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ON THE COEFFICIENTS OF
DIFFERENTIATED EXPANSIONS OF DOUBLE
AND TRIPLE LEGENDRE POLYNOMIALS

E.H. Doha (Giza, Egypt)

Abstract. Formulae expressing the coefficients of an expansion of double
Legendre polynomials which has been partially differentiated an arbitrary
number of times with respect to its variables in terms of the coefficients of
the original expansion are stated and proved. Extension to expansion of
triple Legendre polynomials is given.

An application of how to use double Legendre polynomials for solving
Poisson’s equation in two variables subject to homogeneous mixed boundary
conditions with the tau method is considered.

1. Introduction

Classical orthogonal polynomials are used extensively for the numerical
solution of ordinary and partial differential equations in spectral and pseu-
dospectral methods, see for example Gottlieb and Orszag [4], Haidvogel and
Zang [5], Horner [6], Voigt et al. [9], Doha [1] and Doha [2].

For spectral and pseudospectral methods explicit expressions fdr the
expansion coefficients of the derivatives in terms of the expansion coefficients
of the solution are required.

A formula expressing the Chebyshev coefficients of the general order
derivative of an infinitely differentiable function in terms of its Chebyshev
coefficients is given by Karageorghis [7], and a corresponding formula for the
Legendre coefficients is obtained by Phillips [8].

Formulae expressing the coefficients of expansions of double and triple
Chebyshev polynomials which have been partially differentiated an arbitrary
number of times with respect to their variables in terms of the original
expansion are given in Doha [3].
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In the present paper we state and prove the corresponding formulae
expressing the coefficients of expansions of double and triple Legendre poly-
nomials which have been partially differentiated any number of times with
respect to their variables in terms of the coeflicients of the original expansion.

In Section 2 we give some properties of double Legendre series expansions
and in Section 3 we describe how they are used to solve Poisson’s equation
in two variables inside a square subject to the homogeneous mixed boundary
conditions with the tau method as a model problem. In Section 4 we state
and prove the main results of the paper which are three expressions for the
coefficients of general order partial derivatives of an expansion in double
Legendre polynomials in terms of the coefficients of the original expansion.
Extension to expansion in triple Legendre polynomials is also considered in
Section 5.

2. Some properties of double Legendre series expansions

The one variable Legendre polynomials P,(z) (n = 0,1,2,...) are a
sequence of polynomials, each respectively of degree n, and may be generated
by using Rodrigue’s formula

Pa()= (-3) (/mhDz - 2"
and are satisfying the orthogonality relation

0, m#n,

1
/Pm(:c)P,.(z)dz =
it 2/(2n+1), m=n.

Suppose now we are given a function u(z) which is infinitely differentiable in
the closed interval [-1,1], then we can write

u(z) = Za,,Pn(:c)

and for the g-th derivative of u(z)

o]

u(")(z) = E aS,’)P,,(:c).

n=0
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Phillips 8] proved that

o (2n41) X (i+g-2)(2n+ 2i+ 29 — 3)Y(n + i)
W) o = i o G- TiGnt B0t T gD

Now we define the double Legendre polynomials as
(2) Pmn(z,y) = Pm(z)Pa(y),

i.e. a product of two one variable Legendre polynomials, where Pp(z),
P,(y) are Legendre polynomials of degrees m and n in the variables z and
y respectively. These polynomials are satisfying the biorthogonality relation

11

//Pi,j(x,y)Pk,g(:c,y)dzdy:

-1-1

(4 if i=j=k=£=0,
(2‘._'_1—)4(2“1—) if i=k#0, j=£0#0,

(3) =<%+l if i=k#0, j=£0=0,
z—j‘:_—l if i=k=0, j=£0+#0,
\ 0 otherwise.

Let u(z,y) be a continuous function defined on the square S = (-1 <
< z,y < 1), and let it have continuous and bounded partial derivatives of any
order with respect to its variables ¢ and y. Then it is possible to express

(e} [e ]
(4) u(z,y) = Z Z amn Prm(z) Pa(y),
n=0m=0
() DEDju(z,y) = uPP(z,y) = Y D alli Pm(2)Pa(v),
n=0m=0
where a&;? denote the Legendre expansion coefficients of DfDfu(z,y) and
(0,0) _

Qmn’ = amn- Using the expressions

(6) (2m + 1)Pn(z) = Dz(Pm41(2) = Pm-1(2)),
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() (2n + 1) Pa(y) = Dy(Pa+1(y) = Pa-1(y))

with the assumptions

© o © oo
D, Z Z aS,’;;l'Q)Pm(:L‘)Pn(y) = z% X:o aghq)Pm(z)Pn(y)’
n=0m=

n=0m=0

Dy i i ot ™D P (2) Pa(y) = i i aB0) P () Pa(v)

n=0m=0 n=0m=0

it is not difficult to derive the expressions

1 1 _
® 2m — la’(::f{'" - 2m + 3‘155'4?2,'; = agr,:n L.e) m,p > 1,

1 1 _
9) —2;__1055,'1)-1 - 2,1—_*_3“53:,'&1 =afd D g1

For computing purposes equations (8) and (9) are not easy to use, since the
coefficients on the left hand sides are functions of m and n, respectively. To
(p,9)
mn

simplify the computing, we define a related set of coefficients b by writing

(10) as,ﬁ;f)z(m+%) <n+%>b$,§;,") mn>0; p=¢=0,1,2,...

Equations (8) and (9) take the simpler forms

(11) b0 =680 = (2m+ 1D mp> 1,
(12) bf,’fi)_l - bs::,,rqw)ﬁ-l = (2n + )b~ n,qg>1.

Repeated application of (11) keeping n and ¢ fixed yields

(e o)

(13) b0 =S "(@m+di- )00 L p21,
i=1

and the same with (12) keeping m and p fixed yields

[}
(14) b =3 "(2n+45 - B | g1
ji=1
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3. The tau method for Poisson’s equation inside a square

Consider Poisson’s equation inside the square S = (-1 < z,y < 1)
(15) Dlu(z,y)+ Dju(z,y) = f(z,9), -1<z,y<],
subject to the homogeneous mixed boundary conditions

u+a;Du=0 z=—1]
u+ asD;u=0 z=1

u+ B Dyu=0 y=-1
(17) -1<z<1
u+ B2 Dyu =0 y=1

and assume that both u(z, y) and f(z, y) are approximated by truncated double
Legendre series

N M

(18) u(z;y) = Z Z aman(z)Pn(y))
N M

(19) @)=Y fmnPm(z)Pa(y),
n=0m=0

then the Legendre tau equations for Poisson’s equation (15) are given by
(20) a9 4 a0 =f  0<m<M-2 0<n<N-2

while the boundary conditions (16) and (17) yield

> (~1)™ [amn + arahi?] =0

(21) ™ n=0,1,2,...,N,
> [amn + azafﬁho)] =0

m=0
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Z( nn [amn +pral’| =0
(22) m=0,1,2,..., M.
[amn + ﬂza(o 1)] =0

The 2M +2N +4 boundary conditions given by (21) and (22) are not all linearly
independent, there exist four linear relations among them. Thus equations (20),
(21) and (22) give (M + 1)(N + 1) equations for the (M + 1)(N + 1) unknowns
@mn (0<mM <M, 0<n<N)

The coefficients as,l.,.o), as,f,?), aS,?,,‘ ) and as,?;? ) of the first and second partial

derivatives of the approximation u(z,y) are related to the coefficients a,, of
u(z,y) by invoking (13) with p =1 and p = 2, and (14) with¢=1and ¢ = 2
respectively. In the next section we show how the coefficients of any derivatives
may be expressed in terms of the original expansion coefficients. This allows
us to replace a$,‘.,,°), as,?nl), af,f,,o) and a(0 2 in (21), (22) and (20) by explicit
expressions in terms of the a,,,. In this way we can set up a linear system for
amn (0 <m < M, 0 <n < N) which may be solved using standard techniques.

4. Relations between the coefficients

Theorem 1. The coefficients b2 are related to the coefficients bSO,
b2, and the coefficients by by

(i+ 2(2m 4+ 2i + 2p — 3)!(m + 1)!
p(P.0) — 2P(p P Z p— {

(23) mn (—1DI2m+ 20)(m+i4+p—2)!
X (2m+4z+2p_ 3)b£7?:!2t+}? 2,n» p Z 1’
bP9) — Z(J+q—2)'(2n+2]+2q—3)l(n+])|x
(24) " 2"(‘1‘ D' (G- D120+ 2) (n+ 5+ ¢~ 2)!

X (271 + 4] + 2q - 3)b£:::,03+2j+q-2y q2>1,
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(25)

®.9) _ © + p—2)!(2m + 2i + 2p — 3)!(m +i)!
bl = 2p+e(p — 1)'(q-— ! ZZ E-1)'2m+2)(m+i+p—2)! X

j=li=1

L G+ g—2)1(2n+2)+20 - 3)(n +)!
G-D2n+2))(n+3+q-2)

X (2n + 45 + 29 — 3)bm2itp-2,n+2j+4-2 pg>1

(2m+4i4+2p - 3)x

for allm,n > 0.

In order to prove Theorem 1, the following two lemmas are required:

i(2m+4i )(M i+p— 1)‘(2m+2i+2M+2p 3)'(m+i+ M)! B
(M —)'(2m +2i+ 2M)(m+i+ M +p —2)! =

i=1

1 (M+p—1){(2m+2M + 2p - 1)!(m + M)!
- >
(26) % (M-D@m+2M)im+M+p—1 * ™F2h

i(2n+4j_l)(N—j+q—1)!(‘2n+2j+2N+2q—3)!(n+j+N)! _

i=1 (N —j)!(2n+2j+2N)(n+j+ N + ¢ —2)!

(N+g-1)(2n 42N +2¢ - 1)!(n+ N)!
(N=-D!(2n+2N)(n+ N +¢-1)!

1
27 = — , ,g> 1.
(27) % n,q>

Proof of lemma (26). For M =1 the left hand side of (26) equals the
right hand side of (26) which is

(p—D'(2m+2p+1){(m 4+ 1)!
2(2m + 2)Y(m + p)!

If we apply induction on M, assuming that (26) holds, we have to show that
! (M —i+p)(2m+2i+2M +2p— Di(m+i+M+1)!

2(2"’“"1) (M =it 1)2m42i+2M 1) (m+it MAp—1)

_ 1 (M+p)(2m+2M +2p+1){(m+ M +1)!

(28) T2  M!(2m+2M +2)/(m+ M +p)!
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From (26) by taking m + 2 instead of m and j =i+ 1 we get

Ml (M—j+p)!2m+2j+2M+2 - D)(m+j+M+1)! _

§(2m+4j— )(M—j+1)!(2m+2j+2M+2)!((m+j+M+p—1)! B

_ 1 (M+p—1)!(2m+2M + 2p+ 3)i(m + M +2)!
T2 (M -1)!2m+2M +4)(m+ M +p+1)!

(29)

The left hand side of (28) becomes

(M +p—1)!(2m+2M + 2p+ 1){(m + M + 2)!
M'(2m + 2M + 4)(m + M + p)!

(2m +3)

s —i+p)(2m +2i +2M +2p—1)! i+ M +1)!
+E(2m+4i—1)(M itp)(2m+2i+2M+2p-Dim+it M+ 1!
= (M—-i+1)! 2m+2i+2M +2){(m+i+ M +p—1)!

)(M+p 1)!(2m + 2M + 2p + 1)!(m + M + 2)!
M!(2m + 2M + 4)(m + M + p)!

1 (M+p-1!(2m+2M +2p+3)(m+ M +2)!

2 (M -1)!2m+2M+4)(m+M+p+1)!

_ 1 (M+p)(2m+2M +2p+1){(m+ M +1)!

T2 M!(2m + 2M + 2)!(m + M + p)! ’

=(2m+3

which completes the induction and proves the lemma (26). Lemma (27) can
be proved similarly.

Proof of Theorem 1. Firstly we prove formula (23). For p = 1
application of (13) with p = 1 yields the required formula. Proceeding by
induction, assuming that the relation is valid for p (keeping n and ¢ fixed), we
want to show that

1
(p+1 9 — -
(30) bp T 1p'

y i (G+p—1)!2m+2i42p—1)!(m + i)

: ] _ %9
G-D)@m+2)(mtitp_1) Cmtdi+t2p-1)b

m+2i+p-1.n"

From (13), replacing p by p+ 1 and assuming the validity of (23) for p,

(31) pEFL) = m Z(Qm +4i—1)x
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X{i (k+p—2)!(2m+4i +2k+2p—5)! (m+2i+k— 1)!

— (k-1)2m+4i+2%-2)! (m+2+k+p-3)

‘(2m+4i+ 4k +2p - 5)bm+2i+2k+p-4,n}~

Let i + k — 1 = M, then (31) takes the form

k=1
itk=M41

b(pF1.e) = = 2(p—1)' Z[ Z (2m+4i—1)x

(k+p—2)!'(2m+4i+2k+2p-5)! (m+2i+k—1)!
(k= 1)Y(2m + 4i + 2k — 2)! (m+2i+k+p-23)!

(2m+4M+2p— 1)]

><bm+2M+p-2,n;

which may also be written as

(P+1 ) I -
b S 2(p )i 2 Z Z(2m+4z 1)x

=1Lli=1

M-i+p-1!2m+2i+2M+2p-3)! (m+i4+ M)!
(M —)!(2m + 2i 4+ 2M)! (m+i+M+p-— 2)'

x(2m +4M + 2p - 1)bm+2M+p—2,n~

Application of lemma (26) to the second series yields equation (30) and the
proof of formula (23) is complete.

It can also bo shown that formula (24) is true by following the same
procedure with (14), keeping m and p fixed. Formula (25) is obtained
immediately by substituting (23) into (24). This completes the proof of the
theorem.

Now substitution of (23), (24) and (25) into (10) give the relations between
(p,9) (0,9) (p,0)

the coefficients amn ', @mn , @Gmn~ and amn:
4(2m + l)
2 apg) - 22T 7/
y i (i+p—2)'2m+2i+2—-3)(m+39) (00
(i—DI2m+20)(m+i4+p—2) mHEIr-In

p2>1,
i=1
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4(2n + )

alP.9) —

(33) o) = G
Uty
i=1 ] -1) '(2n+ 2])'(11 +ji+q-— 2)| m,n+2j+q-27 21,

162m+1)(2n +1)
(r,q) —
(34) amn 2p+q(p_ 1)|(q_ 1)|
[e <] o0 . )
(G+p—2)(2m+ 2i + 2p — 3)(m + ¢)!
x;; (E-D'2m+20)(m+i+p-—2)! X
i +q—2)/(2n + 25 + 29 — 3){(n + j)!
(J q ) ( J q ) ( J) Am42i+p—2,n+2j+9—2) P, q _>_ 1

GG-D'2n+25)!(n+j+q-2)
for all m,n > 0.

5. Extension to triple Legendre series expansion

Let u(z,y,2) be a continuous function defined on the cube C = (-1 <
< z,y,z < 1), and let it have continuous and bounded partial derivatives of
any order with respect to its three variables z, y, z. Then it is possible to write

(35) U(z, Y, Z) = z z ZalmnPI(I)Pm(y)Pn(z))

n=0m=0 £=0

(36) u®t(z,y,2) = 3 S S a0 Py(2) P (y) Pa(2).

n=0m=0£=0

Further, let

(Par) _ 1 1 r
(37) Y = (e+ 2) (m+ 5) ( )bgf"z‘ "

e)m)nzo; plq)r:0)1)2)"')
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then it is not difficult to show that

b = VT = O+ Y p 1,

£—1,mn tmn
@) - = T 21,
B W = Gt BT e,
which, in turn, yield
(39) bt = D (204 4i - G L P21,
i=1
o0
(40) e =3 @m+ 4 - EI0 L 21,
j=1
(41) bgfn':‘r) Z(?n+4k— 1 bgp”:;_'_;l 1 r> 1

Now we state the following theorem which is to be considered as an

extension of Theorem 1 of Section 4.

Theorem 2. The coefficients bP97) gre related to the coefficients with

fmn

superscripts (0,q,7), (p,0,7), (p,4,0), (0,0,7), (0,4,0), (p,0,0) and the coefficients

blmn by

ppar) _ Z (i+p =N +2i+2p - B!(C+i)!
tmn 2P(p— DN & (= D20+ 20)(E+i+p—2)!

(42) x (204+4i+2p-3bSL) o0 P21

pPar) _ E(Hq 2)!(2m +2j + 29 - 3)(m +j)!
tmn 2""(q—l — (G- DICm+25)(m+j+q-2)

(43) x(2m+4j+2q—3)b§",,f,2]+qZn, g>1,

pPar) Z (k+7—2)!(2n+ 2k + 2r — 3)!(n + k)!
tmn 7 or( r—-l (k= 1D)'(2n + 2k)!(n + k + r — 2)!

(44) x (2n + 4k +2r — 3)b§”,~,‘1'3>+2k+, 5 21,

p(Per) — Z Z (@ + p— 2)N(2¢+ 2i 4 2p — 3)I(£ + i) 5

tmn T op+e(p — I)'(q— 1)! (E=DN2+2)(L+i+p—2)

j=1id=1
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(J+9—2)!(2m+ 25 +2¢ = 3)!(m + j)!

45 . : 20+4i+2p—3
#) G-DICemr ) (m+jtg_2) CtTa+w=3)x

X (2m +45+ 20— 3)1)52_’3;:_)? 2,m+2j+¢-2,n? p,g2>1,
(Par) (i+p—2)Y(26+ 2i + 2p — 3)!(£ +3)!
Ve 2p+'(P—1)'(7'—1)'EZ G-I+ 2)(l+itp-2)

=11i=1
— 2)(2n + 2k + 2r — 3)!(n + k)!
(k “D)2n+2k)(n+ k+r—2)

x (27‘! +4k +2r — 3)()21;‘?‘, 2mn+2k+r-2 p,r2 1’

sy & (26 + 4i + 2p — 3)x

pPar) ZZ (G+a-2)!'2m+2j+2¢-3)(m+J)!
tmn T 9¢+r(q — l)l(r —-1)! Pt G-D'2m+2)(m+j+q-2)

(k+r—2)(2n+ 2k 4+ 2r — 3)!(n + k)"

(47) =Dl 20)(ntkrr—gy Cmtai+2e=3)x
X (2n + 4k + 27 — 3)be,my2j 4q—2,n+2k4r -2, g,r2>1,

ppar)

tmn

64 o= o= o= (14 p— 2)Y(28+ 2i + 2p — 3)!
2p+947(p — 1)!(g — 1)!(r - 1)! 2.2 (i = 1)1(2€ + 2i)!

(€ + )G + g — 2)1(2m + 25 + 2 — 3)1(m + )1k + r — 2)}(2n + 2k + 2r — 3)!
E+itp-2)G-1)I2m+2)(m+j+q-2)(k— 1)!(2n + 2k)!

(n+k)!

(48) “ntk+r—2)

(26+4i+2p-3)(2m+4j+ 29— 3)x

X(2n + 4k + 2r — 3)bey2i4p-2,m+2j+9-2n+2k4+r-2,  P,q, T > L.

Outlines of the proof. Formula (42) can be proved by induction on
P, (43) by induction on ¢ and (44) by induction on r respectively. The
substitutions of (42) into (43) and (44), and (43) into (44) give formulae (45),
(46) and (47). Formula (48) is obtained by substituting (44) into (45).

The explicit formulae which relate the coefficients aﬁfn‘f‘ ) with those with
superscripts (0, ¢,r), (p,0,7), (p,¢,0), (0,0,7), (0, ¢,0), (p,0,0) and the original
coefficients asmn can simply be obtained by using the relation (37) with

formulae (42)-(48).
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