A THEOREM ON THE h-RANGE OF Bh-SEQUENCES

S. Gouda (Ismailia, Egypt)
M. Amer (Obertshausen, Germany)

1. Introduction

A sequence $A_k = \{a_1, a_2, \dots, a_k\}$ of k integers $a_1 < a_2 < \dots < a_k$ is called a B_2 -sequence if the sums

$$a_i + a_j$$
, $1 \le i \le j \le k$

are all different (cf. [1] p.85, Def.3). A B_h -sequence A_k may similarly be defined as a sequence of k integers $a_1 < a_2 < \ldots < a_k$ such that the sums

$$a_{i_1} + a_{i_2} + \ldots + a_{i_h}, \qquad 1 \le i_1 \le i_2 \le \ldots \le i_h \le k$$

are all different.

For a given h the set of all these sums will be called the h-fold sum and will be denoted by hA, i.e.

$$hA := \left\{ \sum_{i=1}^k x_i a_i \mid x_i \in N_0, \sum_{i=1}^k x_i = h \right\}.$$

The class of all finite and infinite B_h -sequences will be denoted by B_h . An interval [a, b] will be defined as

$$[a,b]:=\{m\in Z\ |\ a\le m\le b\}.$$

Let A_k be a B_h -sequence. Consider the largest interval

$$I_h(A_k) = [l_k, m_k] \subseteq hA_k$$

the length of $I_h(A_k)$, which is given by $m_k - l_k$, will be referred to as the range of A_k with respect to h and will be denoted by $S_h(A_k)$ (cf. [2]). Furthermore we define

$$S_h(k) := \max_{A_k \in B_h} S_h(A_k).$$

For an arbitrary $h \ge 2$ it is obvious that

$$A_2 = \{0, 1\}$$
 is a B_h -sequence, hence $S_h(2) \ge h$.

It is also obvious that

$$A_3 = \{0, 1, h+1\}$$
 is a B_h -sequence, hence $S_h(3) \ge 2h$.

Moreover, we can easily extend A_2 (or A_3) to a B_h -sequence A_k of k elements for any $k \geq 2$. This shows that for any fixed $k \geq 2$ and an arbitrary positive integer l there exist $h \geq 2$ and a B_h -sequence A_k such that

$$S_h(A_k) > l$$
.

On the other hand we will show in our theorem that given a fixed integer $h \geq 2$ and an arbitrary positive integer l we can find an integer $k \geq 2$ and a B_h -sequence A_k such that

$$S_h(A_k) \geq l$$
.

2. Theorem

We prove the following

Theorem. For arbitrary positive integers $h \geq 2$, k > 2

$$S_h(k+2) \ge S_h(k) + 1.$$

Proof. First we notice that if A_k is a B_h -sequence then

$$A_k-a_1:=\{a_i-a_1\ |\ a_i\in A_k\}\subseteq N_0$$

is a B_h -sequence which contains 0 and $S_h(A_k - a_1) = S_h(A_k)$. Now let $A_k = \{a_1, a_2, \ldots, a_k\}$, $0 = a_1 < a_2 < \ldots < a_k$, k > 2 be a B_h -sequence such that $S_h(A_k) = S_h(k)$.

We define

(1)
$$a_{k+1} := (h+2)a_k$$
 and $a_{k+2} := m_k + 1 - (h-1)a_{k+1}$,

from which it follows that

(2)
$$a_{k+2} + (h-1)a_{k+1} = m_k + 1$$

and that

(3)
$$a_{k+2} = m_k + 1 - (h^2 + h - 2)a_k.$$

But

$$(4) m_k + 1 \not\in hA_k$$

and

$$(5) 0 \le m_k \le ha_k, since m_k \in hA_k.$$

As a consequence of (3) and (5) we get

(6)
$$-(h^2+h-2)a_k+1 \le a_{k+2} \le -(h^2-2)a_k+1.$$

Now let $A_{k+2} := A_k \cup \{a_{k+1}, a_{k+2}\}$. Then $[l_k, m_k + 1] \subseteq hA_{k+2}$ by (2), and it suffices to show that A_{k+2} is a B_h -sequence. We observe that any element in hA_{k+2} can be written in the form

$$S_x = x_1 a_{k+1} + x_2 a_{k+2} + S_{x_3}$$
, where $x_i \in N_0$, $x_1 + x_2 + x_3 = h$

and

$$S_{x_3} = a_{i_1} + a_{i_2} + \ldots + a_{i_{x_3}} \in x_3 A_k, \qquad 1 \le i_1 \le i_2 \le \ldots \le i_{x_3} \le k.$$

Hence

$$(7) 0 \leq S_{x_3} \leq x_3 a_k.$$

Let $S_y = y_1 a_{k+1} + y_2 a_{k+2} + S_{y_3}$ be another element in hA_{k+2} , where

$$S_{y_3} = a_{j_1} + a_{j_2} + \ldots + a_{j_{y_3}} \in y_3 A_k, \qquad 1 \le j_1 \le j_2 \le \ldots \le j_{y_3} \le k.$$

Since A_k is a B_h -sequence and $0 \in A_k$, it follows that if $S_{x_3} = S_{y_3}$, then $x_3 = y_3$ and $a_{i_1} = a_{j_1}$ for $1 \le l \le x_3$, i.e.

$$(a_{i_1},\ldots,a_{i_{x_3}})=(a_{j_1},\ldots,a_{j_{y_3}}).$$

Now we shall prove that if $S_x = S_y$, then $x_1 = y_1$, $x_2 = y_2$ and hence $S_{x_3} = S_{y_3}$, i.e. A_{k+2} is a B_h -sequence. Consider the following cases:

$$(I) \quad x_2 = y_2$$

Since $S_x = S_y$, it follows that $x_1 a_{k+1} + S_{x_3} = y_1 a_{k+1} + S_{y_3}$. Hence $(x_1 - y_1)a_{k+1} = S_{y_3} - S_{x_3}$. If $x_1 \neq y_1$, say $x_1 > y_1$, i.e. $(x_1 - y_1) \geq 1$, then we get

$$(x_1-y_1)a_{k+1} \geq a_{k+1} = (h+2)a_k$$

by definition (1), and

$$S_{y_3} - S_{x_3} \le y_3 a_k \le h a_k$$

by (7), which is a contradiction.

(II)
$$x_2 \neq y_2$$
, say $x_2 > y_2$, i.e. $(x_2 - y_2) \geq 1$

In this case we must have $x_2 \ge 1$ and hence $x_1 + x_3 \le h - 1$. We consider two subcases:

$$(IIa) \quad x_1 = h - 1$$

In this subcase $x_3 = 0$, $x_2 = 1$ and $y_2 = 0$. Thus $(h-1)a_{k+1} + a_{k+2} = y_1a_{k+1} + S_{y_3}$ since $S_x = S_y$, and hence $m_k + 1 = y_1a_{k+1} + S_{y_3}$ by (2). This is impossible since

- 1. if $y_1 = 0$, it would follow that $m_k + 1 = S_{y_3} \in hA_k$ which contradicts (4);
- 2. if $y_2 \ge 1$, then we would have $m_k + 1 < y_1 a_{k+1} + S_{y_3}$ since $m_k \le h a_k$ from (5) and $a_{k+1} = (h+2)a_k$ by definition (1).

(IIb)
$$x_1 \leq h-2$$

 $S_x = S_y$ means that $x_1 a_{k+1} + x_2 a_{k+2} + S_{x_3} = y_1 a_{k+1} + y_2 a_{k+2} + S_{y_3}$, hence

(8)
$$(x_2 - y_2)a_{k+2} = (y_1 a_{k+1} + S_{y_3}) - (x_1 a_{k+1} + S_{x_3}).$$

It follows from (6) that

(9) L.H.S. of (8)
$$\leq a_{k+2} \leq -(h^2 - 2)a_k + 1$$
, since $x_2 - y_2 \geq 1$

and a_{k+2} is negative.

Again this is impossible since:

1. if $x_1 = h - 2$, then we would have $x_3 \le 1$ and since $y_1 a_{k+1} + S_{y_3} \ge 0$ we would get

R.H.S. of (8)
$$\geq -(x_1 a_{k+1} + S_{x_3}) = -((h-2)(h+2)a_k + S_{x_3}) \geq$$

 $\geq -((h^2 - 4)a_k + a_k)$ by (7) since $x_3 \leq 1$,

i.e. R.H.S. of $(8) \ge -(h^2 - 3)a_k$ which contradicts (9) since $a_k > 1$;

2. if $x_1 \leq h-3$, then we would get

R.H.S. of
$$(8) \ge -(x_1 a_{k+1} + S_{x_3}) \ge -((h-3)(h+2)a_k + S_{x_3}) \ge$$

> $-((h^2 - h - 6)a_k + (h-1)a_k)$

by (7) since $x_3 \le h - 1$, i.e. R.H.S. of $(8) \ge -(h^2 - 7)a_k$ which contradicts (9). This completes the proof of the theorem.

References

- [1] Halberstam H. and Roth K.F., Sequences I., Oxford Univ. Press, Oxford, 1966.
- [2] Hofmeister G., Eine Verallgemeinerung des Reichweitenproblems, Abhdlg. d. Braunschweig. Wiss. Gs., XXXIII (1982), 161-163.

(Received February 15, 1992)

S. Gouda
Faculty of Science
Suez Canal University
Ismailia, Egypt

M. Amer Adenauerstr. 4 W-6053 Obertshausen., BRD