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TWO-DIMENSIONAL BLOCK-PULSE FUNCTIONS
SERIES SOLUTION OF A SYSTEM OF FIRST-
ORDER PARTIAL DIFFERENTIAL EQUATIONS

Rafat Riad (Cairo, Egypt)

1. Introduction

Since Corrington [1] constructed Walsh tables for solving higher-order
differential equations and Chen and Hsiao [2] developed the Walsh operational
matrix for solving state equations, the Walsh operational method has been
successfully applied to various problems. Shih and Han [3] have shown the two-
dimensional Walsh series solution of a system of first-order partial differential
equations (PDE). The key step in this solution was the inversion of a kmn xkmn
matrix. Some difficulties might occur in obtaining the inverse of a square matrix
of size kmn x kmn, specially, if kK, m and n are large values. Block-pulse
functions (b.p.f.) and Walsh functions are closely related. As basis function
in an approximation the two sets of functions lead to the same results. Chen,
Tsay and Wu [4] and Goplasami and Deekshatulu [5] introduced b.p.f. for
solutions of distributed systems and identification problems.

This paper simplifies, enormously, the method of Shih and Han [3] by
using b.p.f. instead of Walsh functions as the basis to solve a system of
first-order PDE. The difference between the two methods is not in the final
results, but rather in their computation. Depending on the special properties
of the operational matrix for b.p.f., which is simpler than the Walsh operational
matrix, an algorithm is established to reduce the key step from the inverse of
kmn x kmn matrix to the inverse of k X k matrix.

As a start, the b.p.f. are introduced and their properties briefly summa-
rized [4], [6].
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2. Introduction to b.p.f.

A set of b.p.f. on unit interval [0,1) is defined as follows: For each integer
i,0<i<m,meP={1,2,...}, the function p;(t) is given by

1 fori§t<l+l,
(1) pi(t) = m m

0 otherwi_se.

This set of functions can be concisely described by an m-vector ®(,;)(t) with

¢i(t) as its i-th component. It is well known that a function f which is
integrable in (0,1) can be approximated as

(2) fO) =) aipi(t),

where the coefficients a; are given by

(3) a; =m [ f(t)dt, 0<i<m

i

1+ 1
—

. i
= avarage value of f(t) over the interval P <t<

The b.p.f. satisfies the following properties

(4) ei(t)p; (t) = bijpi(t)
and
1
) [eitresty = 78,
0

where 6;; denotes the Kronecker § symbol.

It is known [4], [6] that

t
(©) / B(m)(A\)dA = By @y (1),
0
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where the operational matrix for integration B(mxm) is given by

111 1
. 0 11 1

1
(7) Bimxmy=— |0 0 2 1
. m . .
0 00 :

3. Two-dimensional b.p.f. series approximation

A function of two independent variables y(z,t) which is integrable in z €
€ [0,1) and t € [0,1) can be approximately represented by a b.p.f. series of
size n with respect to ¢t as follows

(8) y(z,t) ~ Zy. )i ().
1=0

Using the orthogonal property of b.p.f. in (5), the coefficient functions y;(z) of
(8) become

9) yi(z)=n | y(z,t)dt (z=0,1,...,n-1).

”‘\aE

Similarly, a b.p.f. series approximation of y;(z) gives

3
I

(10) vi(x) > ) 9i()yji,

j=0

where y;; are coefficients obtained by
it1

=y =
(11) ng:m/y,-(:c)dz:mn/
3 3

y(z,t)dtdz.

”-\’E
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Combination of equations (8) and (10) yields

n-1m-1
(12) y(z,t) ~ Z Z vj(2)yjipi(t).
1=0 ;=0
Defining the b.p.f. vectors
(13) ®n)(1) = [po(t), 1(2), -, pnaa @),
(14) B(my(2) = [p0(2), #1(2), -, P (@),

where ”'T” means transpose, and coefficient matrix Y of m x n dimension

Yoo Yo1 Yon-1
Y10 Y1 Yin-1
(15) Y = . . . ,
Ym-1,0 Ym-1,1 Ym-1n-1

equation (12) is written in matrix form as
(16) Y(2,) = By (2)Y Bny(t).

This is the two-dimensional b.p.f. series approximation of y(z,t).

From (6) the integration of b.p.f. vectors (13) and (14) gives, respectively,

t

(17) / By (1')dt! = Binmy®(m)(t),
0
(18) /(D(m)(:c')d.’!:’ jad B(mxm)d)(m)(x)-

0
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4. Solution of system of first-order PDE

Consider k simultaneous first-order partial equations as follows

dyi(z,t) g~ (2t _ :
(19) T+ZcijT =Za;jyj(z,t)+2b,-juj(z,t),
j=1 i=1 j=1

i=1,2,...,k,
and the boundary conditions are
(20) %(2,0) = gi(z)

(i=1,2,...,k)

(21) %:(0,t) = fi(t)
where ¢;j, a;; and b;; are constants and uj(z,t) (j = 1,2,...,£) are input

functions. For solving this problem by the b.p.f. approach we use the technique
introduced by Shih and Han [3] to solve this problem by the Walsh functions.
Integration of (19) with respect to t and z gives

t z t T

k t z
/ (Zztlz dz'dt’+Zc,-j//%dz'dt' = Ea,-j//yjd::'dt'+
0 ' =t 90

0 =1 9 0

t

Y T
(22) +Zb.-j//u,-dz’dt' (=1,2,...,k).
0 0

j=1

From (16) the two-dimensional b.p.f. series approximation of y;(z,t) is given
by

(23) y,-(:c,t) ~ Q(Tm)(l‘)y(i)¢(n)(t),
where

(24) YO = [y® y® Y,@] (i=1,2... k)
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are m x n matrices with unknown components y,(,iq). Notice that Yj(” is the j-th

column of Y (j = 1,2,...,7n) and of m-dimension. Likewise,
(25) uj(z,t) = 80 () U DDy () (G=1,2,...,0),
where UU) (j =1,2,...,£) are m x n matrices with known components u(])
2L ot
(26) ug;’;l) =mn / / uj(z,t)dtdz.
- &
A b.p.f. series approximation of g;(z) of (20) is
T
(27) gi(z) = @ y(2) [y(()), PRI A I
where
2L
(28) i) =m [ g(z)ds.
-
From the definition of the b.p.f. (27) can be written as
(29) 9i(z) = By (2)GHPy(t)  (i=1,2,...,k),

where G is an m x n matrix each column of which is

T
[g(())a gg)) oty g'(-n)l

Similarly, a b.p.f. series approximation of f;(t) of (21) can be written as

(30) filt) 2 0 (@) FD®m (1)  (i=1,2,...,k),
where F() is an m x n matrix each row of which is [fo , 1( ), cel ,(li) and

(31) f‘g‘):n/f;(t)dt



Block-pulse functions series solution of partial differential equations 15

Using the b.p.f. series approximations (23), (25), (29) and (30) and
equations (17), (18), (20) and (21), the four terms of (22) can be evaluated,
respectively, as follows

term(1) = /(y,-(:c',t) —yi(2',0))dz’ ~

T

= [ (@ O (0) — #T ()60 (0))

0

= (D(Tm)(x) (Bg'mxm)y(i) - Bg‘mxm)G(i)) (I’(n)(t)’

(yj(z, ) — y;(0,¢")) dt’

[ (BL)Y DB (#') = @) (1) FDD (1) )

<

1}

—
o\“ o\.“

k
~ Q{m)(z) [Z cij (Y(j)B(nxn) - F(J)B(nxn)) O(n)(1),

j=1
- .
(34) term(3) = @7\ (2) | D 05 BlrumyY V) Biaxn) | ¥(n)(t),
Li=1 |
(35) term(4) =~ &7 1(2) [ Y_ bi; Bl um)UY) Biaxn) | B(n)(1).
_j:l ]

Substitution of (32)-(35) into (22) gives an equation of the following form

(36) Oy ()] - 1B(n)(t) = 0.
Since (36) is valid for any z and t in the domain of consideration, the
quantity in the brackets should be equal to zero. That is

k

k
Bl YD+ i YO Basny = Y 0ii By Y9 Blaxn) =
ji=1 j=1

k e
=Blm) GV + Y cij FOBnxn) + D b5 Blsemy U Blaxn)
i=1 j=1

(37)
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(i=1,2...k).

The equation (37) is a set of k algebraic equations for the unknown matrices
Y® i =1,2,..., k. An explicit form for the solution of Y (¥ (t=1,2,...,k)
can be obtained using the Kronecker product formulae as follows. First,
multiply equation (37) by B, from the right

(nxn)

(38) B("‘xm)y( )B(nx )+ ZC'JY( ) ZG'JB(mx )Y(J) = Q(‘)
ji=1

where
k ) /4 )
(39) Q( ) = B(mxm)G B(nxn) + ZcijF(J) + Zb,’jB(mem)U(J),
ji=1 j=1
i=1,2,...,k

are known m x n matrices. The first column of Q¢*) may be defined as Q(li); the

second column as Q(Zi), etc., as we defined for Y(¥) in (24). Let the components
of Y(®) be rearranged into an mn vector ;

Y
Y(”
(40) Z; = 2
rsi)
Similarly, the mn vector wj; is
%,
(41) w; = Q2
QY

Then (38) becomes

k k
B(mxm) ® (B(an) ] zZi + ZC{J’ZJ Z [B(mxm) ® I(nxn) Zj = wy,
j=1

(42) (i=1,2,...,k)
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where I(,xn) is an n x n identity matrix. Here A® D is the Kronecker product
defined as

di1A dipA dinA

do1 A  dorA don A
(43) AeD=| 0 7% 1,

dnlA dnzA dnnA

where D = (d;j) is n x n matrix. Taking the transpose of (42) we have

k k
z.'T [B(mxm) ® B;in] + ZC,‘J'Z}‘ - Za,-jij [B(mxm) ® I(nxn)] = w;]‘
j=1 j=

—

(44) (i=1,2,...k).

Notice that zI and w] are 1 x mn row vectors. Letting

A w{

2 w]
(45) z=|"1, w=| .

2 wy

Z and W are k x mn matrices. The k equations of (44) are combined together

(46)  Z |Bimxm) ® BL | + Clexk)Z — Aexi)Z [Bimxm) ® Iinxn)] = W

(nxn)

where
Cixk = [cij], Aexk) = [aij]

are coefficient matrices of PDE (19).

Let the i-th column of Z be (Z);, and the i-th column of W be (W);
(i =1,2,...,mn) and rearrange Z and W into kmn vectors in the same way
as in (40). Then, using the Kronecker product formula, (46) may be finally
written as

(2 (Wh
(2)2 (W)

(47) -

(Z).mn (ijn
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where
(48) E =

= I(kxk)®B(mem)®(B('nlx,,))T+C(kxk)®f(mnxmn) “A(kxk)®B(mem)®I(nxn)

is kmn x kmn matrix. Equation (47) gives solution Y(), i =1,2,... k. Once
Y () are determined the approximation of y;(z,t) can be obtained.

If we use (47) directly to determine the solution, some difficulties might
occur in obtaining the inverse of a square matrix kmn x kmn, specially, if k, m
and n are large values. In fact the b.p.f. is more fundamental than the Walsh
functions and the operational matrix B is simpler than the operational matrix
derived from Walsh functions. We derive a recursive algorithm to reduce the
key step in (47) from the inverse of the kmn x kmn matrix to the inverse of
k x k matrix and then the solution Y®) (i = 1,2,..., k) is easily obtained. The
algorithm is as follows.

First, we note that the matrix B(,xn) is triangular matrix

1 2 2 2

1 0 1 2 2

—— 10 0 1 2

(49) Bioxm 2n ). . :
0 0O 1

-1

(nxn) has the following form

An elementary calculation shows that B

ThH T2 T3 Tn
0 Ty T2 Tn-1
(50) Blm=2m|0 0 m Tn-2
0 0 0 ™
where r; (i = 1,2,...,n) are obtained by the recursive formulae
ry = 1,
(51) =

r,- =_2er (:1=2,3,...,n).

i=1
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Substituting (50) into (48) and using the definition of the Kronecker
product of matrices in (43), the matrix E can be written as

Py 0 0 0
P, P 0 0
(52) E = P3 P2 Pl 0
Pn Pn_l Pn_2 c e Pl

where

(53)  P1=2nIkxk)® Bloxm) + Clixk) ® Iimxm) = A(kxk) ® Blnxm)
and

(54) P =2nril(kxk) ® B{mxm) (i=2,3,...,n)

are km x km matrices and 0 is km x km zero matrix. The matrix F has a
special form and its inverse is easily obtained by

R, 0 0 0
Ry, Ry 0 0
E-Y = R3 R, R, 0 ,
Rn Rn—l R-n—Z Rl
where R; (i = 1,2,...,n) are km x km matrices determined by the following
recursive formulae :
(56) Ry = P,
i-1
(57) Ri=-Y RiP_juR; (i=23,...,n)
j=1

Substituting (54) into (57), we have

i—1
Ri = ~2nR[Ikxky ® Bl )] | Y ricis1 R
(58) ji=1
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Now, the inverse of matrix P, can be obtained in the same way. Indeed, from
(53) and (7)

H 0 0 0

H H;y 0 0
(59) p=|H H H 0],

H H H H,
where

n 1
(60) Hy = ;I(kxk) + Clrxk) — Q_mA(kxk)
and
2n 1

(61) H = —Itkxk) = —Akxk)

are k x k matrices and 0 is k x k zero matrix. Consequently,

S 0 0 0
S, S 0 0
(62) =S S & 0l
Sm  Sm-1 Sm-2 Si
where S; (i = 1,2,...,m) are k x k matrices determined by the following
recursive formulae
(63) Sl = Hl-ly

(64) Si=-SiH (ZS,) (i=2,3,...,m).

This completes the derivation of inverse of matrix E. The solution Y) (i =
=1,2,...,k) is easily found by substituting E~! into (47), namely

(Z)(J'—l)mH (W)(i—l)m+1

(Z2)(j-1ym+2 J (W)i-1ym+2
(65) . Z j—i+1 .

@m | W)im
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(7=1,2,...,n).

The final result will be identical to the result obtained by Shih and Han [3].
Obviously, the number of critical operations involved in the present method,
using b.p.f., is much smaller than in the Walsh series method. Therefore,
we have saved computing time, storage and, consequently, have reduced the
round-off errors significantly.
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