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A THEOREM ON THE r-RANGE OF B,-SEQUENCES

S. Gouda (Ismailia, Egypt)
M. Amer (Obertshausen, Germany)

1. Introduction

A sequence Ay = {aj,az,...,ar} of k integers ¢; < az < ... < a; is called
a Bj-sequence if the sums

a; + aj, 1<i<j<k

are all different (cf. [1] p.85, Def.3). A Bj-sequence Ax may similarly be
defined as a sequence of k integers a; < az < ... < ag such that the sums

a;, +a;i, + ...+ ai,, 1Szl_<_125Sthk

are all different.

For a given h the set of all these sums will be called the h-fold sum and
will be denoted by hA, i.e.

k
hA = {Z z;a;
i=1

The class of all finite and infinite By-sequences will be denoted by B,. An
interval [a, b] will be defined as

k
z; € Ny, Zzg=h}.

i=1

[o,6]:={meZ | a<m<b).
Let A be a Bj-sequence. Consider the largest interval

In(Ax) = [lg, mi] C hAg,
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the length of I(Ax), which is given by m;, — I, will be referred to as the range
of Ay with respect to h and will be denoted by Si(Ak) (cf. [2]). Furthermore
we define
Si(k) = Sh(Ag).
n(k) := max Sp(A)

For an arbitrary h > 2 it is obvious that
A; ={0,1} isa Bjp—sequence, hence Sp(2)> h.
It is also obvious that
A3 ={0,1,h+1} is a By—sequence, hence Si(3) > 2h.
Moreover, we can easily extend Az (or As) to a By-sequence Ag of k elements
for any k > 2. This shows that for any fixed k¥ > 2 and an arbitrary positive
integer ! there exist h > 2 and a Bj-sequence Aj such that
Sh(Ak) 2 1.
On the other hand we will show in our theorem that given a fixed integer
h > 2 and an arbitrary positive integer ! we can find an integer k£ > 2 and a

By -sequence Aj such that
Sh(Ar) > 1.

2. Theorem

We prove the following
Theorem. For arbitrary positive integers h > 2, k> 2

Sh(k+2) > Sn(k)+ 1.

‘Proof. First we notice that if Ag is a Bj-sequence then
Ap —a; = {a,-—al | a; GAk}gNo
is a Bp-sequence which contains 0 and Sy (Ax — a1) = Sh(Ax). Now let Ay =

= {a1,az2,...,ax}, 0 =a; < az < ...< ag, k > 2 be a Bj-sequence such that
Sh(Ax) = Sn(k).
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We define
(1) ak4+1 = (h+ 2)ax and apy2 :=mg + 1 —(h = 1ag4s,

from which it follows that

(2) ag42 + (h = 1)agyr = mi +1 ~
and that

(3) a2 = mg + 1= (h2 + h — 2)a;.

But

(4) mi + 1 ¢ hA;

and

(5) 0 < my < hay, since my € hA;.

As a consequence of (3) and (5) we get

(6) —(h2+ h—2)ar + 1 < a4z < —(h? = 2)ai + 1.

Now let Ap42 := Ap U {ak+1,ak+2}. Then [li, mp + 1] C hAg42 by (2), and it
suffices to show that Ag,2 is a By-sequence. We observe that any element in

hAg42 can be written in the form

Sz = r1ak41 + Z2ak42 + Sz,, where z; € No, z1+2z2+z3=h

and

Sey =i, + @i, + ...+ ai,, € 234, 1< <i3<...<4, <k
Hence
(7) 0 < Sz, < z308.

Let Sy = y1ax41 + Y2042 + Sy, be another element in hAj 2, where
Sys = aj, +aj,+...+a;, €ysAr, 1<ji<ja<...<Jy, <k

Since Ay is a By-sequence and 0 € A, it follows that if Sz, = Sy, then z3 = y3
and a;, = aj, for 1 <1< z3,ie.

(aiu‘-'uai:a) = (a.in""aju)'
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Now we shall prove that if S; = Sy, then z; = y;, 2 = y2 and hence S;, = S,,,
i.e. Ary42 is a Bp-sequence. Consider the following cases:

(I) z2=1y2

Since S; = Sy, it follows that ziax41 + Sz, = ¥18k41 + Sy, Hence
(21— y1)ak41 = Sy, — Sey- If 21 # 41, say 21 > yy, ie. (21 —y1) > 1, then we
get

(z1 — y1)ak41 > akgr = (b + 2)ax

by definition (1), and
Sy; — Sy < yaax < hag

by (7), which is a contradiction.

(II) za#y2, say z2>y2, te (z2—y2)>1

In this case we must have z5 > 1 and hence z, + z3 < h — 1. We consider
two subcases:
(IIa) z1=h-1

In this subcase z3 = 0, z2 = 1 and y, = 0. Thus (h — 1)ag41 + Gk42 =

= y18k41 + Sy, since S; = Sy, and hence my + 1 = yrar4+1 + Sy, by (2). This
is impossible since

1. if y3 = 0, it would follow that my + 1 = S, € hA; which contradicts

(4);
2. if yp > 1, then we would have my + 1 < y1ag41 + Sy, since my < hay
from (5) and ax4+1 = (h + 2)ax by definition (1).

(IIb) z,<h—2

S; = Sy means that zyax41+22ak4+2+Ss; = Y1ak41+ Y2042+ Sy,, hence

(8) (z2 — y2)ak+2 = (N1ak4+1 + Sy;) — (21841 + Szy)-



A theorem on the h-range of Bj-sequences 69

It follows from (6) that
9 L.H.S. of (8) < ary2 < —(h?—2)ar +1, since z3 —yp > 1

and ag42 is negative.
Again this is impossible since:

1. if z; = h — 2, then we would have z3 < 1 and since yyar41 + Sy, > 0
we would get

R.H.S. of (8) > —(z1ak41 + Sz;) = —((h — 2)(h + 2)ax + Sz,) >
> —((h® — 4)ax + ax) by (7) since z3< 1,

i.e. R.H.S. of (8)> —(h? — 3)ag which contradicts (9) since ax > 1;
2. if £; < h — 3, then we would get

R.H.S. of (8) > —(z1ak41 + Sz;) > —((h — 3)(h + 2)ai + Sz,) >
> —((h?* = h— 6)ax + (h — 1)ax)

by (7) since z3 < h — 1, i.e. R.H.S. of (8)> —(h? — 7)ax which contradicts (9).
This completes the proof of the theorem.
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