A CONSTRUCTIVE METHOD FOR UNIFORM APPROXIMATION BY MEANS OF LAGRANGE-INTERPOLATION IN THE SPACE OF CONTINUOUSLY DIFFERENTIABLE FUNCTIONS

L.G. Pál (Budapest, Hungary)

To the memory of Professor József Mogyoródi

G.Grünwald [1] has proved that for every function $f(x) \in C^1[-1,+1] = \{f; \exists f'(x) \in C[-1,+1]\}$ the Hermite-Fejér [2] interpolation polynomials of degree (2n-1)

(1)
$$H_{2n-1}[f, f', x] = \sum_{k=1}^{n} f(x_k^{(n)}) h_k(x) + \sum_{k=1}^{n} f'(x_k^{(n)}) \hat{h}_k(x)$$

converge uniformly on the closed interval [-1,+1] for any strongly normal system of nodal points

$$\{x_k^{(n)}\}_{k=1}^n$$
; $(n=1,2,\ldots)$ if $n\to\infty$.

The aim of this note is to give such a sequence of polynomials $\{Q_n[f,f']\}$ getting by integration of the interpolation polynomials $L_{n-1}[f',x]$ of f'(x) which has the same property as the above mentioned Fejér polynomials have, for a rather extended class of nodal point systems.

Theorem. Let be $f(x) \in C^1[a,b] = \{x; -\infty < a < x < b < +\infty\}$ and let us consider a system of nodal points

(2)
$$a < x_1^{(n)} < x_2^{(n)} < \ldots < x_k^{(n)} < \ldots < x_n^{(n)} < b$$
$$(n = 1, 2, \ldots)$$

generated by the roots of $\omega_n(x)$, where $\{\omega_n(x)\}_{n=0}^{\infty}$ is the system of the orthogonal polynomials with respect to a given weight function $\rho(x) \in L[a,b]$ satisfying the additional condition that $[\rho(x)]^{-1} \in L[a,b]$.

If we denote by

(3)
$$P_{n-1}(x) = L_{n-1}[f', x] = \sum_{k=1}^{n} f'(x_k^{(n)}) \ell_k(x)$$

the Lagrange interpolation polynomials of f'(x), then the polynomials

(4)
$$Q_n(x) = \int_a^x P_{n-1}(t)dt + f(a)$$

of degree n converge uniformly to f(x) on the interval [a,b] as $n \to +\infty$.

Proof. For any fixed point $x \in [a, b]$ we get from (4) that

(5)
$$f(x) - Q_n(x) = \int_a^x (f'(t) - P_{n-1}(t)) dt = \int_a^x (f'(t) - L_{n-1}[f', t]) dt$$

and therefore

(6)
$$|f(x) - Q_n(x)| \le \int_a^x |f'(t) - L_{n-1}[f', t]| dt \le \int_a^b |f'(t) - L_{n-1}[f', t]| dt.$$

Let us denote by $H_{n-1}(t)$ the best approximating polynomial of degree $\leq (n-1)$ for the function $f'(t) \in C[a,b]$ on the interval [a,b], then we get from the inequality

(7)
$$|f'(t) - L_{n-1}[f',t]| \le |f'(t) - H_{n-1}(t)| +$$

$$+|H_{n-1}(t)-L_{n-1}[f',t]|=|f'(t)-H_{n-1}(t)|+|L_{n-1}[H_{n-1},t]-L_{n-1}[F',t]|$$

that the inequality (6) can be reduced to the following one

$$|f(x) - Q_n(x)| \le$$

(8)
$$\leq \int_{a}^{b} |f'(t) - H_{n-1}(t)| dt + \int_{a}^{b} |L_{n-1}[H_{n-1}, t] - L_{n-1}[f', t]| dt \leq$$

$$\leq E_{n-1}(f')(b-a) + \int_{a}^{b} |L_{n-1}[H_{n-1}, t] - L_{n-1}[f', t]| dt$$

where
$$E_{n-1}(f') = \max_{[a,b]} |f'(t) - H_{n-1}(t)| \to 0 \ (n \to \infty).$$

And so the only task is to estimate from above the second term in the right of the inequality (8).

It can be estimated by the Schwarz inequality as follows

$$\int_{a}^{b} |L_{n-1}[H_{n-1}, t] - L_{n-1}[f', t]| dt =$$

$$= \int_{a}^{b} \left(|L_{n-1}[H_{n-1}, t] - L_{n-1}[f', t]| \sqrt{\rho(t)} \right) \frac{1}{\sqrt{\rho(t)}} dt \le$$

$$\le \left[\int_{a}^{b} (L_{n-1}[H_{n-1}, t] - L_{n-1}[f', t])^{2} \rho(t) dt \right]^{\frac{1}{2}} \left[\int_{a}^{b} \frac{1}{\rho(t)} dt \right]^{\frac{1}{2}} =$$

$$= \sqrt{C} \left[\int_{a}^{b} (L_{n-1}[H_{n-1}, t] - L_{n-1}[f', t])^{2} \rho(t) dt \right]^{\frac{1}{2}}$$

where we have used that $\int_{a}^{b} \frac{1}{\rho(t)} dt = C$ is a finite positive number. If we write the last right side of (9) in the form

(10)
$$\sqrt{C} \left[\int_{a}^{b} \left(\sum_{k=1}^{n} \left[H_{n-1}(x_{k}^{(n)}) - f'(x_{k}^{(n)}) \right] \ell_{k}(t) \right)^{2} \rho(t) dt \right]^{\frac{1}{2}} =$$

$$= \sqrt{C} \left[\sum_{k=1}^{n} \left(H_{n-1}(x_{k}^{(n)}) - f'(x_{k}^{(n)}) \right)^{2} \int_{a}^{b} \ell_{k}^{2}(t) \rho(t) dt \right]^{\frac{1}{2}}$$

where we have used that the fundamental polynomials $\{\ell_k(t)\}_{k=1}^n$ are orthogonal [4] with respect to the weight function $\rho(t)$ on the interval [a,b], i.e.

$$\int_{-\infty}^{b} \ell_k(t) \ell_i(t) \rho(t) dt = 0 \quad \text{if} \quad k \neq i,$$

and so we get from (8), (9) and (10) that

$$|f(x) - Q_n(x)| \le$$

$$\leq E_{n-1}(f')(b-a) + \sqrt{C} \left[E_{n-1}^2(f') \sum_{k=1}^n \int_a^b \ell_k^2(t) \rho(t) dt \right]^{\frac{1}{2}} = \\
= E_{n-1}(f')(b-a) + \sqrt{C} E_{n-1}(f') \left[\int_a^b \left(\sum_{k=1}^n \ell_k^2(t) \right) \rho(t) dt \right]^{\frac{1}{2}} = \\
= E_{n-1}(f') \left[(b-a) + \sqrt{C} \left\{ \int_a^b \left(\sum_{k=1}^n \ell_k(t) \right)^2 \rho(t) dt \right\}^{\frac{1}{2}} \right] = \\
= E_{n-1}(f') \left[(b-a) + \sqrt{C} \left(\int_a^b \rho(t) dt \right)^{\frac{1}{2}} \right]$$

regarding the fact that $\left(\sum_{k=1}^n \ell_k(t)\right)^2 \equiv 1$, and so for every $x \in [a,b]$

(12)
$$|f(x) - Q(x)| \le E_{n-1}(f') \left[(b-a) + \left(\int_a^b \frac{1dt}{\rho(t)} \int_a^b \rho(t)dt \right)^{\frac{1}{2}} \right]$$

and so our theorem is proved, and at the same time the inequality (12) gives us an order of magnitude with respect to

(13)
$$||f(x) - Q_n(x)||_{C[a,b]} = \max_{[a,b]} |f(x) - Q_n(x)| = O(E_{n-1}(f')).$$

Corollaries. (I) If we write the definition (4) in the form

$$A_n[f] = \int_a^x \left(\sum_{k=1}^n f'(x_k^{(n)})\ell_k(t)\right) dt + f(a)$$

then we can see that $Q_n(x) = A_n[f]$ is a polynomial operator in the space $C^1[a, b]$ of degree n and if we consider this operator as

$$A_n[f] \in C^1[a,b] \to C[a,b]$$

mapping $C^1[a,b]$ into C[a,b], then

$$||f - A_n[f]|| \underset{C[a,b]}{\longrightarrow} 0 \text{ as } n \to \infty.$$

(II) If $\rho_{(\alpha,\beta)}(x) = (1-x)^{\alpha}(1+x)^{\beta}$ and [a,b] = [-1,+1], i.e. $\omega_n(x) = J_n^{(\alpha,\beta)}(x)$ is the *n*-th Jacobian polynomial, then we can apply our theorem if $-1 < \alpha, \beta < +1$ because in this case both of the integrals

$$\int_{-1}^{+1} \rho(x) dx = \int_{-1}^{+1} (1-x)^{\alpha} (1+x)^{\beta} dx \quad \text{and} \quad$$

$$\int_{-1}^{+1} \frac{1}{\rho(x)} dx = \int_{-1}^{+1} (1-x)^{-\alpha} (1+x)^{-\beta} dx$$

are finite.

(III) If we consider the initial value problem

$$(14) y' = f(x), y(a) = A$$

where $f(x) \in C[a, b]$, then for the solution $y = \varphi(x)$ of (14) we can apply our method and the approximating polynomials

(15)
$$\varphi_n(x) = A + \int_a^x \left(\sum_{k=1}^n f(x_k^{(n)})\ell_k(t)\right) dt$$

of n-th order converge uniformly to $\varphi(x)$ on the interval [a, b], and

(16)
$$\max_{[a,b]} |\varphi_n(x) - \varphi(x)| = O(E_{n-1}(f)).$$

Specially, if $f(x) \in \operatorname{Lip}^{\alpha > 0}[a, b]$ then in the right of (16) we can write $O\left(\frac{1}{n^{\alpha}}\right)$, and if f(x) is differentiable then we may write $O\left(\frac{1}{n}\right)$ [3].

References

- [1] Grünwald G., On the theory of interpolation, Acta Mathematica (Sweden), 75 (1943), 219-245.
- [2] Fejér L., Über Interpolation, Nachrichten d.K. Gesellschaft zu Göttingen, 1916, 66-91.
- [3] Jackson D., Über die Genaugkeit der Annäherung stetiger Funktionen durch ganze rationale Funktionen, Dissertation, Göttingen, 1911.
- [4] Erdős P. and Turán P., On interpolation I., Annals of Math., 38 (1937), 142-155.

(Received February 6, 1992)

L.G. Pál
Department of Applied Analysis
Eötvös Loránd University
VIII. Múzeum krt 6-8.
H-1088 Budapest, Hungary