2 + cos(lch))‘

| Ae| = A
5(2 + cos(kh))

forallk=1,2,...,n—1. So

p E(l —cos((n — 1)h))

g(2 + cos((n — 1)h))

+4§@+wdm—nmﬂ

|’\max| = Mn—ll =

that is we have the bound

12
(3.23) Amaxl < =7 = C(W)p+4,
where
12 — h?
(3.24) C(h) = ==

Remark 2. Let us replace the interval of the original problem with the
interval [0, L]. In this case, using the linear transformation

(3.25) Z= %r, (0<Z<m),
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we get

oU _ Px? (93U
(3.26) - I <6£2> qU.

It results estimation for the case p=1 and ¢ = 0:

(3.27) el < 13 (” cwﬂ
where
(3.28) C(h) = 12'4‘ Ll

Remark 3. Let us consider the boundary condition of second kind at the
end point w. For the computation of the eigenvalues we can repeat the same
2k —

2 1. Therefore our

procedure as earlier. Then instead of (3.7) we get B =

estimation for |Amax| will be replaced by

6 1- cos((n — 5 Lyh)

.29 Amax| = |An] = =
(3.29) | =Pl h? 2+ cos((n— 3)h)

Analogically we get the similar upper bound

(3.30) |m4<12—cw)
where

48 — h?
(3.31) C(h) = .

64

Remark 4. There is the possibility to give some lower bound to the
eigenvalues using the eigenvalues of the original problem (2.1)-(2.3) [4].
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N\y 0 0.1 0.2 0.3 0.4 0.49
1 2.922 3.653 4.871 7.307 14.61 146.1
2 0.807 1.009 1.345 2.018 4.037 40.37
3 0.243 0.304 0.406 0.609 1.218 12.18
4 0.120 0.150 0.200 0.301 0.602 6.026
5 0.072 0.091 0.121 0.182 0.364 3.640
6 0.049 0.061 0.081 0.122 0.245 2.450
7 0.035 0.044 0.058 0.088 0.176 1.767
8 0.026 0.033 0.044 0.066 0.133 1.337
9 0.020 0.026 0.034 0.052 0.104 1.047

10 0.016 0.021 0.028 0.042 0.084 0.843
15 0.007 0.009 0.012 0.018 0.036 0.369
20 0.004 0.005 0.006 0.010 0.020 0.207
25 .0026 0.003 0.004 0.006 0.013 0.132
30 .0018 0.002 0.003 0.004 0.009 0.091

Table 1.

Sufficient condition for 7 to guarantee the p-stability of the numerical
scheme (2.10) by using (3.20).

0 0.1 02 [ 03 |04 {05 |06 |07 |08 |09
1.461 |1.623 [1.826 |2.087 |2.435 |2.922 |3.653 |4.871 |7.307 |14.61
0.403 [0.448 {0.504 [0.576 |0.672 |0.807 |1.009 |1.345 [2.018 |4.037
0.121 |0.135 |0.152 [0.174 |0.203 |0.243 |0.304 |0.406 {0.609 |1.218
0.060 [0.066 {0.075 {0.086 }0.100 |0.120 [0.150 |0.200 {0.301 | 0.602
0.036 {0.040 {0.045 {0.052 }0.060 |0.072 {0.091 |0.121 {0.182 |0.364
0.024 |0.027 {0.030 {0.035 |0.040 {0.049 [{0.061 |0.081 [0.122 | 0.245
0.017 |0.019 [0.022 {0.025 |0.029 |0.035 [0.044 |0.058 {0.088 |0.176
0.013 |10.014 |0.016 {0.019 |0.022 {0.026 {0.033 |0.044 |0.066 |0.133
0.010 |0.011 {0.013 {0.014 |0.017 |0.020 [0.026 |0.034 [0.052 |0.104
10 {0.008 {0.009 {0.010 {0.012 {0.014 |0.016 {0.021 {0.028 |0.042 [0.084
15 |.0036 |0.004 |{.0046 {0.005 |0.006 |0.007 {0.009 |0.012 {0.018 |0.036
20 |.0020 |.0023 {.0025 |.0029 |.0034 {0.004 |0.005 |0.006 {0.010 |0.020
25 |.0013 |.0014 {.0016 [.0018 |.0022 |.0026 |.0033 |.0044 [.0066 |0.013
30 |.0009 |.0010 |.0011 {.0013 |.0015 {.0018 {.0022 |.0030 |.0045 |.0091

Table 2.

Sufficient condition for 7 to guarantee the non-oscillation of the numerical
scheme (2.10) by using (3.22).
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