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APPROXIMATE SOLUTION
OF THE INITIAL VALUE PROBLEM y”’=f(x,y)

USING DEFICIENT SPLINE POLYNOMIAL

Th. Fawzy and M. Ahmed (Ismailia, Egypt)
1. Introduction

The purpose of this paper is to investigate the existence, uniqueness,
consistency relations and convergence for approximating the solution of the
third order initial value problem

(1.1) ”=f(:c,’y), y(0) =vo, ¥(0)=y, and
y'(0) =5,

using a spline of degree m and continuity class C™~3 and a step of length
H = 3h. We deal with the interval [0, b] without any loss of generality.

We will discuss a new method for the numerical solution of the Cauchy
problem (1.1), where f € C™~2([0,b] x R) in some domain T, T = {(z,y),
0 < z < b} and which satisfies a Lipschitz condition

If(z,y1) — f(z,y2)| < Lly1 — v2l,

where L is a Lipschitz constant, I is the interval [kH,(k + 1)H] with k =
= 0(1)N — 1 and h = b/3N.
We define the spline function s(z), z € I, by

m-3 (z) m
(1.2) s(z)y=_ 3"(1: 3kh) + 3 "‘ (z — 3kh)’
l.
t=0 i=m-—-2

and

(1.3) s§ = sO@3kh),  i=0(1)m-3,
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where the coefficients C; i are determined so as to satisfy the equation

(1.4) s®GR) = f(Gh,s(Gh)), j=3k+e,  e=1(1)3.

Put m = 6 in equation (1.2), then we get

(¥)

(1.5) s(z) = Z Sg!k (z — 3kh)' + Z %’!'—"(z — 3kh)'.

Setting z = jh, j = 3k +¢,¢ = 1(1)3, we get

3 (i) 6

(1.6) s(jh):zs‘”‘ (jh — 3kh)} Z

i=0 1=

2. Existence and uniqueness

In this section we prove that under certain conditions there exists a unique
spline polynomial s(z) approximating the solution y(z) of (1.2)-(1.3). For this
purpose, we state and prove the first theorem of this section.

Theorem 2.1. If h = min{hy, ho, h3} then the spline function s(z), given
in (1.5), exists and is unique, where

hy < Y/4/3L,  hy<1/YL,  hs< Y/4/L.

Proof. To prove the uniqueness it is enough to show that the coefficients
are uniquely determined. In the interval Iy s(z) is defined by (1.5). Thus,
differentiating equation (1.5) and setting j = 3k + ¢, € = 1(1)3, we obtain

h i— 3
(21) s:(i::;)+,, - (3) + Z (7) | k> n= 1(1)3

By using the elimination method, the coefficients C; x, i = 4,5,6 in (2.1) are



Initial value problem using deficient spline polynomial 51

1, (3 3 3
(2.2) Cek = F[sgk)+3 - 3313 + 35§3k)+1 - 33(3k)+2]’
1 3 3 3 3
(2.3) Csx = ﬁ[4sgk)+2 + 235;):) - 5sgk)+1 - sgk)'+3]
and
1], 11 3 3 (3 1
(2.4) Cak = h 3sak)+1 - Fsgk) - '2'3:(31:)4-2 + gsgk)+3 .

From equation (2.2) the coefficient Cs ; will have the form

Co.k = %[ F((3k + 3)h, s((3k + 3)h)) — 552 — 3£((3k + 2)h, s((3k + 2)h))+

(2.5) +3f((3k + 1)h, s((3k + 1)h))] = 91(Cs 1)

Equation (1.6) takes another form

6
(2.6) (i) = AGH) + 3 L (jh - 3enY,

i=4
where

3.
. Sap ;. P
YEDY l‘?—!"(]h —3kh), j=3k+e, €=1(1)3.
1=0
Define Gx: R — Rby Cjx — 9.(Cj k), Cjx € R,j=4,5,6andv =1,2,3.
We show that under conditions of the theorem operator Gy is a contraction,
thus having a unique fixed point, from equation (2.6) the constant Cs x will be

1 o Ci,k i
Cot =15 [f (3k + 3)h, A((3k +3)h) + Y = (3h)' | -

i=4

2.7) —-3f ((3k + 2)h, A((3k + 2)h) + Z S (2h) ) +

1=4

i=4

6
+3f ((:wc + 1)h, A((3k + 1)h) +z%—"h-‘> - sgap] -

= g1(Ce r)-
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Let Cj &, C;‘k € R, j =4,5,6 and their distance
P(Cik,Cii) =Cik = C i, 1 =4,5,6.

According to the Lipschitz condition and equation (2.7) it follows that
* * 3 *
P(G1(Cs ), G1(Cs ) = 191(Cs,k) — 91(Cg )| < ZhaLP(Cﬁ,hCG,k)'

If %h"L < 1, then

./ 4
(28) h=h < ﬁ‘

Similarly, h; and hj3 for the constants Cs ;. and Cy i respectively

/1 ./ 4
h=nh —, h=h —.
2< 3) 3< L

Let h = min{hy, ho,h3}, then follows that G,k = 1(1)3 is a contraction
operator and hence equation (1.5) has a unique solution. This completes the
proof.

3. Consistency relations

In the present section we deal with the question of consistency of the
procedure so as to assure its convergence. Hence, we would have to establish
necessary and sufficient conditions for the method to be convergent. Let us
state this lemma.

Lemma 3.1. The spline function s(z) given in (1.5) is consistent.

Proof. In equation (1.6) put j = 3k + ¢, ¢ = 1(1)3, then we get

3. .

s .
(31) 83k+322f—'k(3h)1+M1,
i=0
3 s(i) )
(3.2) a2 = —gfa(%)' + M,
i=0

and
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3. G6)
(3.3) sake1= Y f?!i(h)' + Ms,
1=0
where
°. G
(3.4) M; = Z Lk (4 - )Y, j=1,2,3.
1=4

From equation (3.2) and (3.3)

1
(35) sgk = ﬁ(83k+2 — 233k+1 + S3x — s:(;i)ha + 2M3 — M2)
and

1 1 3 3 1
(36) sék = E (283k+1 - §S3k+2 583}; + 3hasgk) - 2M3 + EMz) .

Substituting equations (3.5) and (3.6) in (3.1) and by using (3.4) we get
(3.7) s3k4+3—3s3k4+2+353k+1 — S3k = hasak)+ [6h*C4x —5h°Cs i +3h°Cs k).

Substituting equations (2.2), (2.3) and (2.4) in equation (3.7) we get

. 38 10 20
$3k4+3 — 383k 42 + 353k 41 — 53k = h° -4—f3k+1 f3k+2 + f3k+3 - —fak

Hence the associative polynomials p(§) and o(€) are

p(€) = €8 — 367 +36 - 1

and

o) = e - T De - 2

Obviously,
p(1) = p(1) = pI(1) =0, pP(1) = 3la(D).

Hence, the method is constant for m = 6 and the condition of stability is
fulfilled, since the roots of p(£) lie on the unit circle and are of multiplicity 3;
thus the method is convergent at m = 6.
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4. Convergence of spline approximant

We are now in a position to measure the order of convergence of the
method. To begin with, let us introduce the following
Lemma 4.1. If ||s(Gk) — y(jh)|| < kh? and s®)(jh) = f(jh,s(jh)) for
j=3k+¢,e=1(1)3 and k = 0(1)N — 1, then there ezists a constant k* such
that
lls(h) — y(GR)Il < k*h? and  |Is®(jh) — y@(GR)| < k*hP.

Proof. This is an immediate consequence of the Lipschitz condition.
Lemina 4.2. Let y € C™*1[0,b] and s(z) be the spline function of degree
m having its knots at the points z3x, k = 1(1)n — 1 defined above such that the
conditions
(4.1) s (zae) — ¥ (zae)l| = O(hP"),  r=0(1)m -3
(42) (ICmik — ¥ D(zar)ll = O(RP™~¥), i=1,2

and

(4.3) [|s™ ) (2) - y™ (@)l = O(R'FY), i =0(1)2, 23k < = < z3k+3,
=0(1)N -1

are satisfied. Then,

(44)  |ls(z) —y(@)ll = O(R?), =z €][0,b],

where

(4.5) p= _rgl(ilr; (r+pr), Pm-i=i+1, i=0(1)2.

Furthermore,

(4.6) 1™ (z) — y(™=D(2)|| = O(h*Y), i=0(1)2, z€]0,b].

Proof. The proof is by induction. Let z3x < z < z3r+3 and expanding by
Taylor’s theorem with w = z — z3; < 3h we obtain

m-—1

@7 ¥@) =Y 0w + @), s <b <z

r=0

and
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m-3 -

(48) s(z)= Z —.—S(T)(Iak) + Z Cm—rk + _S(m)(§2)

r=0

Note that s(”‘)(z) is constant for z3; < ¢ < z3r43. Subtracting (4.7) from
(4.8) and since w = = — z3; < 3h, we obtain

Isz) — () < 3 BBV

15" (2ak) = ¥ (zap)lI+

2
3h)m-T m-—r
+3 e Crneri = Y™+

(3") 15 (E2) — ¥™ (€]

In view of (4.1), (4.2) and (4.3), this establishes (4.4). To prove equation
(4.6) it is sufficient by virtue of equation (4.4) to consider the nodal points z3,
k = 1(1)N — 1. By equation (4.3) and by the usual arithmetic mean, we define

the functions s(™~%)(z) which are piecewise continuous on [0, }] as

. 1 ; 1 i 1
Do) =5 [5770 (20 = 1) 44770 (st 31)].

k=1(1)N —-1,i=0(1)2.

Since

/7 (zak = ) = "D aze) = GHIHNE), w5 < < 2o

y(m=9 (.’L‘sk + %h) =y (zae) + %hy("‘+l")(£2), T3k < &2 < T3k + %"
and consequently,

sm=D(z3;) = Y™ (aax) + O(RHY)
and then
1st=)(z) — y™=(z)|| = OK**Y), i=0(1)2, z€][0,b],

which completes the proof.
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Lemma 4.3. Let s(z) be the spline function defined in (1.6) and let m = 6,
then there ezists a constant K such that

lIs(ih) = yGRIl < KR, =1(1)3.

Proof. For z € [0,3h] the equation (1.5) at m = 6 becomes

3

i 6 i
T r 0
(4.9) s(z) = Z Fyf,') + Z FCi,o, z=jh, j=1(1)3.

i=0 i=4
From the Taylor expansion of order 7 we have

6 TRV ) 7
4100 yGh) = (’g) o) + (’7') ¥(€), j=1(1)3, 0<E< 3h.
i=0 ’ '

From equations (4.9) and (4.10)

S pN\T
(Cio—3) - %y(”({), 0< €< 3h.

6 AV
(4.11) s(jh) - y(ih) = 3 (]Z)

Put k£ = 0 in equation (2.7), then we get

1

6

CY
Coo =15 {f (3h,A(3h) +5 =8
i=4

!
6 6
(4.12) +§§;—!'9(2h)*) +3f (h.,A(h)+§%h*) -

- 3(03)] = 91(Cs,0)-

(3h)‘) -3 f<2h,A(2)+

Similarly Cs ¢ and C4 ¢ are given by

Cso=— |4 ~ Cio oy

o= |41 2h, 40 + 30 B2 any) -7 (AR
° Cz‘,o H ° Cz‘,O :

(4.13) +Z—i-,—(h) ~f 3h,A(3h)+Z—i|—-(3h) +
i=4 ’ i=4 ’

+ 235,3)] = gz(Cslo).
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and
1 . Cio 3 °.¢C
1,0 ;4 1,0 ;4
Cao= 7 [3f (h,A(h)+ ;Th ) -5f (2h,A(2h)+§Th) -

(4.14) -3/ (3h,A(3h) + ;4 T(3h) ) - ?sg ) = g3(Cay),

3 5B )
where A(vh) = 5 Z' (vh), v = 1(1)3.

1=0 .

The proof of the lemma is reduced to showing that Cy, Cs,0 and Cg o are
uniformly bounded as h — 0.

The function ¢1(Cs ) is a contraction if h < {/4/3L. In particular for

h < Y/1/3L we have
™ 3 3 - 1 ) -
191(Cs,0) — 91(Cs 0)| < Zh Lp(Cs,0,Cg ) < ZlCG‘O - Cs,o|'
Taking Cg o = 0, we obtain
3 . 1
191(Cs,0)| — 191(0)] < 191(Ce,0) = 91(0)] < 7h"LICs,0] < 71Cs0]-
Put ¢1(Cs,0) = Cs,0, then we have

1
|Cs,0l — 191(0)] < ZlCG,Ol

and

4
|Cs.0l < §|91(0)|-
From equations (4.10) and (4.12)
01(0) = 78y (h) — 3y3(2h) + yO)(3) ~ ¥ + O(h)] < M.

For some constant M, since uniform spacing is required over the interval [0, b],
there is only a finite number of possible values of h between {/1/3L and /4/3L,
so that Cs o is uniformly bounded for all A < /4/3L.

Similarly, C5 o and C4, are uniformly bounded for all A < \3/1/_[, and
h < \3/4/—L respectively as h — 0.
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Since C4,0,C5,0 and Cg o are uniformly bounded as h — 0, from equation
(4.11) we get

s(ih) = y(jh) = O(h*).
Our purpose is to improve this inequality as follows:
Applying Lemma 4.1 with p = 2 and from equation (4.9)

i+ (W)Ca0+ 90 0y + UM G — @iy = 0(hD), =103,
Thus, from the Taylor expansion we can obtain
ICs0 — 4521l = O(h).
Thus equation (4.11) becomes
(4.15) ls(ih) — y(Gh)l = O(K®),  j=1(1)3.
Applying Lemma 4.1 with p = 3 and by using the same steps, we get
ICs0— 6"l = O(h%) and [[Cs,0~ 55| = O(h)

and thus
lIsGiR) — y(jR)|| = O(R®),  j=1,2,3.

Applying Lemma 4.1 with p = 4 and by using the same steps as before, we
come to

ICa,0 — 4§V = O(h®),

ICs,0 — 4571l = O(h?),
and

ICs,0 — 4§l = O(h).
From equation (4.11)

Is(Gh) — y(GR)II = O(K"),  j=1,2,3

which completes the proof of the lemma.

Lemma 4.3 shows that the starting value s(3h) has error O(h”), and the
following relations hold by Lemma 4.1 with p =7

(4.16) s(jh) = y(jh) + O(h),
and
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s®(jh) = yD(Gh) + O(K"), j=3k+e, e=1(1)3.

In the sequel we shall prove that s(z) and its derivatives converge to y(z)
and its derivatives. Thus we state the following

Theorem 4.1. Let f € C*([0,b] x R), then

I59(z) = yO(2)l| = O(h™), i =4,5,6.

Proof. By using equations (1.5) and (4.16), the coefficients Cy , Cs  and
Ce i are

24 9 h (1)

1
4.17 Cir=—|=— - 72 -—
(4.17) 4k = [guse+d T gloke2 + 72ysk+1

85 3661
—?hzy:(ai) ~ 57 Ysk— ?ha (3)] +O(h),

1 [ 20 740
(4.18)  Csi = 5 |—=ysk+3 + 30ysk+2 — 300ysks1 + ——hysy +

B9 3
24
-4-1001,/(2)h2 9501/31:] + O(h?),
and
1 [40 850
(4.19) Csx = 76 [3y3k+3 — 45y3k+2 + 360y3k+1 — —3—hy§}3—
2875
110y h2 — 20y h3 - 5 ya,,] + O(h).
Clearly, yak4i,i = 1(1)3 can take the form
L (lh) (r) 7 .
(4.20) Yakti = Z r_ +0(R7), i=1(1)3.

r=0

Using equation (4.20), (4.17), (4.18) and (4.19) we get respectively

Cak = yak + O0(h%),
(4.21) Csi = y )+ O(h?),
Cex = y ) 4 O(h).
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By using Taylor’s expansion of order 7 to equations (4.21) we get

2 i EEPRY
Cun = 3 EHTIr0(e) + CHTIL0(e) 4 00)

~ (23t — 2)’ (23 — 2)?
(4.22) Csu :§ :‘”‘Ty(5+i)(z)+ 3k2' ¥ (€) + O(h?),
1=0 : ’

Cox = ¥ (z) + (zar — 2)y"(€) + O(h),
£ € (z3k,7), |z —z3k| < 3h.

From equation (1.5) and assuming that z € (z3k, Zak+3)

(.‘B - zak)Ce.,k

s (z) = Ca + (z — z3)Cs.e + 2!
(4.23) sO)(z) = Cs p + (z — 23:)Co &

s©)(z) = Ce .
Using (4.23) and (4.22) we obtain

s (z) - y*(z) = O(h?),
$9(z) - ¥ (z) = O(h?),
and

SO (z) - yO(z) = O(h)

which completes the proof.

Theorem 4.2. Let f € C*([0,5] x R), then there ezist constants K; such
that ||s®)(z) — y)(z)|| < K:h""%, i =0(1)3, z € [0,].

Proof. Let i =0, p =7 and m = 6 in equations (4.4) and (4.6), then

lls(z) = y(2)ll = O(K").

To prove the theorem 4.2 at ¢ = 1,2, 3, let us consider the following

Lemma 4.4. Assume further that the following conditions are satisfied

(120 1160 (a) ¥zl = OB,
r=11)m-3,k=0(1)n-1

(4.25)  |ICm=ik — ¥ (zar)]| = O(K'*Y), i=1,2

and
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(4.26)  |Is™"I(2) — ™ )(2)|| = O(K*F'),i =0,1,2,
Z3r < T < T3k43,k=0(1)N — 1.
Then,

(4.27) Is®)(z) — v (z)|| = O(A™), i = 1,2 and 3.

Proof. To prove Lemma 4.4 let m = 6 in equations (4.7) and (4.8). Then
we get

5 r 6
w w
(4.28)  y(2) =3 7y (za) + Gy (), Tk <<z
27 .
and

(4.29)  s(z) = Z —js(') z3k) + Z (6 Cs rk+ —s(e)(E)

r=0

T3 <€ <«

Subtract the first derivative of equation (4.29) from the first derivative of
equation (4.28), then we have

w

15 -y V@l < 3= S aae) — ¥l

5—r

+Z(5 FillCo—r = (@0l

+ 2O - O @,

where w = (z — z3;) < 3h.
By using equations (4.27), (4.28) and (4.29) we get

s () — yD(z)l| = O(h®).

Similarly the proof could be easily completed for : = 2 and 3.
Theorem 4.3. Let m = 6 in equation (1.6), then

1s9(z) - yO (@)l = O(AT~), i = 0(1)6.
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Proof. From Theorems 4.1 and 4.2 the proof is clear.
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